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We complement the manuscript with the following items:

– Results in the test set of EPIC-KITCHENS-100 without public labels, refer
to Section 1.

– Additional results of two model ensemble ablations, refer to Section 2.
– Additional qualitative results, refer to Section 3.
– A pragmatic take to understand quantitative differences in Epic-Kitchens

100 [3], refer to Section 4.
– A list of Frequently Asked Questions (FAQ), refer to Section 5.

1 Results in EPIC-KITCHENS-100 test set

To validate the generalization of the insights presented in the main paper, we re-
sort to the test set of EPIC-KITCHENS-100 with sequestered labels. Concretely,
we submitted the predictions of a given model onto the evaluation server. Table
1 reports the results from the evaluation server, with the metrics established by
the dataset creators [3].

Overall the observations drawn from the validation can be seen in the test set
with sequestered data. We repeat some of the main observations here: (1) The
performance of CNN action models, TSM, is similar to the recently introduced
X-ViT without heavy test-time data augmentation. (2) Importantly, our OIC
further improves X-ViT by 1.6%, 5.4%, and 2.6% on overall verb, noun, and
action accuracy, respectively. It is also seen that the improvement is mainly
achieved in noun recognition as expected. Thus, it indicates that the attention
mechanism of transformer is limited in extracting active objects in manipulation
and interaction with human hands from cluttered background and scene. This
is exactly the motivation for learning our OIC model. (3) We also observe that
our OIC clearly improves the accuracy scores on unseen participants and tail
classes. This implies that exploiting our OIC could help reduce the negative
impact of domain shift (seen vs. unseen participants in this case) and mitigate
the overwhelming effect from head classes to tail classes, concurrently. (4) The
recent X-ViT model significantly lifts the performance of CNN using additional
test-time data augmentation (i.e., averaging the results from 3 crops per video).
It is worth noting that even after triplicating the computational budget, our
computationally modest OIC representation stills provides a further gain of 1.2%
on overall actions to this model.
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Modality Method TTDA
Overall Unseen participants Tail classes

Top-1 Top-5 Top-1 Top-1
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

V X-ViT† [1] ✗ 58.5 46.9 34.5 85.2 71.4 53.0 50.4 37.7 25.7 28.2 21.9 14.0
V +OIC ✗ 60.1 52.3 37.1 87.7 77.7 59.0 53.0 44.9 28.8 30.4 25.2 16.1

V X-ViT [1]† ✓ 64.3 52.9 40.3 88.1 77.4 60.6 58.2 45.7 32.0 31.2 26.3 17.7
V +OIC ✓ 64.7 55.0 41.5 89.2 79.5 62.7 58.6 48.0 33.0 31.4 27.6 18.1

V TSM† [5] ✗ 58.5 45.9 32.8 86.4 72.3 54.0 53.1 41.1 27.1 27.9 21.5 13.8

F TSM† [5] ✗ 60.9 33.8 26.2 86.1 57.6 43.5 55.5 27.5 20.1 26.0 6.4 7.5

Table 1. Results on the test set of EPIC-KITCHENS-100 [3] with models
only trained in the training set. Modality: V=Visual; F=Optical flow. †: Results com-
puted with the model weights released by the authors of [3,1]. TTDA: Test-time data-
augmentation (e.g., multi-crop). Underlined numbers correspond to the best results
across the board. Bold numbers highlight the best between a proxy model and proxy
+ ours. All in all, our model complements X-ViT and yields state-of-the-art results.

2 Additional ablation of two models’ ensemble

Our full video prediction network corresponds to the fusion of our OIC Net and
one standard video classification network, cf. main paper Sec. 3.2 and Fig 4. The
intuitions behind the proposed fusion are: (1) it allows to validate the relevance
of handled objects and learn a specialized neural network representation for
them. (2) It is a simple way to integrate the information captured by our OIC
Net without the need for model re-training. (3) It combines the complementary
information discovered by our OIC Net relating to objects while the video net
provides the scene context. For a fair comparison, we compare the results of our
fused model w.r.t the proxy video network used in our fusion and the ensemble
of two networks of a given proxy model.

Implementation details. We used the standard TSM video architecture [5] with
the pre-trained weights from [3] as proxy video network. For the two model en-
semble baseline, we train an additional TSM model using the code and training
recipe given by [3]. We followed the training pipeline presented in the main paper
for our fused model. Table 2 reports the experimental results in the validation set
of EPIC-KITCHENS-100 with the metrics established by the dataset creators
[3]. We have the following observations: (1) TSM ensemble yield an absolute
performance improvement of +0.7%, +1.0% and +0.6% on overall verb, noun
and action respectively. Meanwhile, our model fusion with OIC yields signifi-
cantly better absolute improvement for noun and action (+5.0% and +3.4%)
and slightly better absolute improvement for verb (+1.0%). (2) We also observe
that our OIC improves the accuracy scores on unseen participants (for noun
and action) and tail classes (for verb, noun, and action). As expected, the most
significant performance improvement is from noun accuracy.

In summary, compared to a strong model ensemble baseline, we have vali-
dated the significance of the results from our fused model, with OIC.
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Method
Overall Unseen participants Tail classes

Top-1 Top-5 Top-1 Top-1
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

TSM† [5] 63.0 47.3 35.6 88.9 74.2 57.2 54.6 37.1 26.3 35.9 26.7 18.1
TSM ensemble 63.7 48.3 36.2 89.7 75.3 58.6 55.3 38.5 26.8 34.7 26.3 18.0
TSM + OIC 64.0 52.3 39.0 90.2 78.4 61.6 53.1 40.3 27.2 36.2 29.9 20.5

Table 2. Results on the validation set of EPIC-KITCHENS-100 [3]. †: Results
computed with the model weights released by the authors of [3]. Bold numbers highlight
the best between a proxy model (TSM), two model ensembles of the proxy model (TSM
ensemble), and proxy + ours (TSM + OIC). All in all, our OIC improves further the
proxy model validating the relevance of our handled objects representation.

3 Qualitative results

Fig. 1 depicts additional qualitative results to those shown in Fig. 5 in the cf.
main manuscript. Each row depicts five evenly spaced frames from a particular
example with its associated object regions, the ground truth labels, predictions
made by TSM, and predictions made by TSM+OIC (ours). As before, correctly
predicted verbs and nouns are highlighted as green, while incorrectly predicted
as red. These additional results further reinforce the notion that the additional
context provided by the OIC module guides prediction correctly. Fig. 1 (a - f),
depicts examples where the noun of interest is either very small (a, b, e and f),
out of view during a large portion of the clip (b and d) or not well illuminated (c).
Nevertheless, including the OIC module allows this information to be correctly
captured and preserved, while is lost or ignored with pure TSM. Fig. 1 , (g)
depicts an example where both TSM and ours make a wrong prediction, in
the case of TSM the verb is correctly identified, however, the noun predicted is
very different from the ground truth. In this same example, our method correctly
predicts the noun, while incorrectly predicting the verb; however, one could argue
that the verb wrongly predicted by our method could apply to the example,
while the same cannot be said by the wrongly predicted noun by TSM. Similar
arguments as the ones just discussed for Fig. 1 (g) would apply to h, where
additionally TSM predictions of both verb and noun are incorrect. Finally, Fig. 1
(j - k), shows two fail examples for both methods, where although our method
makes use of object boxes largely associated with the target noun, the proposed
method still fails.

Fig. 2 shows examples of patches representing objects used during SOS pre-
training stage, i.e. to train our proposed SwAV-S. The figure also displays the
associated labels from the video for reference. Still, it is worth noting that our
approach does not exploit the given labels during the SOS pre-training. There,
it can be appreciated the real spatiotemporal transformation that objects ex-
perience. These, represent the sets of objects presented to SwAV-S for cluster
assignment and prediction. Fig.2 left column illustrates cases where the action
process can easily be seen as the primary source of variation (e.g., the first row
exhibits large deformations of a flattened box). In contrast, the right column
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Fig. 1. Qualitative results. The green bounding boxes represent automatically de-
tected object regions being manipulated. Rows (a - f) represent examples that are
corrected by our method, rows (g - i) examples that are partially correct, while rows
(j - k) depict failure cases for both methods.

illustrates more challenging examples that can capture the semantics of the un-
derlying action. The examples presented in Fig.2 left, also elucidate why our ap-
proach still works without tracking or strictly enforcing object correspondences
across frames.
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Fig. 2. Qualitative results. SwAV-S input objects and their related real spatiotem-
poral transformations.

4 Performance improvements perspective

Recently, Picard studied the influence of random seeds in modern deep learning
architectures in computer vision [6]. From their study, the relevance and impor-
tance of setting a confidence interval to gauge meaningful improvements in the
performance of deep neural networks are brought to the forefront. However, it
is difficult to define rigorous statistical confidence intervals in practice, as DNN
often takes a very long time to train. For example, a complete training cycle of
our approach (SSL pre-training and target task fine tuning) could take a handful
of days with a sub-optimal implementation and/or system architecture. Thus,
we resort to a pragmatic approach to define a confidence interval. During the
initial stage of this project, we ran our simplest baseline five times with the
same hyperparameter configuration, but with different initialization seeds. By
contrasting the differences in performance among the multiple performance met-
rics (KPIs) across multiple runs, we observe that KPIs varied in a range ±0.25%.
Therefore, we deem relevant results those bigger than 0.5%.

5 FAQ

We genuinely appreciate the feedback from our reviewers (CVPR & ECCV). This
section includes some relevant questions/concerns/doubts raised during the peer
review process that curious readers may ask themselves.

1. Why did we term our approach “Self-supervised learning Over
Sets (SOS)”?
Answer. SOS relies on the self-supervisory signal from a collection of indepen-
dent and automatically detected object proposals, representing the “set” of
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objects and their temporal deformations. This distinctly differs from SwAV
[2] and standard image-based SSL algorithms, where the synthetic transfor-
mations (augmentations) operate over a single image.

2. Principles behind SOS. What is intuition? Why concurrence?
Answer. As mentioned in the Introduction and Section 3.1 (cf. main submis-
sion), SOS leverages the notion of actions as natural transformations. For
example, an action like “cutting onion” implies non-rigid deformations of
“an onion” difficult to replicate by the current standard data augmentation
techniques. Modeling “actions” as transformations equates to treating them
as an implicit conditioning signal enriching the visual appearance of handled
objects. It is worth noting that the object proposals given to SOS may be
visually different and involve a single object category (cf. Fig. 2 row 1 of
the left column - “flatten box”) or multiple objects (cf. Fig. 2 row 4 of the
left column - “stir rice”) object categories. As such, SOS exploits two self-
supervisory signals: (1.) temporal continuity, and (2.) concurrence. Further,
concurrence relations are statistically/implicitly learned, by the network as
it is forced to map proposals that co-occur often (e.g.,“pan” and “spoon”).
Here, we favor the term“temporal continuity” over “temporal consistency”
as natural transformations are not necessarily rigid.

3. SwAV choice.
Clarification. Preliminary experiments showed that SwAV offered the best
performance, e.g. outperforming SimCLR by +2.7/3.0 in noun/action. How-
ever, since the method evolved from that preliminary experiment, we ex-
tended the ablation in Table 4 (cf. main submission). SwAV still offers
a better initialization than SimCLR, +0.7/+1.1 for noun/action. MoCoV3
offers +0.0/+0.3 in noun/action vs SwAV. SwAV pre-trained weights are
empirically shown to be a reasonable choice.

4. Marginal improvements.
Clarification. We are sorry that you think so. Kindly note that by aiding
three strong action recognition models with our OIC the results for top-
1 accuracy improve as follows +5.0/+3.4 noun/action (TSM), +3.5/+2.4
(SlowFast) and +5.5/+3.2 (XViT), i.e.the improvement is not marginal.
It is worth mentioning that we also compared our approach w.r.t action
modeling active objects [8]. Also kindly consider reading the Section 4 to
gauge improvements in EPIC-KITCHENS-100 properly.

5. Is the experimental comparison unfair? The model’s improvements
are expected as the final results correspond to a fused model.
Answer. We strive for fair experimentation and comparison. We resort to
a simple yet effective model fusion to showcase the relevance of (1) paying
more attention to handled objects, and (2) learning an appropriate represen-
tation of handled objects. As such, the performance gains w.r.t three proxy
action recognition models [1,4,5] (five if someone considers TSM-RGB+Flow
and XViT-TTDA as additional flavors) without OIC, reflect the benefit of
appropriate modeling of handled objects.
We have included an ablation showcasing the relevance of our fused model
against a strong two-model ensemble baseline in Section 2.
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6. Did you disregard the pre-trained weights of the projection and
prototype subnetworks of SwAV during the Stage II (SOS pre-
training)?

Answer. As mentioned in Section 4 (cf.main submission), we only re-used the
pre-trained weights corresponding to the CNN backbone (i.e.the encoder).
The rationales behind our choice are: (1) our problem setup involves domain-
adaptation (from natural to egocentric images), and (2) the fact that SwAV
is an online clustering approach [2]. Thus, we did not consider reusing the
prototypes specialized for reasoning about natural images.

7. Is not the multi-stage training cumbersome?

Answer. Stage-I corresponds to using standard readily available pre-training
weights (i.e.torch.load). Subsequent stages correspond to on-domain train-
ing. Most work either train from an ImageNet pre-trained model (1 less
stage) or use an on-domain pre-train+finetune approach (e.g. ImageNet →
Kinetics → EpicKitchens/UCF101/SSV2), resulting in the same number of
stages as ours. Hence, our method is very similar in training complexity to
a standard two-stage approach. It is relevant to highlight that our approach
is closer to representation learning than other areas of research in neural
networks (e.g., downstream specialization, or architectural design).

8. Number of objects from HOI.

Clarification. It is worth noting that the hand-object detector [7] predicts
more than one object proposal for each hand. [7] employs a heuristic based
on proximity and confidence for visualization purposes. In our work, we use
all the object proposals gathered after the filtering steps described in Section
4 (cf. main submission).

9. The paper only validates a single target task fine-tuning step.

Clarification. We believe that our work has applicability to general action
recognition tasks interacting with objects, e.g., temporal action localization,
instructional videos, etc., since we a) obtain a strong representation of han-
dled objects and b) can finetune with video-level labels (no bounding box
labels are required). However, reusing off-the-shelf models is favored per task
due to computing limitations. Thus, we believe our OIC is handy.

10. Computational complexity and runtime.

Clarification. We benchmarked our approach in a 1080Ti GPU. TSM and
XViT run in 12 and 66 msec. respectively, while the OIC module runs in
10.7 msec. The OIC complexity is 26 GFLOPs while XViT is much larger,
285 GFLOPs. Thus, our OIC is comparatively efficient. It is worth noting
that we computed our run-time and computational complexity based on a
naive implementation feeding cropped handled object patches to the CNN
instead of employing ROIPooling or ROIAlign layers.

11. Are the results marginal in regards to Test-Time Data Augmen-
tation (TTDA)?

Answer. TTDA adds much more computational complexity (cf. FAQ-Q10).
It is worth noting that: (1) our approach is orthogonal, and offers improved
performance. (2) We do not aim to substitute TTDA. (3) A combination
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of TTDA and our approach might offer further gain, but we believe it is
beyond our work’s scope.
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