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Abstract. Given a video captured from a first person perspective and
the environment context of where the video is recorded, can we recog-
nize what the person is doing and identify where the action occurs in
the 3D space? We address this challenging problem of jointly recogniz-
ing and localizing actions of a mobile user on a known 3D map from
egocentric videos. To this end, we propose a novel deep probabilistic
model. Our model takes the inputs of a Hierarchical Volumetric Repre-
sentation (HVR) of the 3D environment and an egocentric video, infers
the 3D action location as a latent variable, and recognizes the action
based on the video and contextual cues surrounding its potential lo-
cations. To evaluate our model, we conduct extensive experiments on
the subset of Ego4D dataset, in which both human naturalistic actions
and photo-realistic 3D environment reconstructions are captured. Our
method demonstrates strong results on both action recognition and 3D
action localization across seen and unseen environments. We believe our
work points to an exciting research direction in the intersection of ego-
centric vision, and 3D scene understanding.

Keywords: Egocentric Vision, Activity Recognition, 3D Scene Under-
standing

1 Introduction

Egocentric vision has emerged as a promising paradigm for understanding human
activities in a mobile setting. Its defining characteristic is the continuous capture
of first-person visual experience. In particular, egocentric videos implicitly and
naturally connect the camera wearer’s activities to the relevant 3D spatial con-
text, such as the surrounding objects and their 3D layout. While this observation
has been true since the beginning of egocentric vision, it is only recently that 3D
scene models that can capture this context have become readily available, due to
advances in 3D scanners [57] and Augmented Reality (AR) headsets [22]. Fig. 1
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Fig. 1. (a) The activities of daily life take place in a 3D environment, and the semantic
and spatial properties of the environment are powerful cues for activity recognition.
(b) Our Proposed Task: Given an input egocentric video sequence and a 3D volumetric
representation of the environment (carrying both semantic and geometric information),
our goal is to detect and localize activities, by jointly predicting the action label and
location on the 3D map where it occurred.

(a) gives an example of a 3D scan of a subject’s apartment in which the 3D lay-
out of the furniture and appliances is known a priori. Given an egocentric video,
our goal is to leverage this 3D map to reason about the camera wearer’s activ-
ities and the 3D locations in which they are performed, e.g. drawing a picture
while sitting on the sofa. Such a capability could enable future context-sensitive
applications in AR and Human-Robot Interaction (HRI).

This paper addresses the following research question: How can we design
viston models to exploit the prior knowledge of a known 3D environment for rec-
ognizing and localizing egocentric activities? This question has not been tackled
by existing works on egocentric action and activity recognition [23,67, 34, 31,41,
36,43, 29]. Prior works have used limited contextual cues for egocentric video
analysis, such as a 2D ground plane [46] or a topological map [38], and have
focused on understanding the functions of an environment, such as the common
locations at which activities occur. In contrast, this work introduces the new
task of the joint recognition and 3D localization of egocentric activities given
trimmed videos and a coarsely-annotated 3D environment map. We provide a
visual illustration of our problem setting in Fig. 1 (b).

Two major challenges arise in our task. First, standard architectures for ego-
centric activity recognition are not designed to incorporate 3D scene context,
requiring a new design of action recognition models and associated 3D scene
representations. Second, the exact ground truth for the locations of actions in
a 3D scene that is the size of an entire apartment is difficult to obtain, due to
ambiguities in 2D to 3D registration. As a remedy, we leverage camera registra-
tion using structure-from-motion that yields “noisy” locations, which requires
the model to address the uncertainty in action locations during training.
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To address the challenge of leveraging context in recognition, we develop
a Hierarchical Volumetric Representation (HVR) to describe the semantic and
geometric information of the 3D environment map (see Fig. 2 (a) and Sec 3.1
for explanation). We further present a novel deep model that takes egocentric
videos and our proposed 3D environment HVR as inputs, and outputs the 3D
action locations and the activity classes. Our model consists of two branches.
The environment branch makes use of a 3D convolutional network to extract
global environmental features from HVR. Similarly, the video branch uses a 3D
convolutional network to extract visual features from the input video. The envi-
ronmental and visual features are further combined to estimate the 3D activity
location, supervised by the results of camera registration. Moreover, we tackle
the second challenge of noisy localization by using stochastic units to account
for uncertainty. The predicted 3D activity location, in the form of a probabilistic
distribution, is then used as a 3D attention map to select local environmental
features relevant to the action. Finally, these local features are further fused with
video features for recognition.

Our method is trained and evaluated on the recent, freely-available Ego4D
dataset [13], which contains naturalistic egocentric videos and photo-realistic 3D
scene reconstructions along with 3D static object annotations. We demonstrate
strong results on action recognition and 3D action localization. Specifically, our
model outperforms a strong baseline of 2D video-based action recognition meth-
ods by 4.2% in mean class accuracy, and beats baselines on 3D action localization
by 9.3% in F1 score. Furthermore, we demonstrate that our method can gener-
alize to unseen environments not present in the training set yet with known 3D
maps and object labels. We believe this work provides a useful foundation for
egocentric video understanding in a 3D scene context

2 Related Work

We first discuss the most relevant works on egocentric vision, and then review
several previous efforts on human-scene interaction and 3D scene representation.
Egocentric Vision. There is a rich set of literature aiming at egocentric activity
understanding. Prior works have made great progress in recognizing and antici-
pating egocentric actions based on 2D videos [10, 52, 24, 67, 34, 31, 41, 36, 43], and
predicting gaze and locomotion [29, 28,18, 55,39, 64, 40, 42, 51]. Far fewer works
have considered environmental factors and spatial grounding of egocentric ac-
tivity. Guan et al. [14] and Rhinehart et al. [47] jointly considered trajectory
forecasting and egocentric activity anticipation with online inverse reinforce-
ment learning. The most relevant works to ours are recent efforts on learning
affordances for egocentric action understanding [38,46]. Nagarajan et al. [38]
introduced a topological map environment representation for long-term activity
forecasting and affordance prediction. Rhinehart et al. [46] considered a novel
problem of learning “Action Maps” from egocentric videos. However, methods
that use ground plane representations of the environment [46] or environmental
functionality as the context [38] may lack the specificity provided by 3D prox-
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imity. In contrast to these prior efforts, our focus is on exploiting the geometric
and semantic information in the HVR map to address our novel task of joint
egocentric action recognition and 3D localization.

Human-Scene Interaction. Human-scene constraints have been proven to be
effective in estimating human body model [66, 16, 65]. The most relevant prior
works focus on understanding environment affordance. Grabner et al. [12] pre-
dict object functionality by hallucinating an actor interacting with the scene. A
similar idea was also explored in [20,21].Koppula et al. [25] leveraged RGB-D
videos to jointly recognize human activities and estimate objects affordances.
Savva et al. [49] predicted action heat maps that highlight the likelihood of an
action in the scene by partitioning 3D scenes into disjoint sets of segments and
learning a segment dictionary. Gupta et al. [15] presented a human-centric scene
representation for predicting the afforded human body poses. Delaitre et al. [5, 8]
introduced a statistical descriptor of person-object interactions for object recog-
nition and human body pose prediction. Fang et al. [7] proposed to learn object
affordances from demonstrative videos. Nagarajan et al. [37] proposed to use
backward attention to approximate the interaction hotspots of future action.
Those previous efforts were limited to the analysis of environment functional-
ity [20,21,5,8], constrained human action and body pose [49], or hand-object
interaction on 2D image plane [7,37]. In contrast, we are the first to utilize the
rich geometric and semantic information of the 3D scene for naturalistic human
activity recognition and 3D localization.

3D Scene Representation. Many recent works explored various 3D represen-
tations for 3D vision tasks, including 3D object detection [63, 68, 3] and embodied
visual navigation [11,17,27]. Deep models have been developed for point clouds
[44,61,60,45] with great success in object recognition, semantic segmentation,
and sceneflow estimation. However, using point clouds to describe a large-scale
3D scene will result in high computational and memory cost [68]. To address this
challenge, many approaches used rasterized point clouds in a 3D voxel grid, with
each voxel represented by either handcrafted features [58, 6,53, 54] or learning-
based features [68]. Signed-Distanced value and Chamfer Distance between 3D
scene and 3D human body have also been used to enforce more plausible human-
scene contact [66, 16,65, 33]. Building on this prior works, we utilize a 3D Hi-
erarchical Volumetric Representation (HVR) that encodes the geometric and
semantic context of a 3D scene for egocentric activity understanding.

3 Method

We denote a trimmed input egocentric video as z = (z!,...,2!) with frames

zt indexed by time ¢. In addition, we assume a global 3D environment prior e,
associated each with input video, is available at both training and inference time.
e is environment specific, e.g. the 3D map of an apartment. Our goal is to jointly
predict the action category y of x and the action location r on the 3D map. r is
parameterized as a 3D saliency map, where the value of r(w, d, h) represents the
likelihood of action clip z happening in spatial location w, d, h. For tractability,
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Fig. 2. (a) Hierarchical Volumetric Representation (HVR). We rasterize the semantic
3D environment mesh into two levels of 3D voxels. Each parent voxel corresponds to
a possible action location, while the children voxels compose a semantic occupancy
map that describes their parent voxel. (b) Overview of our model. Our model takes
video clips « and the associated 3D environment representation e as inputs. We adopt
an I3D backbone network ¢ to extract video features and a 3D convolutional network
1 to extract the global environment features. We then make use of stochastic units
to generate sampled action location 7 for selecting local 3D environment features for
action recognition. Note that ® represents weighted average pooling, while & denotes
concatenation along channel dimension.

we associate the entire activity with a specific 3D location and do not model
location change over the course of an activity. This is a valid assumption for the
activities we address, such as sitting down, playing keyboards, etc. r thereby
defines a proper probabilistic distribution in 3D space.

In this section, we first introduce our proposed joint model of action recog-
nition and 3D localization, leveraging a 3D representation of the environment.
We then describe key components of our model, training and inference schema,
as well as our network architecture.

3.1 Joint Modeling with the 3D Environment Representation

3D Environment Representation. We seek to design a representation that
not only encodes the 3D geometric and semantic information of the 3D environ-
ment, but is also effective for 3D action localization and recognition.

To this end, we introduce a Hierarchical Volumetric Representation (HVR)
of the 3D environment. We provide an illustration of our method in Fig. 2(a). We
assume the 3D environment reconstruction with object labels is given in advance
as a 3D mesh (see Sec.4 for details). We first divide the 3D mesh into X xY x Z
parent voxels, that define all possible action locations. We then divide each
parent voxel into multiple voxels at a fixed resolution M and further assign an
object label to each child voxel based on the object annotation. Specifically, the
object label of each child voxel is determined by the majority vote of the vertices
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that lie inside that child voxel. Note that we only consider static objects of the
entire environments and treat empty space as a specially-designated “object”
category. Therefore, the child voxels compose a semantic occupancy map that
encodes both the 3D geometry and semantic meaning of the parent voxel.

We further vectorize the semantic occupancy map and use the resulting vector

as a feature descriptor of the parent voxel. The 3D environment representation
e can then be represented as a 4D tensor, with dimension X x Y x Z x (M?3).
Note that higher resolution M can better approximate the 3D shape of the
environment. OQur proposed HVR is thus a compact and flexible environment
representation that jointly considers the 3D action location candidates, geomet-
ric and semantic information of the 3D environment.
Joint Learning of Action Category and Action Location. We present an
overview of our model in Fig. 2(b). Specifically, we adopt a two-pathway network
architecture. The video pathway extracts video features with an I3D backbone
network ¢(z), while the environment pathway extracts the global 3D environ-
ment features with a 3D convolutional network ¢ (e). Visual and environmental
features are jointly considered for predicting the 3D action location r. We then
adopt stochastic units to generate sampled action 7 for selecting the local envi-
ronment features relevant to the actions. Local environment features and video
features are further fused together for activity recognition.

Our key idea is to utilize the 3D environment representation e for jointly
modeling the action label y and 3D action location r of video clip . We consider
the action location r as a probabilistic variable, and model the action label y
given input video x and environment representation e using a latent variable
model. Therefore, the conditional probability p(y|z,e) is given by:

p(ylz, ) = / plylr, z, e)p(r|z, )dr. (1)

Notably, our proposed joint model has two key components. First, p(r|z, ¢) mod-
els the 3D action location r from video input z and the 3D environment repre-
sentation e. Second, p(y|r, z, e) utilizes r to select a region of interest (ROI) from
the environment representation e, and combines selected environment features
with the video features from x for action classification. During training, our
model receives the ground truth 3D action location and action label as super-
visory signals. At inference time, our model jointly predicts both the 3D action
location r and action label y. We now provide additional technical details in
modeling p(r|z, e) and p(y|r, z, e).

3.2 3D Action Localization

We first introduce our 3D action localization module, defined by the conditional
probability p(r|z,e). Given the video pathway features ¢(z) and the environ-
ment pathway features 1 (e), we learn a mapping function to predict location r,
which is defined on a 3D grid of candidate action locations. Note that the 3D
grid is defined globally over the 3D environment scan. The mapping function
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is composed of 3D convolution operations with parameters w, and a softmax
function. Thus, p(r|x,e) is given by:

plrlz,e) = softmaz(wy (6(x) @ ¥(e))), (2)

where @ denotes concatenation along the channel dimension. Therefore, the
resulting action location 7 is a proper probabilistic distribution normalized in
3D space, and 7(w,d, h) can be considered as the expectation of video clip x
happening in the spatial location (w,d, h) of the 3D environment.

In practice, we do not have access to the precise ground truth 3D action loca-
tion and must rely on camera registration results as a proxy. Using a categorical
distribution for p(r|z,e) thus models the ambiguity of 2D to 3D registration.
We follow [30,32] to adopt stochastic units in our model. Specifically, we fol-
low the Gumbel-Softmax and reparameterization trick from [19, 35] to adopt the
following differentiable sampling mechanism:

B exp((logrw.da.n + Guw.dn)/0)
o Ew,d,h exp((log Tw,d,h + Gw,d,h)/‘g) ’

3)

where G is a Gumbel Distribution for sampling from a discrete distribution.
This Gumbel-Softmax trick produces a “soft” sample that allows the gradients
propagation to video pathway network ¢ and environment pathway network
1. 6 is the temperature parameter that controls the shape of the soft sample
distribution. We set # = 2 for our model. Notably, the expectation of sampled
3D action location E[7] can be modeled by the distribution p(r|z, €) using Eq. 2.

3.3 Action Recognition with Environment Prior

Our model further models p(y|r, z,e) with a mapping function f(7,z,e) that
jointly considers action location 7, video input x and 3D environment represen-
tation e for action recognition. Formally, the conditional probability p(y|r,z,e)
can be modeled as:

plylr,z,e) = f(F,z,e) = softmaz(w, 2(d(z) ® (7 @ ¥(e)))), (4)

where @ denotes concatenation along channel dimension, and ® denotes the
element-wise multiplication. Specifically, our method uses the sampled action
location 7 for selectively aggregating environment features (e) and combines the
aggregated environment features with video features ¢(x) for action recognition.
X denotes the average pooling operation that maps 3D feature to 2D feature,
and w, denotes the parameters of the linear classifier that maps feature vector
to action prediction logits.

3.4 Training and Inference

We now present our training and inference schema. At training time, we assume
a prior distribution of action location g(r|z,e) is given as a supervisory signal.
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q(r|x, e) is obtained by registering the egocentric camera into the 3D environment
(see more details in Sec.4). Note that we factorize p(r|z,e) as latent variables,
and based on the Evidence Lower Bound (ELBO), the resulting deep latent
variable model has the following loss function:

L=~ "logp(ylr,z,e) + KL[p(r|z,e)|lq(r|z,e)], (5)

where the first term is the cross entropy loss for action classification and the
second term is the KL-Divergence that matches the predicted 3D action location
distribution p(r|z, e) to the prior distribution ¢(r|z, ). During training, a single
3D action location sample 7 for each input within the mini-batch will be drawn.

Theoretically, our model should sample 7 from the same input multiple times
and take average of the predictions at inference time. To avoid such dense sam-
pling for high dimensional video input, we choose to directly plug in the de-
terministic action location r in Eq. 4. Note that the recognition function f is
composed of a linear mapping function and a softmax function, and therefore
is convex. Further, 7 is sampled from the probabilistic distribution of 3D action
location r, similar to the formulation in [29,32], r is thus the expectation of 7.
By Jensen’s Inequality, we have:

E[f(fax’e)] Zf(E[fo’e):f(nxae)' (6>

That being said, f(r, z, e) provides an empirical lower bound of E[f (7, z, e)], and
therefore provides a valid approximation of dense sampling.

3.5 Network Architecture

For the video pathway, we adopt the I3D-Res50 network [2,59] pre-trained on
Kinetics as the backbone. For the environment pathway, we make use of a
lightweight network (denoted as EnvNet), which has four 3D convolutional op-
erations. The video features from the 3rd convolutional block of I3D-Res50 and
the environment features after the 2nd 3D convolutional operation in EnvNet
are concatenated for 3D action location prediction. We then use 3D max pooling
operations to match the size of action location map to the size of the feature
map of the 4th convolution of EnvNet for the weighted pooling in Eq.2. More
implementation details can be found in our supplement.

4 Experiments and Results

4.1 Dataset and Benchmarks

Datasets. Note that existing egocentric video datasets (EGTEA [30], and EPIC-
Kitchens [4] etc.) did not explicitly capture the 3D environment. We follow [46]
to run ORB-SLAM on EGTEA and EPIC-Kitchens. However, less than 30%
of frames can be registered, and the quality of the reconstructed point cloud is



Egocentric Activity Recognition and 3D Localization 9

unsatisfactory. Our empirical finding is that existing visual SfM methods can
not address the naturalistic egocentric videos. In contrast, the newly-developed
Ego4D [13] dataset has a subset that includes egocentric videos, high-quality 3D
environment reconstructions, and 3D static objects annotation.

The subset captures 34 different indoor activities from 3 real-world living

rooms, resulting in 6868 action clips. Similar to [4], we consider both seen and
unseen environment splits. In the seen environment split, each environment is
seen in both training and testing sets (5163 instances for training, and 1705 in-
stances for testing). In the unseen split, all sequences from the same environment
are either in training or testing (4392 instances for training, and 2476 instances
for testing). As discussed in [13], the photo-realistic 3D reconstruction of the en-
vironment is obtained from the state-of-the-art dense reconstruction system [56].
Furthermore, the static 3D object meshes are annotated by painting an semantic
label over the mesh polygons. The annotation includes 35 object categories plus
a background class label. It is worthy noting that the static object annotations
can be automated with the state-of-the-art 3D object detection algorithms.
Prior Distribution of 3D Activity Location. To obtain the ground truth
of the activity location for each trimmed activity video clip, we first register
the egocentric camera in the 3D environment using a RANSAC based feature
matching method. Specifically, we first build a base map from the monochrome
camera streams for 3D environment reconstruction using Structure from Mo-
tion [9,50]. The pre-built base map is a dense point cloud associated with 3D
feature points. We then estimate the camera pose of the video frame using ac-
tive search [48]. Note that registering the 2D egocentric video frames in a 3D
environment is fundamentally challenging, due to the drastic head rotation, fea-
tureless surfaces, and changing illumination. Therefore, we only consider the key
frame camera registration, where enough inliers were matched with RANSAC.
As introduced in Sec.3, the action location is defined as a probabilistic distribu-
tion in 3D space. Thus, we map the key frame camera location into the index
of the 3D action location tensor, with its value representing the likelihood of
the given action happening in the corresponding parent voxel. To account for
the uncertainty of 2D to 3D camera registration, we further enforce a Guassian
distribution to generate the final 3D action location ground truth.
Evaluation Metrics. For all experiments, we We follow [4, 30] to evaluate the
performance of both action recognition using both Mean Class Accuracy and
Top-1 Accuracy. As for 3D Action Localizatio, we consider 3D action localiza-
tion as binary classification over the regular 3D grids. Therefore, we report the
Precision, Recall, and F1 score on a downsampled 3D heatmap (x4 in X, Y
direction, and x2 in Z direction) as in [29].

4.2 Action Understanding in Seen Environments

Our method is the first to utilize the 3D environment information for egocentric
action recognition and 3D localization. Previous works have considered various
environment contexts for other tasks, including 3D object detection, affordance
prediction etc. Therefore, we adapt previous proposed contextual cues into our
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Table 1. Comparison with other forms of environment context. Our Hierarchical Vol-
umetric Representation (HVR) outperforms other methods by a significant margin on
both action recognition and 3D action localization. The best results are highlighted
with boldface, and the second-best results are underlined.

Method Action Recognition 3D Action Localization
Mean Cls Acc Top-1 Acc Prec Recall F1

I3D-Res50 37.48 55.15 8.14 38.73 13.45
I3D+Obj 37.66 55.11 10.04 35.08 15.61
I13D+2DGround 38.69 55.37 10.88 36.19 16.73
I3D+SemVoxel 39.23 56.07 11.26 38.77 17.45
13D+ Affordance 39.95 55.82 11.55 35.35 17.41
Ours(HVR) 41.64 56.94 16.71 35.55 22.73

proposed joint model and design the following strong baselines (see supplemen-
tary material for the details of baseline models):

e I3D-Res50 refers to the backbone network from [59]. We also use the network
feature from I3D-Res50 for 3D action localization by adopting the KL loss.

e I3D+0Obj uses object detection results from a pre-trained object detector
[62] as contextual cues as in [10]. This representation is essentially an object-
centric feature that describes the attended environment (i.e. where the camera
wearer is facing towards), therefore 3D action location can not used for selecting
surrounding environment features.

e I3D+2DGround projects the object information from the 3D environment
to 2D ground plane. A similar representation is also considered in [46]. Note that
the predicted 3D action location will also be projected to 2D ground plane to
select local environment features.

e I3D+SemVoxel is inspired by [68], where we use the semantic probabilistic
distribution of all the vertices within each voxel as a feature descriptor. There-
fore, the resulting environment representation is a 4D tensor with dimension
X XY x Z x C, where X, Y, Z represent the spatial dimension, and C' de-
notes the number of object labels from the 3D environment mesh annotation
introduced in Sec.4.

¢ I3D+ Affordance follows [38] to use the afforded action distribution as fea-
ture descriptor for each voxel. The resulting representation is a 4D tensor with
dimension X XY x Z x N, where N denotes the number of action classes.The
afforded action distribution is derived from the training set.

Results. Our results on the seen environment split is listed in Table 1. Our
method outperforms I3D-Res50 baseline by a large margin (4.2%/1.8% on Mean
Cls Acc/Topl Acc) on action recognition. We attribute this significant perfor-
mance gain to explicitly modeling the 3D environment context. As for 3D action
localization, our method outperforms I3D-50 by 9.3% — a relative improvement
of 69%. Notably, predicting the 3D action location based on video sequence
alone is erroneous. Our method, on the other hand, explicitly models the 3D en-
vironment factor and thus improves the performance of 3D action localization.
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Table 2. Ablation study for the 3D representation. We present the results of our
method that adopts different semantic occupancy map resolution M.

Action Recognition 3D Action Localization

Method Mean Cls Acc Top-1 Acc Prec Recall F1
13D-Res50 37.48 55.15 8.14 38.73 13.45
I13D+SemVoxel 39.23 56.07 11.26 38.77 17.45
Ours (M = 2) 39.04 56.26 12.19 36.82 18.32
Ours (M = 4) 41.64 56.94 16.71 35.55 22.73
Ours (M = 8) 40.06 56.04 16.13 39.84 22.96

In subsequent sections, we will show that the performance improvement does not
simply come from additional input modalities of 3D environment, but attributes
to a careful design of 3D representation and probabilistic joint modeling.
Comparison on environment representation. We now compare HVR with
other forms of environment representation. As shown in Table 1, I3D+Obj
has minor improvement on the over all performance, while I3D+2DGround,
I3D+SemVoxel and I13D+Affordance can improve the performance of action
recognition and 3D localization by a notable margin. Those results suggest that
the environment context (even in 2D space) plays an important role in egocentric
action understanding. More importantly, our method outperforms all previous
methods by at least 1.7% for action recognition and 5.3% for 3D action local-
ization. These results suggest that our proposed HVR is superior to a 2D ground
plane representation, and demonstrates that using the semantic occupancy map
as the environment descriptor can better facilitate egocentric understanding.

4.3 Ablation Studies

We now present detailed ablation studies of our method on seen split. To begin
with, we analyze the role of semantic and geometric information in our hierarchi-
cal volumetric representation (HVR). We then present an experiment to verify
whether fine-grained environment context is necessary for egocentric action un-
derstanding. Furthermore, we show the benefits of probabilistic joint modeling
of action and 3D action location.

Semantic Meaning and 3D Geometry. The semantic occupancy map carries
both geometric and semantic information of the local environment. To show how
each component contributes to the performance boost, we compare Ours with
I3D+SemVoxel, where only semantic meaning is considered, in Table 2. Ours
outperforms I3D+SemVoxel by a notable margin for action recognition and a
large margin for 3D localization. These results suggest that semantic occupancy
map is more expressive than only semantic information for action understanding,
yet it has smaller impact on action recognition than 3D action localization.
Granularity of 3D Information. We further show what level of 3D environ-
ment granularity is needed for egocentric action understanding. By the definition
of occupancy map, increasing the resolution M of children voxels will approx-
imate the actual 3D shape of the environment. Therefore, we report results of
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Table 3. Ablation study for joint modeling of action category and 3D action location.
Our proposed probabilistic joint modeling can consistently benefit the performance on
action recognition and 3D action localization

Action Recognition 3D Action Localization

Method Mean Cls Acc Top-1 Acc Prec Recall F1
I3D-Res50 37.48 55.15 8.14 38.73 13.45
13D+GlobalEnv 35.99 54.93 8.82 36.40 14.20
I3D+DetEnv 39.37 55.88 14.11 32.66 19.71
Ours 41.64 56.94 16.71 35.55 22.73

our method with different occupancy map resolution in Table 2. Not surpris-
ingly, low occupancy map resolution lags behind Ours for action recognition by
2.6% | and 3D action localization by 4.4% |, which again shows the necessity
of incorporating the 3D geometric cues. Another interesting observation is that
higher resolution can slightly increase the 3D action localization accuracy by
0.2%, yet decreases the performance on action recognition by 1.6% |. These
results suggest that fine-grained 3D shape of the environment is not necessary
for action recognition. In fact, higher resolution will dramatically increase the
feature dimension of the environment representation, and thereby incurs more
barriers to the network.

Joint Learning of Action and 3D Location. We denote a baseline model
that directly fuses global environment features, extracted by the same 3D convo-
lutional network from our method, with video features for activity reasoning as
I3D+GlobalEnv. The results are presented in Table 3. I3D+GlobalEnv decreases
the performance of I3D-Res50 backbone network by 1.5% | /0.2% | for action
recognition and has marginal improvement for 3D action localization (+0.8%).
We speculate that this is because only 3 types of scene reconstruction available
for training may lead to overfitting. In contrast, our method makes use of the
learned 3D action location to select interesting environment features associated
with the action. As the action location varies among different input videos, our
method can utilize the 3D environment context without running into the pit-
fall of overfitting, and therefore outperforms 13D+GlobalEnv by 5.7%/2.0% for
action recognition and 8.5% for 3D action localization.

Probabilistic Modeling of 3D Action Location. As introduced in Sec.4,
considerable uncertainty lies in the prior distribution of 3D action location, due
to the challenging artifact of 2D to 3D camera registration. To verify that the
probabilistic modeling can account for the uncertainty of 3D action location
ground truth, we compare our method with a deterministic version of our model,
denoted as DetEnv. DetEnv adopts the same inputs and network architecture as
our method, except for the differentiable sampling with Gumbel-Softmax Trick.
As shown in Table 3, Ours outperforms DetEnv by 2.3% for action recognition
and 3.0% for 3D action localization. These results demonstrate the benefits of
the stochastic units adopted in our method.



Egocentric Activity Recognition and 3D Localization 13

Table 4. Experimental results on unseen environment split. Our model show the ca-
pacity of better generalizing to an unseen environment with known 3D map. The best
results are highlighted with boldface, and the second-best results are underlined.

Action Recognition 3D Action Localization

Method Mean Cls Acc Top-1 Acc Prec Recall F1
13D-Res50 29.24 52.22 6.20 45.14 10.90
13D+2DObject 29.91 53.05 6.31 42.22 10.98
13D+2DGround 30.06 53.87 6.95 41.27 11.90
I3D+SemVoxel 30.19 53.37 7.03 43.55 12.11
Ours 31.55 55.33 7.50 44.97 12.86

Remarks. To summarize, our key finding is that both 3D geometric and se-
mantic contexts convey important information for action recognition and 3D lo-
calization. Another important take home is that egocentric understanding only
requires a sparse encoding of geometric information. Moreover, without a careful
model design, the 3D environment representation has minor improvement on (or
even decreases) the overall performance as reported in Table 3.

4.4 Generalization to Novel Environment

We further present experiment results on the unseen environment split in Table
4. Our model outperforms all baselines by a notable margin on both action
recognition and 3D action localization. Note that the affordance map requires
the observation of action instances on the 3D spatial location and thus cannot
be applied on the unseen split. These results suggest that explicitly modeling
the 3D environment context can improve the generalization ability to unseen
environments with known 3D maps. However, the performance gap is smaller
in comparison to the performance boost on seen split. We speculate that this
is because we only have two different types of environments for training and
therefore the risk of overfitting on unseen split is further exemplified.

4.5 Discussion

Visualization of Action Location. We visualize our results on seen environ-
ment split. Specifically, we project the 3D saliency map of action location on the
top-down view of the 3D environments. As shown in Fig. 3, our model can effec-
tively localize the coarse action location and thereby select the region of interest
from the global environment features for action recognition. By examining the
failure cases, we found that the model may run into the failure modes when the
video features are not sufficiently discriminative (4.e. when the camera wearer is
standing close to a white wall.)

Limitation and Future Work. One limitation of our method is the require-
ment of high-quality 3D reconstruction with object annotations. However, we
conjecture that 3D object detection algorithms [68], semantic structure from
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Pred: Pick up Cell Phone GT: Pick up Poster L

Fig. 3. Visualization of predicted 3D action location (projected on top-down view of
the reconstructed 3D scene) and action labels (captions above the video frames). We
present both successful and failure examples. We also show the “zoom-in” spatial region
of the action location to help readers to better interpret our action localization results.

motion [26] and 3D scene graphs [1] can be used to replace the human anno-
tation, since our current volumetric representation only adopts a low resolution
semantic occupancy map as environment descriptor. We plan to explore this
direction as our future work. Another limitation is the potential error in 2D to
3D camera registration, as discussed in Sec.4. Currently, only camera poses from
key video frames can be robustly estimated. Our method thus does not model
the location shift within the same action. We argue that camera registration can
be drastically improved with the help of additional sensors (e.g. IMU or depth
camera). Incorporating those sensors into egocentric capturing setting is an ex-
citing future direction. In addition, our method did not consider the camera
orientation. We will leave this for future efforts.

5 Conclusion

We introduced a deep model that makes use of egocentric videos and a 3D map
to address the novel task of joint action recognition and 3D localization. Our
key insight is that the 3D geometric and semantic context of the surrounding
environment provides critical information that complements video features for
action understanding. The key innovation of our model is to characterize the 3D
action location as a latent variable, which is used to select the surrounding local
environment features for action recognition. Our model demonstrated impressive
results on seen and unseen environments when evaluated on the newly released
Ego4D dataset [13]. We believe our work provides a critical first step towards
understanding actions in the context of a 3D environment, and points to exciting
future directions in connecting egocentric vision and 3D scene understanding for
AR and HRI.
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