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Abstract. In order to address real-world problems, deep learning models
are jointly trained on many classes. However, in the future, some classes
may become restricted due to privacy/ethical concerns, and the restricted
class knowledge has to be removed from the models that have been trained
on them. The available data may also be limited due to privacy/ethical
concerns, and re-training the model will not be possible. We propose a
novel approach to address this problem without affecting the model’s
prediction power for the remaining classes. Our approach identifies the
model parameters that are highly relevant to the restricted classes and
removes the knowledge regarding the restricted classes from them using
the limited available training data. Our approach is significantly faster
and performs similar to the model re-trained on the complete data of the
remaining classes.

1 Introduction

There are several real-world problems in which deep learning models have ex-
ceeded human-level performance. This has led to a wide deployment of deep
learning models. Deep learning models generally train jointly on a number of
categories/classes of data. However, the use of some of these classes may get
restricted in the future (restricted classes), and a model with the capability to
identify these classes may violate legal/privacy concerns. Individuals and organi-
zations are becoming increasingly aware of these issues leading to an increasing
number of legal cases on privacy issues in recent years. In such situations, the
model has to be stripped of its capability to identify these categories (Class-level
Forgetting). Due to legal/privacy concerns, the available training data may also
be limited. In such situations, the problem becomes even more difficult to solve in
the absence of the full training data. Real world problems such as incremental and
federated learning also suffer from this problem as discussed in Sec. 3. We present
a “Restricted Category Removal from Model Representations with Limited Data”
(RCRMR-LD) problem setting that simulates the above problem. In this paper,
we propose to solve this problem in a fast and efficient manner.

⋆ All the authors contributed equally.
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The objective of the RCRMR-LD problem is to remove the information
regarding the restricted classes from the network representations of all layers
using the limited training data available without affecting the ability of the model
to identify the remaining classes. If we have access to the full training data, then
we can simply exclude the restricted class examples from the training data and
perform a full training of the model from scratch using the abundant data (FDR
- full data retraining). However, the RCRMR-LD problem setting is based on
the scenario that the directive to exclude the restricted classes is received in the
future after the model has already been trained on the full data and now only
a limited amount of training data is available to carry out this process. Since
only limited training data is available in our RCRMR-LD problem setting, the
FDR model violates our problem setting and is therefore, not a solution to our
RCRMR-LD problem setting. Simply training the network from scratch on only
the limited training data of the remaining classes will result in severe overfitting
and significantly affect the model performance (Baseline 2, as shown in Table 1).

Another possible solution to this problem is to remove the weights of the
fully-connected classification layer of the network corresponding to the excluded
classes such that it can no longer classify the excluded classes. However, this
approach suffers from a serious problem. Since, in this approach, we only remove
some of the weights of the classification layer and the rest of the model remains
unchanged, the model still contains the information required for recognizing the
excluded classes. This information can be easily accessed through the features that
the model extracts from the images and, therefore, we can use these features for
performing classification. In this paper, we use a nearest prototype-based classifier
to demonstrate that the model features still contain information regarding the
restricted classes. Specifically, we use the model features of the examples from
the limited training data to compute the average class prototype for each class
and create a nearest class prototype-based classifier using them. Next, for any
given test image, we extract its features using the model and then find the class
prototype closest to the given test image. This nearest class prototype-based
classifier performs close to the original fully-connected classifier on the excluded
classes as shown in Table 1 (Baseline 1). Therefore, even after using this approach,
the resulting model still contains information regarding the restricted classes.
Another possible approach can be to apply the standard fine-tuning approach
to the model using the limited available training data of the remaining classes
(Baseline 8). However, fine-tuning on such limited training data is not able to
sufficiently remove the restricted class information from the model representations
(see Table 1), and aggressive fine-tuning on the limited training data may result
in overfitting.

Considering the problems faced by the naive approaches mentioned above,
we propose a novel “Efficient Removal with Preservation” (ERwP) approach
to address the RCRMR-LD problem. First, we propose a novel technique to
identify the model parameters that are highly relevant to the restricted classes,
and to the best of our knowledge, there are no existing prior works for finding
such class-specific relevant parameters. Next, we propose a novel technique that
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optimizes the model on the limited available training data in such a way that
the restricted class information is discarded from the restricted class relevant
parameters, and these parameters are reused for the remaining classes.

To the best of our knowledge, this is the first work that addresses the RCRMR-
LD problem. We also propose several baseline approaches for this problem (see
Sec. 6). Our proposed approach significantly outperforms all the proposed baseline
approaches. Our proposed approach requires very few epochs to address the
RCRMR-LD problem and is, therefore, very fast (∼ 200× on ImageNet) and
efficient. The model obtained after applying our approach forgets the excluded
classes to such an extent that it behaves as though it was never trained on
examples from the excluded classes. The performance of our model is very similar
to the full data retraining (FDR) model (see Sec. 8.1 in the manuscript and Fig. 2
in the supplementary material). We also propose the performance metrics needed
to evaluate the performance of any approach for the RCRMR-LD problem.

2 Problem Setting

In this work, we present the restricted category removal from model representations
with limited data (RCRMR-LD) problem setting, in which a deep learning model
Mo trained on a specific dataset has to be modified to exclude information regard-
ing a set of restricted/excluded classes from all layers of the deep learning model
without affecting its identification power for the remaining classes (see Fig. 1).
The classes that need to be excluded are referred to as the restricted/excluded
classes. Let {Ce

1 , C
e
2 , ..., C

e
Ne

} be the restricted/excluded classes, where Ne refers
to the number of excluded classes. The remaining classes of the dataset are the
remaining/non-excluded classes. Let {Cne

1 , Cne
2 , ..., Cne

Nne
} be the non-excluded

classes, where Nne refers to the number of remaining/non-excluded classes. Addi-
tionally, we only have access to a limited amount of training data for the restricted
classes and the remaining classes, for carrying out this process. Therefore, any
approach for addressing this problem can only utilize this limited training data.

3 RCRMR-LD Problem in Real World Scenarios

A real-world scenario where our proposed RCRMR-LD problem can arise is the
incremental learning setting [21,16], where the model receives training data in
the form of sequentially arriving tasks. Each task contains a new set of classes.
During a training session t, the model receives the task t for training and cannot
access the full data of the previous tasks. Instead, the model has access to very
few exemplars of the classes in the previous tasks. Suppose before training a
model on training session t, it is noticed that some classes from a previous
task (< t) have to be removed from the model since those classes have become
restricted due to privacy or ethical concerns. In this case, only a limited number
of exemplars are available for all these previous classes (restricted and remaining).
This demonstrates that the RCRMR-LD problem is present in the incremental
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Fig. 1: The RCRMR-
LD problem setting
aims to remove the
information regarding
the restricted/excluded
classes ({Ce

1 , .., C
e
Ne

})
from all layers of a
trained model Mo

while preserving its
predictive power for
the remaining classes
({Cne

1 , .., Cne
Nne

}) using
limited training data.
The category removal
(denoted by a red cross)
has to take place at the
classifier level (denoted
as squares for each
output logit) and at the
feature/representation
level (denoted as a
circle)

Fig. 2: ERwP identifies
those parameters in the
model that are highly
relevant to the restricted
classes. To obtain these
parameters, ERwP
modifies training images
from a restricted class
using a data augmen-
tation f and performs
backpropagation using
the classification loss on
these training images.
ERwP then studies the
gradient update that
each parameter receives
in this process in order
to identify the highly
relevant parameters for
the restricted classes
(denoted by dotted
circles)

Fig. 3: ERwP only optimizes
the restricted class relevant
parameters in the model
(denoted by dotted circles).
ERwP uses Le

c, Lne
c and

Lkd losses to remove the
restricted class information
from the model while pre-
serving its performance on
the remaining classes. Le

c

and Lne
c denote the clas-

sification loss on the re-
stricted class training ex-
amples and the remaining
class training example, re-
spectively. Lkd denotes the
knowledge distillation-based
regularization loss that pre-
serves the logits correspond-
ing to only the remaining
classes for all the training ex-
amples

learning setting. We experimentally demonstrate in Sec. 8.3, how our approach
can address the RCRMR-LD problem in the incremental learning setting.

Let us consider another example. The EU GDPR laws require a data provider
to remove information about an individual from a dataset upon that individual’s
request. In face recognition, this may lead to cases where the model has to be
retrained from scratch, leaving out the training data for the restricted classes.
In many such cases, it may be highly impractical and inefficient for the model
creators to retrain the entire model from scratch. The RCRMR problem simulates
this problem setting. Other examples of this problem include ethical AI concerns
where protected classes (pregnant women, prisoners, children, etc.) need to
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be removed. There can also be other real-world scenarios, such as federated
learning, where our RCRMR-LD problem can arise. Please refer to Sec. 1 in the
supplementary material for more details.

4 Proposed Method

4.1 Method Description

Let, B refer to a mini-batch (of size S) from the available limited training
data, and B contains training datapoints from the restricted/excluded classes
({(xe

i , y
e
i )|(xe

1, y
e
1), ..., (x

e
Se
, yeSe

)}) and from the remaining/non-excluded classes
({(xne

j , ynej )|(xne
1 , yne1 ), ..., (xne

Sne
, yneSne

)}). Here, (xe
i , y

e
i ) refers to a training data-

point from the excluded classes where xe
i is an image, yei is the corresponding

label and yei ∈ {Ce
1 , C

e
2 , ..., C

e
Ne

}. (xne
j , ynej ) refers to a training datapoint from

the non-excluded classes where xne
j is an image, ynej is the corresponding label

and ynej ∈ {Cne
1 , Cne

2 , ..., Cne
Nne

}. Here, Se and Sne refer to the number of training
examples in the mini-batch from the excluded and non-excluded classes, respec-
tively, such that S = Se + Sne. Ne and Nne refer to the number of excluded and
non-excluded classes, respectively. Let M refer to the deep learning model being
trained using our approach and Mo is the original trained deep learning model.

In a trained model, some of the parameters may be highly relevant to the
restricted classes, and the performance of the model on the restricted classes is
mainly dependent on such highly relevant parameters. Therefore, in our approach,
we focus on removing the excluded class information from these restricted class
relevant parameters. Since the model is trained on all the classes jointly, the
parameters are shared across the different classes. Therefore identifying these
class-specific relevant parameters is very difficult. Let us consider a model that is
trained on color images of a class. If we now train it on grayscale images of the
class, then the model has to learn to identify these new images. In order to do
so, the parameters relevant to that class will receive large gradient updates as
compared to the other parameters (see Sec. 5.1 in the supplementary material).
We propose a novel approach for identifying the relevant parameters for the
restricted classes using this idea. For each restricted class, we choose the training
images belonging to that class from the limited available training data. Next, we
apply a grayscale data augmentation technique/transformation f to these images
so that these images become different from the images that the original model
was earlier trained on (assuming that the original model has not been trained
on grayscale images). We can also use other data augmentation techniques that
are not seen during the training process of the original model and that do not
change the class of the image (refer to Sec. 5.6 in the supplementary material).
Next, we combine the predictions for each training image into a single average
prediction and perform backpropagation. During the backpropagation, we study
the gradients for all the parameters in each layer of the model. Accordingly, we
select the parameters with the highest absolute gradient as the relevant parameters
for the corresponding restricted class. Specifically, for a given restricted class, we
choose all the parameters from each network layer such that pruning (zeroing out)
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these parameters will result in the maximum degradation of model performance
on that restricted class. We provide a detailed description of the process for
identifying the restricted class relevant parameters in Sec. 2 of the supplementary
material. The combined set of the relevant parameters for all the excluded classes
is referred to as the restricted/excluded class relevant parameters Θexrel (see
Fig. 2). Please note that we use this process only to identify Θexrel, and we do
not update the model parameters during this step.

Pruning the relevant parameters for a restricted class can severely impact
the performance of the model for that class (see Sec. 5.1 in the supplementary
material). However, this may also degrade the performance of the model on the
non-excluded classes because the parameters are shared across multiple classes.
Therefore, we cannot address the RCRMR-LD problem by pruning the relevant
parameters of the excluded classes. Finetuning these parameters on the limited
remaining class data will also not be able to sufficiently remove the restricted
class information from the model. Based on this, we propose to address the
RCRMR-LD problem by optimizing the relevant parameters of the restricted
classes to remove the restricted class information from them and to reuse them
for the remaining classes.

After identifying the restricted class relevant parameters, our ERwP approach
uses a classification loss based on the cross-entropy loss function to optimize
the restricted class relevant parameters of the model on each mini-batch (see
Fig. 3). We know that the gradient ascent optimization algorithm can be used to
maximize a loss function and encourage the model to perform badly on the given
input. Therefore, we use the gradient ascent optimization on the classification
loss for the limited restricted class training examples to remove the information
regarding the restricted classes from Θexrel. We achieve this by multiplying
the classification loss for the training examples from the excluded classes by a
constant negative factor of -1. We also optimize Θexrel using the gradient descent
optimization on the classification loss for the limited remaining class training
example, in order to reuse these parameters for the remaining classes. We validate
using this approach through various ablation experiments as shown in Sec. 5.2
in the supplementary material. The classification loss for the examples from the
excluded and non-excluded classes and the overall classification loss for each
mini-batch are defined as follows.

Le
c =

Se∑
i=1

−1 ∗ ℓ(yei , ye∗i ) (1)

Lne
c =

Sne∑
j=1

ℓ(ynej , yne∗j ) (2)

Lc =
1

S
(Le

c + Lne
c ) (3)

Where, ye∗i and yne∗j refer to the predicted class labels for xe
i and xne

j , respectively.
ℓ(., .) refers to the cross-entropy loss function. Le

c and Lne
c refer to the classification
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loss for the examples from the excluded and non-excluded classes in the mini-
batch, respectively. Lc refers to the overall classification loss for each mini-batch.

Since all the network parameters were jointly trained on all the classes
(restricted and remaining), the restricted class relevant parameters also contain
information relevant to the remaining classes. Applying the above process alone
will still harm the model’s predictive power for the non-excluded classes (as
shown in Sec. 5.2, Table 2 in the supplementary material). This is because
the gradient ascent optimization strategy will also erase some of the relevant
information regarding the remaining classes. Further, applying Lne

c on the limited
training examples of the remaining classes will lead to overfitting and will not
be effective enough to fully preserve the model performance on the remaining
classes. In order to ensure that the model’s predictive power for the non-excluded
classes does not change, we use a knowledge distillation-based regularization
loss. Knowledge distillation [14] ensures that the predictive power of the teacher
network is replicated in the student network. In this problem setting, we want the
final model to replicate the same predictive power of the original model for the
remaining classes. Therefore, given any training example, we use the knowledge
distillation-based regularization loss to ensure that the output logits produced
by the model corresponding to only the non-excluded classes remain the same
as that produced by the original model. We apply the knowledge distillation
loss to the limited training examples from both the excluded and remaining
classes, to preserve the non-excluded class logits of the model for any input
image. We validate this knowledge distillation-based regularization loss through
ablation experiments as shown in Table 2 in the supplementary material. We
use the original model Mo (before applying ERwP) as the teacher network and
the current model M being processed by ERwP as the student network, for
the knowledge distillation process. Please note that the optimization for this
loss is also carried out only for the restricted class relevant parameters of the
model. Let KD refer to the knowledge distillation loss function. It computes the
Kullback-Liebler (KL) divergence between the soft predictions of the teacher and
the student networks and can be defined as follows:

KD(ps, pt) = KL(σ(ps), σ(pt)) (4)

where, σ(.) refers to the softmax activation function that converts logit ai for
each class i into a probability by comparing ai with logits of other classes aj ,

i.e., σ(ai) =
expai/κ∑
j expaj/κ

. κ refers to the temperature [14], KL refers to the KL-

Divergence function. ps, pt refer to the logits produced by the student network
and the teacher network, respectively.

The knowledge distillation-based regularization losses in our approach are
defined as follows.

Le
kd =

Se∑
i=1

KD(M(xe
i )[C

ne],Mo(x
e
i )[C

ne]) (5)
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Lne
kd =

Sne∑
j=1

KD(M(xne
j )[Cne],Mo(x

ne
j )[Cne]) (6)

Lkd =
1

S
(Le

kd + Lne
kd) (7)

Where, M(#)[Cne] and Mo(#)[Cne] refer to the output logits corresponding
to the remaining classes produced by M and Mo, respectively. # can be either
xe
i or xne

j . Le
kd and Lne

kd refer to knowledge distillation-based regularization loss
for the examples from the excluded and non-excluded classes, respectively. Lkd

refers to the overall knowledge distillation-based regularization loss for each
mini-batch. The Lne

kd loss helps in preserving the model performance for the
non-excluded classes. If some of the restricted classes are similar to some of the
remaining/non-excluded classes, the Le

kd loss ensures that the model performance
on the remaining classes is not degraded due to this similarity. This is because
the Le

kd loss preserves the logits corresponding to the non-excluded classes for
the restricted class training examples.

The total loss Lerwp of our approach for each mini-batch is defined as follows.

Lerwp = Lc + βLkd (8)

Where, β is a hyper-parameter that controls the contribution of the knowledge
distillation-based regularization loss. We use this loss for fine-tuning the model
for very few epochs.

5 Related Work

Pruning [1,25,11,12] involves removing redundant and unimportant weights [2,7,9]
or filters [10,13,17] from a deep learning model without affecting the model
performance. Pruning approaches generally identify the important parameters
in the network and remove the unimportant parameters. In the RCRMR-LD
problem setting, the restricted class relevant parameters are also important
parameters. However, we empirically observe that pruning the restricted class
relevant parameters severely affects the model performance for the remaining
classes since the parameters are shared among all the classes. Therefore, pruning
approaches cannot be applied in the RCRMR-LD problem setting.

In the incremental learning setting [15,24,3,18], the objective is to preserve
the predictive power of the model for previously seen classes while learning a
new set of classes. The work in [22] uses a topology-preserving loss to prevent
catastrophic forgetting by maintaining the topology in feature space. In contrast
to the incremental learning setting, our proposed RCRMR-LD problem setting
involves removing the information regarding specific classes from the pre-trained
model while preserving the predictive power of the model for the remaining
classes.

There has been some research involving deleting individual data points from
trained machine learning models such as [5,6]. The work in [5] deals with data
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deletion in the context of a machine learning algorithm and model. It shows
how to remove the influence of a data point from a k-means clustering model.
Our work focuses on restricted category removal from deep learning models with
limited data. Therefore, the approaches proposed in [5] cannot be applied to
RCRMR-LD. Further, the objective of data deletion is to remove a data point
without affecting the model performance on any classes, including the class of
the deleted data point. This is in stark contrast to our RCRMR-LD problem,
where the objective is to remove the knowledge of a set of classes or categories
from the model. Further, data deletion methods will require access to the entire
training data of a class in order to remove the entire knowledge of a class (refer
to the appendix A.1. of [6]). This is because deep learning models have a high
generalization power even on unseen examples of a class on which they have been
trained, and simply deleting a few data points of a class from the knowledge base
of the model will not be enough to forget that class. However, in our proposed
problem setting, only a limited number of training examples are present for
any class. Therefore, data-deletion approaches are not solutions to our proposed
RCRMR-LD problem setting. This is why we have not applied these approaches
in our problem setting.

Privacy-preserving deep learning [19,4,8] involves learning representations that
incorporate features from the data relevant to the given task and ignore sensitive
information (such as the identity of a person). The authors in [20] propose a
simple variational approach for privacy-preserving representation learning. In
contrast to existing privacy preservation works, the objective of the RCRMR-LD
problem setting is to achieve class-level forgetting, i.e., if a class is declared as
private/restricted, then all information about this class should be removed from
the model trained on it, without affecting its ability to identify the remaining
classes. To the best of our knowledge, this is the first work to address the class-
level forgetting problem in the limited data regime, i.e., RCRMR-LD problem
setting.

6 Baselines

We propose 9 baseline models for the RCRMR-LD problem and compare our
proposed approach with them. The baseline 1 involves deleting the weights of
the fully-connected classification layer corresponding to the excluded classes.
Baselines 2, 3, 4, 5 involve training the model on the limited training data of
the remaining classes. Baselines 2 and 4 both involve training a new model from
scratch using the limited training examples of only the non-excluded classes, but
baseline 4 initializes the model with the weights of the original model. Baselines
3 and 5 are similar to baselines 2 and 4, respectively, but also use a knowledge
distillation loss to preserve the non-excluded class logits. Baselines 6, 7, 8, 9
involve fine-tuning the model on the available limited training data. Baselines 6
and 7 fine-tune the original model on the available limited data of all the classes
after mapping the restricted classes to a single excluded class, but baseline 7 also
uses a knowledge distillation loss. Baselines 8 and 9 fine-tune the original model
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on the available limited data of only the remaining classes, but baseline 9 also
uses a knowledge distillation loss. Please refer to Sec. 3 in the supplementary
material for details about the baselines.

7 Performance Metrics

In the RCRMR-LD problem setting, we propose three performance metrics to
validate the performance of any method: forgetting accuracy (FAe), forgetting
prototype accuracy (FPAe), and constraint accuracy (CAne). The forgetting ac-
curacy refers to the fully-connected classification layer accuracy of the model
for the excluded classes. The forgetting prototype accuracy refers to the nearest
class prototype-based classifier accuracy of the model for the excluded classes.
CAne refers to the fully-connected classification layer accuracy of the model for
the non-excluded classes.

In order to judge any approach on the basis of these metrics, we follow the
following sequence. First, we analyze the constraint accuracy (CAne) of the model
produced by the given approach to verify if the approach has preserved the
prediction power of the model for the non-excluded classes. CAne of the model
should be close to that of the original model. If this condition is not satisfied, then
the approach is not suitable for this problem, and we need not analyze the other
metrics. This is because if the constraint accuracy is not maintained, then the
overall usability of the model is hurt significantly. Next, we analyze the forgetting
accuracy (FAe) of the model to verify if the excluded class information has been
removed from the model at the classifier level. FAe of the model should be as close
to 0% as possible. Finally, we analyze the forgetting prototype accuracy (FPAe) of
the model to verify if the excluded class information has been removed from the
model at the feature level. FPAe of the model should be significantly less than that
of the original model. However, the FPAe will not become zero since any trained
model will learn to extract meaningful features, which will help the nearest class
prototype-based classifier to achieve some non-negligible accuracy even on the
excluded classes. Therefore, for a better analysis of the level of forgetting of
the excluded classes at the feature level, we compare the FPAe of the model
with the FPAe of the FDR model. The FDR model is a good candidate for this
analysis since it has not been trained on the excluded classes (only trained on the
complete dataset of the remaining classes), and it still achieves a non-negligible
performance of the excluded classes (see Sec 8.1). However, it should be noted
that this comparison is only for analysis and the comparison is not fair since the
FDR model needs to train on the entire dataset (except the excluded classes).

A naive approach for measuring the capability of any approach for removing
the excluded class information in this problem setting is to only consider how
low the forgetting accuracy (FAe) of the model for the excluded classes drops to
after the excluded category removal process. However, using FAe alone may be
misleading since zero or random forgetting accuracy (FAe) for a excluded class
does not mean that the excluded class information has been removed from all
layers of the model. In order to understand this point, let us consider the weight
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deletion (WD) baseline (baseline 1) that simply deletes the classification layer
weights corresponding to the excluded classes and achieves a forgetting accuracy
(FAe) of 0% for the excluded classes. However, this does not mean that the
excluded class information has been removed from all the layers of the network
since the rest of the network remains intact. Therefore, using only (FAe) metric
is not enough. Now, if we consider the forgetting prototype accuracy (FPAe) of
the WD model, we will observe that the FPAe of WD model is the same as that
of the original model for the excluded classes. This clearly indicates that the
excluded class information is still present in the layers of the network. Further,
we also need to check whether the model performance for the remaining classes is
maintained. We use our proposed constraint accuracy (CAne) of the non-excluded
classes for this purpose. Therefore, the above discussion clearly demonstrates
that a single metric is not effective in this problem setting.

8 Experiments

We have reported the experimental results for the CIFAR-100 and ImageNet-
1k datasets in this section. We have also provided the results on the CUB-200
dataset in the supplementary material. Please refer to the supplementary material
for the details regarding the datasets and implementation. We have provided
the experimental results for the ablation experiments to validate the different
components of our works in the supplementary material.

8.1 CIFAR-100 Results

We report the performance of different baselines and our proposed ERwP method
on the RCRMR-LD problem using the CIFAR-100 dataset with different archi-
tectures in Table 1. We observe that the baseline 1 (weight deletion) achieves
high constraint accuracy CAne and 0% forgetting accuracy FAe. But its forgetting
prototype accuracy FPAe remains the same as the original model for all the three
architectures, i.e., ResNet-20/56/164. Therefore, baseline 1 fails to remove the
excluded class information from the model at the feature level. Baseline 2 is not
able to preserve the constraint accuracy CAne even though it performs full training
on the limited excluded class data. Baseline 3 achieves higher CAne than baseline
2, but the constraint accuracy is still too low. Baselines 4 and 5 demonstrate
significantly better constraint accuracy than baseline 2 and 3, but their constraint
accuracy is still significantly lower than the original model (except baseline 5 for
ResNet-20). The baseline 5 with ResNet-20 maintains the constraint accuracy
and achieves 0% forgetting accuracy FAe but its FPAe is still significantly high
and, therefore, is unable to remove the excluded class information from the
model at the feature level. The fine-tuning based baselines 6 and 7 are able to
significantly reduce the forgetting accuracy FAe but their constraint accuracy
CAne drops significantly. The fine-tuning based baselines 8 and 9 only finetune
the model on the limited remaining class data and as a result they are not able
to sufficiently reduce either the FAe or the FPAe.
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Table 1: Experimental results on the CIFAR-100 dataset for RCRMR-LD

Methods ResNet-20 ResNet-56 ResNet-164

FAe FPAe CAne FAe FPAe CAne FAe FPAe CAne

Original 70.15% 65.25% 67.06% 70.80% 68.65% 69.88% 79.00% 76.40% 76.30%

No Training
Baseline 1 - WD 0.00% 65.25% 69.88% 0.00% 68.65% 72.44% 0.00% 76.40% 78.23%

Full Train Schedule
Baseline 2 - TSLNRC 0.00% 22.20% 31.55% 0.00% 20.20% 30.21% 0.00% 33.05% 40.65%
Baseline 3 - TSLNRC-KD 0.00% 27.55% 40.81% 0.00% 22.50% 32.26% 0.00% 38.55% 45.74%
Baseline 4 - TOLNRC 0.00% 50.85% 58.01% 0.00% 48.60% 57.81% 0.00% 51.55% 63.78%
Baseline 5 - TOLNRC-KD 0.00% 60.25% 67.85% 0.00% 51.25% 61.14% 0.00% 52.80% 63.75%

Only Fine-Tuning
Baseline 6 - FOLMRCSC 24.25% 59.55% 64.03% 13.35% 60.25% 65.23% 15.40% 59.20% 71.06%
Baseline 7 - FOLMRCSC-KD 13.50% 58.80% 63.79% 12.75% 64.95% 63.41% 16.75% 65.30% 68.61%
Baseline 8 - FOLNRC 59.05% 64.30% 68.34% 66.90% 68.45% 70.11% 77.35% 75.85% 75.95%
Baseline 9 - FOLNRC-KD 57.99% 64.40% 68.40% 65.95% 68.40% 70.01% 73.30% 73.55% 75.99%
ERwP (Ours) 0.00% 48.06% 66.84% 0.00% 47.84% 69.32% 0.74% 56.23% 75.65%

Our proposed ERwP approach achieves a constraint accuracy CAne that is
very close to the original model for all three architectures. It achieves close to
0% FAe. Further, it achieves a significantly lower FPAe than the original model.
Specifically, the FPAe of our approach is significantly lower than that of the
original model by absolute margins of 17.19%, 20.81%, and 20.17% for the
ResNet-20, ResNet-56, and ResNet-164 architectures, respectively. The FPAe for
the FDR model is 44.20%, 45.40% and 51.85% for the ResNet-20, ResNet-56
and ResNet-164 architectures, respectively. Therefore, the FPAe of our approach
is close to that of the FDR model by absolute margins of 3.86%, 2.44% and
4.38% for the ResNet-20, ResNet-56 and ResNet-164 architectures, respectively.
Therefore, our ERwP approach makes the model behave similar to the FDR
model even though it was trained on only limited data from the excluded and
remaining classes. Further, our ERwP requires only 10 epochs to remove the
excluded class information from the model. Since the available limited training
data is only 10% of the entire CIFAR-100 dataset, therefore, our ERwP approach
is approximately 30 ∗ 10 = 300× faster than the FDR method that is trained on
the full training data for 300 epochs.

The FPAe accuracy obtained using ERwP is significantly lower than the
original model, e.g., for the ResNet-56 architecture FPAe of ERwP is 47.84%
compared to 68.65% of the original model for the CIFAR-100 dataset using
the ResNet-56 model. However, this does not indicate the presence of much
restricted category information. This is because the process for obtaining the
FPAe accuracy involves creating prototypes from the limited training data of the
restricted classes and the remaining classes and finding the nearest neighbor
class. Therefore, this process is dependent on the features generated by the deep
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Table 2: Experimental results on ImageNet-1k

Model Methods Top-1 Top-5

FAe CAne FAe CAne

Res-18
Original 69.76% 69.76% 89.58% 89.02%
ERwP 0.28% 69.13% 1.01% 88.93%

Res-50
Original 76.30% 76.11% 93.04% 92.84%
ERwP 0.25% 75.45% 2.55% 92.39%

Mob-V2
Original 72.38% 70.83% 91.28% 90.18%
ERwP 0.17% 70.81% 0.81% 89.95%

learning model. Deep learning models generally produce highly discriminative
features that can be used to create good prototype classifiers even for classes that
the models were not trained on. For example, in the few-shot learning setting, the
model is generally trained only on the base classes and then evaluated on novel
class episodes using a prototype-based classifier. The prototype-based classifier of
the few-shot learning setting is very effective in classifying the novel classes even
though the deep model, which was used to obtain the features for the prototypes,
was never trained on the novel classes. The discriminative nature of the features
produced by deep learning models is the main reason why ImageNet pre-trained
model features are used to train classifiers for other datasets and settings, such
as in zero-shot learning. In order to better appreciate the effectiveness of our
approach, we also consider the FDR model, which has not seen any training
data of the restricted classes and still achieves a FPAe accuracy close to that of
our approach, e.g. FDR achieves a FPAe accuracy of 45.40% for the CIFAR-100
dataset using the ResNet-56 model while our approach achieves an FPAe accuracy
of 47.84%. We provide this result as a reference to demonstrate that the non-zero
accuracy of ERwP is due to the generalization power of deep CNNs and not
due to the restricted classes information in the model. However, comparing FDR
with our approach is not fair since FDR requires the full training data of the
remaining classes, which violates the RCRMR-LD problem setting. Therefore,
we have not provided the FDR results in the tables to maintain fairness.

8.2 ImageNet Results

Table 2 reports the experimental results for different approaches to RCRMR-LD
problem over the ImageNet-1k dataset using the ResNet-18, ResNet-50 and
MobileNet V2 architectures. Our proposed ERwP approach achieves a top-1
constraint accuracy CAne that is very close to that of the original model by
absolute margins of 0.63%, 0.66% and 0.02% for the ResNet-18, ResNet-50 and
MobileNet V2 architectures, respectively. It achieves close to 0% top-1 forgetting
accuracy FAe for all the three architectures. Therefore, our approach performs
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Table 3: Performance of ERwP in incremental learning setting using ResNet-18

Model FAe CAne

Original Model obtained after Session 4 [M4] 56.39% 58.32%
M4 modified with ERwP (Ours) 0.20% 59.93%

well even on the large-scale ImageNet-1k dataset. Further, our ERwP requires
only 10 epochs to remove the excluded class information from the model. Since
the available limited training data is only 5% of the entire ImageNet-1k dataset,
therefore, our ERwP approach is approximately 20 ∗ 10 = 200× faster than the
FDR method that is trained on the full data for 100 epochs.

8.3 RCRMR-LD Problem in Incremental Learning

In this section, we experimentally demonstrate how the RCRMR-LD problem in
the incremental learning setting is addressed using our proposed approach. We
consider an incremental learning setting on the CIFAR-100 dataset in which each
task contains 20 classes. We use the BIC [23] method for incremental learning on
this dataset. The exemplar memory size is fixed at 2000 as per the setting in [23].
In this setting, there are 5 tasks. Let us assume that the model (M4) has already
been trained on 4 tasks (80 classes), and we are in the fifth training session.
Suppose, at this stage, it is noticed that all the classes in the first task (20 classes)
have become restricted and need to be removed before the model is trained on
task 5. However, we only have a limited number of exemplars of the 80 classes
seen till now, i.e., 2000/80 = 25 per class. We apply our proposed approach
to the model obtained after training session 4, and the results are reported in
Table 3. The results indicate that our approach modified the model obtained after
session 4, such that the forgetting accuracy of the restricted classes approaches
0% and the constraint accuracy of the remaining classes is not affected. In fact,
the modified model behaves as if, it was never trained on the classes from task 1.
We can now perform the incremental training of the modified model on task 5.

9 Conclusion

In this paper, we present a “Restricted Category Removal from Model Repre-
sentations with Limited Data” problem in which the objective is to remove the
information regarding a set of excluded/restricted classes from a trained deep
learning model without hurting its predictive power for the remaining classes.
We propose several baseline approaches and also the performance metrics for
this setting. We propose a novel approach to identify the model parameters that
are highly relevant to the restricted classes. We also propose a novel efficient
approach that optimizes these model parameters in order to remove the restricted
class information and re-use these parameters for the remaining classes.
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