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Abstract. The widespread use of smart computer vision systems in
our personal spaces has led to an increased consciousness about the pri-
vacy and security risks that these systems pose. On the one hand, we
want these systems to assist in our daily lives by understanding our
surroundings, but on the other hand, we want them to do so with-
out capturing any sensitive information. Towards this direction, this
paper proposes a simple, yet robust privacy-preserving encoder called
BDQ for the task of privacy-preserving human action recognition that
is composed of three modules: Blur, Difference, and Quantization. First,
the input scene is passed to the Blur module to smoothen the edges.
This is followed by the Difference module to apply a pixel-wise inten-
sity subtraction between consecutive frames to highlight motion fea-
tures and suppress high-level privacy attributes. Finally, the Quanti-
zation module is applied to the motion difference frames to remove the
low-level privacy attributes. The BDQ parameters are optimized in an
end-to-end fashion via adversarial training such that it learns to allow
action recognition attributes while inhibiting privacy attributes. Our
experiments on three benchmark datasets show that the proposed en-
coder design can achieve state-of-the-art trade-off when compared with
previous works. Furthermore, we show that the trade-off achieved is
at par with the DVS sensor-based event cameras. Code available at:
https://github.com/suakaw/BDQ_PrivacyAR

Keywords: Action recognition, Privacy, Motion difference, Quantiza-
tion, Adversarial training

1 Introduction

For many decades, people have been fascinated with the idea of creating com-
puter vision (CV) systems that can see and interpret the world around them. In
today’s world, as this dream turns into reality and such systems begin to be de-
ployed in our personal spaces, there is an increased consciousness about “what”
these systems see and “how” they interpret it. Nowadays, we want CV systems
that can protect our visual privacy without compromising the user experience.
Therefore, there is a growing interest in developing such CV systems that can
prevent the camera system from obtaining detailed visual data that may contain
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Fig. 1: Left- An example where downsampling is effective for privacy-preserving
action recognition. Right- An example where down-sampling is detrimental for
action recognition since the information about the number of fingers is lost.
Unlike downsampling, the BDQ preserves both spatial and temporal resolutions.

any sensitive information, but allow it to capture useful information to success-
fully perform the CV task [37,30,33,14,26]. For a satisfactory user experience and
strong privacy protection, a CV system must satisfy the following properties:

– Good target task accuracy. This is necessary for maintaining a good user
experience. For example, a privacy-preserving face detection model must de-
tect faces with high precision without revealing facial identity [33], a privacy-
preserving pose estimation model must detect body key-points without re-
vealing the person identity [14], and an action recognition model must rec-
ognize human actions without revealing their identity information [37,30].

– Strong privacy protection. Any privacy-preserving model, irrespective
of the target task must preserve common visual privacy attributes such as
identity, gender, race, color, gait, etc. [22]. Note that the definition of privacy
attributes for a privacy-preserving model may vary depending on its applica-
tion. Furthermore, strong privacy protection is guaranteed when the model
is applied at the point of capture and it is impossible for any adversary to
learn or reconstruct the privacy attributes.

– Cost-effective and low space-time complexity. The right to privacy
is considered as one of the fundamental rights in the most countries. How-
ever, with the increasing availability of low-budget consumer cameras and
smartphones, it cannot be fully guaranteed unless the privacy-preserving
models are affordable to everyone. This calls for a focus on implementing
such models, whether in software or hardware, in a cost-effective manner.
Additionally, since the privacy-preserving model needs to be applied at the
point of capture in consumer cameras and smartphones with low memory,
computation, and power budgets, it must be of low space-time complexity.

In this paper, we are interested in developing a privacy-preserving encoder for
the task of human action recognition while keeping the above properties in mind.
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In particular, we develop a simple and robust privacy-preserving encoder called
BDQ that is composed of three modules: Blur, Difference, and Quantization. The
modules are applied in a sequential manner such that Blur module smoothen
the edges in the input frames. The Difference module computes pixel-wise in-
tensity subtraction between consecutive frames to highlight motion features and
suppress high-level privacy attributes. The Quantization module removes the
low-level privacy attributes from the motion difference frames. The parameters
of BDQ are optimized in an end-to-end manner via adversarial training such
that it learns to facilitate action recognition while inhibiting privacy attributes.
Note that, any successful action recognition model relies on the presence of both
spatial and temporal cues in its input for good performance. However, in most
cases, applying a privacy-preserving encoder often destroys the spatial resolu-
tion which is sometimes detrimental for action recognition as shown in Figure 1.
The design of our BDQ encoder is motivated to alleviate such issues such that
it preserves both spatial and temporal cues that are essential for action recog-
nition while discarding attributes that may reveal the privacy information. In
summary, the contributions of this work are as follows.

– We propose a simple yet robust privacy-preserving encoder called BDQ for
the task of human action recognition. The BDQ encoder allows impor-
tant spatio-temporal cues for action recognition while preserving privacy
attributes at a very low space-time complexity.

– We show that the BDQ encoder achieves state-of-the-art trade-off between
action recognition and privacy preservation on three benchmark datasets
SBU, KTH, and IPN, when compared with other privacy-preserving models.
Moreover, we show that the trade-off achieved is at par with the DVS sensor-
based event cameras.

– We provide an extensive analysis of the BDQ encoder. The analysis includes
an ablation study on the components of BDQ, learning and reconstructing
privacy attributes by different adversaries, and a subjective evaluation.

– Finally, we also discuss the feasibility of implementing the BDQ modules
using existing hardware (please refer supplementary).

2 Related Work

In recent years, there is a growing interest in developing privacy-preserving vi-
sion systems for various computer vision tasks such as action recognition [37,30],
face detection [33], pose estimation [14,32], fall detection [3], and posture classi-
fication [12]. Here, we provide a brief overview of privacy-preserving frameworks
for various computer vision tasks, especially human action recognition.
Privacy-preserving computer vision. Early privacy-preserving models used
hand-crafted features such as blurring, down-sampling, pixelation, and face/object
replacement for protecting sensitive information [2,7,23]. Unfortunately, such ap-
proaches require extensive domain knowledge about the problem setting which
may not be feasible in practice. Modern privacy-preserving frameworks take
a data-driven approach to hide sensitive information. Such frameworks learn
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to preserve privacy via adversarial training [28] using Deep Neural Networks
(DNNs) that train the parameters of an encoder to actively inhibit the sen-
sitive attributes in an visual data against an adversarial DNN whose task is
to learn privacy attributes while allowing attributes that are essential for the
computer vision task [5,24,33,37,16,21]. Note that the encoder can be a hard-
ware module [14,33] or a software module [37,28]. Besides these works, there are
other imaging systems that use optical operations to hide sensitive attributes.
For example, in [25], the authors design camera systems that perform blurring
and k-same face de-identification in hardware. Furthermore, in [35,6], authors
explore coded aperture masks to enhance privacy.
Privacy-preserving action recognition. Early works in this area proposed to
learn human actions from low-resolution videos [9,30,29]. Ryoo et al. [30,29] pro-
posed to learn image transformations to down-sample frames into low-resolution
for action recognition. Wang et al. [35] proposed a lens-free coded aperture cam-
era system for action recognition that is privacy-preserving. Note that the above
frameworks are limited to providing visual privacy and it is not clear, to what ex-
tent they provide protection against adversaries like DNNs that may try to learn
or reconstruct the privacy attributes. To solve this issue, Ren et al. [27] proposed
to learn a video face anonymizer using adversarial training. The training uses a
video anonymizer that modifies the original video to remove sensitive informa-
tion while trying to maximize the action recognition performance and a discrim-
inator that tries to extract sensitive information from the anonymized videos.
Later, Wu et al. [37,36] proposed and compared multiple adversarial training
frameworks for optimizing the parameters of the encoder function. They used a
UNet-like encoder from [18] which can be seen as a 2D conv-based frame-level
filter. The encoder is trained to allow important spatio-temporal attributes for
action recognition, measured by a DNN, and to inhibit the privacy attributes in
frames against an ensemble of DNN adversaries whose task is to learn the sensi-
tive information. An important drawback of this framework is that the training
requires an ensemble of adversaries in order to provide strong privacy protection.
Concurrent to our work, Dave et al. [10] proposed a self-supervised framework
for training a UNet-based privacy-preserving encoder.

3 Proposed Framework

In this section, we present the design of our BDQ encoder which is composed of
a series of modules. We also discuss an adversarial training scheme to optimally
train the parameters of these modules for the two seemingly contradictory tasks:
protecting privacy and enabling action recognition.

3.1 BDQ: Blur Difference Quantization

The BDQ encoder, as the name suggests is composed of three modules: Blur,
Difference, and Quantization. Given a scene, the three modules are applied to it
in a sequential manner as shown in Figure 2. Here, for each module, we provide
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Fig. 2: The BDQ encoder architecture and adversarial training framework for
privacy-preserving action recognition. roll(1, dim = 1) operation shifts frames
by one along the temporal dimension.

a detailed description of its implementation and role in preserving privacy and
enabling action recognition.

Blur. The goal of the Blur module is to blur the spatial edges while preserv-
ing important spatial features for action recognition. More importantly, its task
is to suppress the obvious privacy features that may leak at the spatial edges in
motion difference frames that will be produced by the Difference module. Given
a frame vi, we define a video as V = {vi|i = 1, 2, .., t} where t is the number
of frames. The blurred frame Bvi is convolution of video frame vi and a 2D
Gaussian kernel Gσ of σ standard deviation and defined as Bvi

= Gσvi, where

Gσ = 1
2πσ2 exp(−x2+y2

2σ2 ). Window-size of the kernel is kept as 5 × 5 and σ is
learned during the adversarial training. A small window-size is chosen since it
stabilizes training and avoids losing important spatial features.

Difference. Given two consecutive frames from an action video after passing
through the Blur module, this module performs pixel-wise numerical subtrac-
tion between their intensity values and outputs a single frame as D(Bvi , Bvj ) =
Bvi −Bvj . It serves two important purposes: First, it highlights the motion fea-
tures between the two frames by bringing out the direction of motion which
improves action recognition accuracy. This is evident from the fact that many
current state-of-the-art action recognition methods such as [17,19,20,34] use such
temporal-difference modules in the feature space to develop action recognition
models. Second, it suppresses obvious high-level spatial privacy cues which helps
in preserving privacy. Note that this module does not contain any learnable pa-
rameters. Furthermore, when implemented for online applications where frames
are continuously being captured, it needs to store a copy of the previous frame
for pixel-wise numerical subtraction.

Quantization. Although, the Blur and the Difference modules contribute
to suppressing high-level spatial privacy cues, they cannot fully protect against
adversaries (see Section 5.1). This is because they still allow low-level spatial
privacy cues that are good enough for learning and reconstructing the privacy
attributes (see Section 5.4). To alleviate this issue, the task of the Quantization
module is to remove such information by applying a pixel-wise quantization func-
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tion on the motion difference frames that are output by the Difference module.
Conventionally, a quantization function is defined by y =

∑N−1
n=1 U(x−bi), where

y is the discrete output, x is a continuous input, bi = {0.5, 1.5, 2.5, . . . , N −1.5},
N = 2k, k is the number of bits, and U is the Heaviside function. Unfortu-
nately, such a formulation is not differentiable and therefore not suitable for
back-propagation. Thus, following [38,33], we approximate the above quanti-
zation function with a differentiable version by replacing the Heaviside func-
tion with the sigmoid σ() function, which results in the following formulation:∑N−1

n=1 σ(H(x − bi)), where H is a scalar hardness term. Here, the parameters
learned are the bi values. In this work, we fix the number of bi values to be 15
and initialize them to the values 0.5, 1.5, . . . , 14.5. Furthermore, the input to the
Quantization module is normalized to have values between 0 to 15. Note that,
here we allow quantization output to be non-integer since no hardware constrain
is imposed on BDQ.

3.2 Training BDQ Encoder

The BDQ encoder contains several parameters such as the standard deviation of
the Blur module and the intervals of the Quantization module. Our goal is to set
these parameters such that: (1) the privacy attributes cannot be learned from
the BDQ output by any adversary, (2) recognizing action attributes must be
feasible with high precision. Although, we can achieve this goal by setting these
parameters heuristically, however, it has been shown that a better performance
can be achieved if they are learned in a data-driven fashion [33,37,14].

Our training framework consists of three components: (1) the BDQ encoder
denoted as E, (2) a 3D CNN for predicting target action attribute denoted as
T , (3) and a 2D CNN for predicting privacy attribute denoted as P . The three
components are connected as illustrated in Figure 2 such that the output of E
is simultaneously passed to the networks T and P . Following [28], the param-
eter optimization of E, T , and P is formulated as a three-player non-zero sum
game where the goal of E is to maximize the likelihood of the target action
attributes, measured by E, while maximizing the uncertainty in the privacy at-
tributes, measured by P . Such a training procedure consists of two steps that
are iterated until the privacy attributes are sufficiently preserved without a sig-
nificant compromise in action recognition. In the first step, P is fixed and E and
T are trained together using the following loss function.

L(V, θE , θT ) = XE(T (E(V )), Laction)− αE(P (E(V ))) (1)

Here, XE and E refer to the cross-entropy loss and entropy function, respectively.
θE and θT denote parameters of E and T , respectively. Laction is the ground-
truth action label and α is the adversarial weight that allows a trade-off between
action and privacy recognition. In the second step, E and T are fixed, and P is
trained using the following loss function. Here, θP denote the parameters of P
and Lprivacy are the ground-truth privacy labels.

L(V, θP ) = XE(P (E(V )), Lprivacy) (2)
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4 Experiments

4.1 Datasets

SBU. The SBU Kinect Interaction Dataset [39] is a two-person interaction
dataset for video-based action recognition, recorded at 15 fps. It consists of
seven actors interacting in pairs in the following eight ways: approaching, de-
parting, pushing, kicking, punching, exchanging objects, hugging, and shaking
hands. Originally, the dataset comes divided into 21 sets such that each set cor-
responds to a pair of actors performing all the eight interactions. Furthermore,
the 21 sets are created such that the same two actors may appear in two different
sets. In such a case, in the first set, one actor acts and the other reacts and vice
versa in the second set. For example, in set s01s02, actor 1 is acting and actor
2 is reacting; similarly, in set s02s01, actor 2 is acting and actor 1 is reacting.
Since, such sets contain the same pair of actors, they can be combined into one
class. Following this procedure, we reduce the number of 21 original sets to 13
different distinct actor-pair sets. For our setting, given a video, the target task
is to classify it into one of the eight interaction/action classes while the privacy
label prediction task is to recognize the actor-pair among the 13 actor-pairs.
Note the above method is identical to the one followed in [37,36] for developing
their privacy-preserving action recognition framework.
KTH. The KTH dataset [31] is a video-based action recognition dataset, recorded
at 25 fps. It consists of 25 actors, each performing the following six actions: walk,
jog, run, box, hand-wave, and hand clap. The different actions are recorded in
different settings and variations including outdoor, outdoor with scale variation,
outdoor with different clothes, and indoor. In our experiments, we use the six
action classes for the action recognition task and the 25 actor identities for the
privacy label prediction task.
IPN. The IPN hand gesture dataset [4] is a video-based hand gesture dataset,
recorded at 30 fps. It consists of 50 actors, each performing the following 13 hand
gestures that are common in interacting with a touch-less screen: pointing with
one finger, pointing with two fingers, click with one finger, click with two fingers,
throw up, throw down, throw left, throw right, open twice, double click with one
finger, double click with two fingers, zoom in, and zoom out. In our experiments,
we use the 13 hand gesture classes for the action recognition task and the gender
(male/female, 2 classes) of the actors for the privacy label prediction task.

4.2 Implementation

Adversarial Training. Our adversarial training framework consists of three
components: (1) the BDQ encoder, (2) an action recognition model which is set
to a 3D ResNet-50 network, (3) and a privacy attribute prediction model which
is set to a 2D ResNet-50 network. Furthermore, the 3D ResNet-50 and the 2D
ResNet-50 networks are initialized with Kinetics-400 and ImageNet pre-trained
weights, respectively. For training, we densely sample t consecutive frames (t =
16 for SBU, t = 32 for KTH and IPN) from the input video to form an input
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sequence. For spatial data augmentation, we randomly choose for each input
sequence, a spatial position and a scale to perform a multi-scale cropping where
the scale is picked from the set {1, 1

21/4
, 1
23/4

, 1
2}. The final output is an input

sequence with size 224× 224. As shown in Figure 2, the input sequence is then
passed through the BDQ encoder whose output is then passed to the 3D ResNet-
50 model for action recognition and 2D ResNet-50 model for predicting privacy
labels. The optimization of parameters of the three networks is done according
to the adversarial training framework discussed in Section 3.2 with α = 2, 1,
and 8, for SBU, KTH, and IPN, respectively. Scaler hardness H is set to 5
for all datasets. The adversarial training is performed for 50 epochs with SGD
optimizer, lr = 0.001, cosine annealing scheduler, and batch size of 16.
Validation. We freeze the trained BDQ encoder and newly instantiate a 3D
ResNet-50 model for action recognition and a 2D ResNet-50 model for privacy
label prediction. Note that the 3D ResNet-50 and the 2D ResNet-50 models are
initialized with Kinetics-400 and ImageNet pre-trained weights, respectively. We
use the BDQ encoder output on the train set videos to train the 3D ResNet-
50 model for action recognition and the 2D ResNet-50 model for predicting
privacy labels. Both the networks are trained for 50 epochs with SGD optimizer,
lr = 0.001, cosine annealing scheduler, and batch size 16. For validation, we
sample consecutive t frames (t = 16 for SBU, t = 32 for KTH and IPN) from each
input video without any random shift, producing an input sequence. We then
center crop (without scaling) each frame in the sequence with a square region
of size 224× 224. For action recognition, we use the generated sequence on the
3D ResNet model to report the clip-1 crop-1 accuracy. For privacy prediction,
we average the softmax outputs by the 2D ResNet-50 model over t frames and
report the average accuracy.

4.3 Results

Figure 3 presents our results on the three datasets. We use the visualization
proposed in [37] to illustrate the trade-off between the action/gesture recognition
accuracy and the privacy label prediction accuracy. We compare our method with
two different methods for preserving privacy in action videos: Ryoo et al. [30]
and Wu et al. [36].

In Ryoo et al. [30], the degradation encoder is a down-sampling module.
Here, a high-resolution action video is down-sampled into multiple videos of a
fixed low resolution by applying different image transformations that are opti-
mized for the action recognition task. These transformations include sub-pixel
translation, scaling, rotation, and other affine transformations emulating pos-
sible camera motion. The low-resolution videos can then be used for training
action recognition models. In our experiments, we consider the following low
spatial resolutions: 112 × 112, 56 × 56, 28 × 28, 14 × 14, 7 × 7, and 4 × 4. For
each resolution, we generate corresponding low-resolution videos by applying
the learned transformations and train a 3D ResNet-50 model for action recog-
nition and a 2D ResNet-50 model for predicting privacy labels. Figure 3 row 1
reports the results of this experiment where a bigger marker depicts a larger
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Fig. 3: Performance trade-off (row 1) and learned quantization steps (row 2) on
the three datasets: SBU, KTH, and IPN.

down-sampling rate. We observe that, as the down-sampling rate increases, the
privacy label prediction accuracy drops for all the datasets. Unfortunately, the
action recognition accuracy drops at a faster rate which is contradictory to the
desired behavior.

Method Params. Size FLOPs

Wu et al 1.3M 3.8Mb 166.4G
BDQ 16 3.4Kb 120.4M

Table 1: Comparison of space-
time complexity of BDQ and
Wu et al.

In Wu et al [36], the degradation encoder
is a UNet-like network that is implemented us-
ing the model from [18]. It can be seen as a 2D
convolution-based frame-level filter and converts
each frame into a feature map of the same shape
as the original frame. For training the encoder,
we use the same adversarial training method as
described in Section 3.2 which is same as the
original work. However, the privacy model is re-
set after certain iterations to improve perfor-
mance as done in the original work. For a fair
comparison, the adversarial training is performed using a 3D ResNet-50 model
for action recognition and a 2D ResNet-50 model for predicting privacy labels.
Furthermore, the validation method followed is identical to the one mentioned in
Section 4.2. Figure 3 row 1 reports our evaluation results of these experiments.
We observe that, in comparison to Ryoo et al. [30], Wu et al. [36] performs signif-
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icantly better across all the datasets in terms of preserving privacy and enabling
action recognition.

Our proposed BDQ encoder surpasses both Ryoo et al. [30] and Wu et al. [36]
by a significant margin across all the datasets in preserving privacy and enabling
action recognition. As seen in Figure 3 row 1, it is closer to the ideal trade-off
than any other method. Finally, Table 1 compares the space-time complexity of
the BDQ and Wu et al encoders. We observe that BDQ uses significantly less
parameters and computation in comparison to the Wu et al encoder.

5 Analysis

5.1 Ablation study
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Fig. 4: Left- Results of the ablation study. Here, a
bigger ⋆ corresponds to a higher value of α. Right-
Effect of the adversarial parameter α on the quanti-
zation steps.

As described in Sec-
tion 3, the BDQ en-
coder consists of three
modules: Blur (B), Dif-
ference (D), and Quan-
tization (Q). Here, we
study the role of each of
these modules in preserv-
ing privacy and enabling
action recognition. For
this, we take the pre-
trained BDQ encoder
that was learned on the
SBU dataset in Section 4
and select various combi-
nations of its modules to
study their contribution
to action recognition and
actor-pair recognition. For each combination, we freeze the parameters of its
module(s) and use its output to train a 3D ResNet-50 (pre-trained on Kinetics-
400) for action recognition and a 2D ResNet-50 (pre-trained on ImageNet) for
actor-pair recognition. Note that, for both the networks, the training, and the
validation procedures are identical to the one used in Section 4. Figure 4 pro-
vides results of this study on the SBU dataset. We observe that the combinations
‘B’, ‘D’, ‘Q’, ‘B+D’, and ‘B+Q’, have very little effect in preserving privacy
information and achieve results close to the case when original video is used.
Interestingly, the combination ‘D’ achieves a higher action recognition accuracy
among all the combinations, signifying its ability to produce better temporal fea-
tures. Furthermore, a good drop in privacy accuracy is observed when ‘D’ and
‘Q’ are used together. Moreover, this accuracy further drops drastically when
all ‘B’, ‘D’, and ‘Q’ are used together. Finally, we also study the effect of the
adversarial parameter α on these modules as shown in Figure 4. We observe that
when no adversarial training is performed, i.e α = 0, there is a very little drop
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Fig. 5: Actor-pair accuracy on various image classification networks.

in privacy accuracy. However, with the increase in the value of α, both action
recognition and actor-pair accuracy begin to fall, with the action recognition
accuracy falling more sharply. Figure 4 presents the learned quantization values
corresponding to each value of α. We observe that with the increase in α the
amount of quantization increases which leads to drop in action and actor-pair
accuracies. Please refer to supplementary for more studies.

5.2 Strong Privacy Protection

A significant challenge for any privacy-preserving model is to provide protection
against any possible, seen and unseen adversary, that may try to learn the pri-
vacy information. In order to show that our proposed framework provides such
strong privacy protection, we prepare a list of ten state-of-the-art image classifi-
cation networks (adversaries) as shown in Figure 5. We take the pre-trained BDQ
encoder from Section 4 and use its output (degraded video) to train the above
networks for predicting the actor-pair labels on the SBU dataset. Furthermore,
we also train these networks on the original videos to prepare corresponding base-
lines for comparison. Note that all the networks are initialized with ImageNet
pre-trained weights, and the training and inference procedures are identical to
the one used for the adversary in Section 4. From Figure 5, we observe that the
BDQ encoder consistently protects privacy information against all the networks
with ResNet-50 [13] performing the best at 34.18% and MobileNet-v3 [15] per-
forming the worst at 25.46%. Note that, among all the adversaries, the BDQ
encoder had only seen ResNet-50 during its training.

5.3 Generalized Spatio-temporal Features

In addition to strong privacy protection, a privacy-preserving model must al-
low task-specific features to be learned by any network that is designed for
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Fig. 6: Action recognition accuracy on various action recognition networks.

that task. In order to show that our proposed framework allows useful spatio-
temporal cues for action recognition, we take the pre-trained BDQ encoder from
Section 4 and use its output to separately train five 3D CNNs for predicting
action classes on the SBU dataset, as shown in Figure 6. Furthermore, similar
to Section 5.2, we also train these networks on the original videos to prepare
corresponding baselines for comparison. Note that all the networks are initial-
ized with Kinetics-400 pre-trained weights. From Figure 6, we observe that the
BDQ encoder consistently allows spatio-temporal information to be learned with
3D ResNext-101 performing the best at 85.1% and 3D ShuffleNet-v2 performing
the worst at 81.91%. Furthermore, all the networks achieve action recognition
accuracy marginally lower than their corresponding baselines.

5.4 Robustness to Reconstruction Attack

In this section, we explore a scenario where an attacker has access to the BDQ
encoder such that he/she can produce a large training set containing degraded
videos along with their corresponding original videos. In such a case, the attacker
can train an encoder-decoder network and try to reverse the effect of BDQ, re-
covering the privacy information. In order to show that our proposed framework
is resistant to such an attack, we train a 3D UNet [8] model for 200 epochs
on the SBU dataset with input as degraded videos from the pre-trained BDQ
encoder of Section 4 and output original videos as ground-truth labels. Addi-
tionally, we also train the 3D UNet model with input as degraded videos from
an untrained BDQ encoder. Figure 7 visualizes some examples of reconstruction
when videos from untrained (column 4) and trained (column 5) BDQ encoder
are used for training. We observe that the reconstruction network can success-
fully reconstruct the original video with satisfactory accuracy when the input
is from an untrained BDQ encoder. However, when the input is from a trained
BDQ encoder, reconstruction is significantly poor and privacy information is still
preserved.
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Original
Frame

BDQ
(α = 0)

Rec. BDQ
(α = 0)

BDQ
(α = 2)

Rec. BDQ
(α = 2)

Fig. 7: Visualization of reconstruction results for α = 0 and 2.

5.5 Subjective Evaluation

In Section 5.2 and 5.4, we show that our proposed framework is robust against
adversaries that may try to learn or reconstruct the privacy attributes. How-
ever, such protection is of no use unless it provides visual privacy against the
human visual system. In order to show that the BDQ encoder produces encod-
ings that provide visual privacy, we conduct a user study on the videos from
the SBU dataset. The user study is composed of 60 questions where each ques-
tion consists of a video sampled from the SBU validation set and applied with
the BDQ encoder learned in Section 4. Furthermore, each question has seven
options showing cropped faces of actors from the SBU dataset. Given a BDQ
output video where two persons are interacting, the task of the user is to select
the identities of both the actors from the seven options. A total of 26 participants
took part in the study. Note that the random chance of selecting two actors and
both of them being correct is 4.76%. Similarly, the random chance of selecting
two actors and at least one of them being correct is 52.38%. In the first case, the
results of our user study reveal that the participants were able to recognize both
the actors correctly with an accuracy of 8.65%. Similarly, the users’ accuracy for
the second case was 65.64% (more details in supplementary).

5.6 Comparison with Event Camera

In recent years, Dynamic Vision Sensor (DVS) based cameras are being proposed
as an in-home monitoring solution for privacy-preserving action detection and
recognition [1]. Unlike traditional cameras that capture high-resolution videos
and images, a DVS sensor detects the temporal changes in the pixel intensity at
a pixel location. If the pixel intensity rises beyond a fixed threshold at a pixel, it
is registered as a positive event. However, if it drops below a fixed threshold, it
is registered as a negative event. Here, positive and negative events describe the
direction of motion which can be encoded as outlines. At an abstract level, our
BDQ encoder can be seen as a digital approximation of the DVS sensor that can
be implemented in any traditional camera. In order to compare our framework
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th = 0.4
93.54%
73.99%

th = 0.8
92.47%
58.33%

th = 1.2
90.32%
47.84%

th = 1.6
87.09%
46.23%

th = 2.0
86.02%
40.12%

th = 2.4
82.79%
34.87%

Fig. 8: Example event frames (Row 1), event threshold (Row 2), action recogni-
tion accuracy (Row 3) and actor-pair recognition accuracy (Row 4) on SBU.

with the DVS sensor, we first convert the videos from the SBU dataset into events
using [11] which proposes a method for converting any video into synthetic events
such that they can be simulated as events from a DVS sensor. Such a method
is useful since training DNNs require huge amount of data and collecting such
amount is not feasible using event cameras. Furthermore, the above method
enables us to vary the pixel level threshold which decides if the intensity change
(event) will be registered or not. Note that a high threshold leads to less events
while a low threshold leads to more events being registered. Figure 8 displays
the effect of threshold on an event frame. The events from the converted SBU
dataset are first converted into event frames using [11] which are then used for
training a 3D ResNet-50 model for action recognition and a 2D ResNet-50 model
for actor-pair recognition. The initialization and training settings is identical to
Section 4. Figure 8 reports the trade-off for each threshold. We observe that
with the increase in threshold, both action recognition and actor-pair accuracy
drops. Furthermore, the trade-off at threshold value 2.4 is close to the trade-off
achieved by the BDQ encoder with α = 2 (refer Section 4.3).

6 Conclusions

This paper proposes a novel encoder called BDQ for the task of privacy-preserving
human action recognition. The BDQ encoder is composed of three modules:
Blur, Difference, and Quantization whose parameters are learned in an end-to-
end fashion via an adversarial training framework such that it learns to allow
important spatio-temporal attributes for action recognition and inhibit spatial
privacy attributes. We show that the proposed encoder achieves state-of-the-art
trade-off on three benchmark datasets in comparison to previous works. Further-
more, the trade-off achieved is at par with the DVS sensor-based event cameras.
Finally, we also provide an extensive analysis of the BDQ encoder including
an ablation study on its components, robustness to various adversaries, and a
subjective evaluation.
Limitation: Due to its design, our proposed framework for privacy preservation
cannot work in cases when the subject or the camera does not move.
Acknowledgement: This work was supported by JSPS KAKENHI Grant Num-
ber JP20K20628.
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