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1 Appendix

This document contains additional details to support the main paper.
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Fig. 1. Issues with standard datasets for procedure learning. Existing
datasets [1,6,10,12,15–17] majorly consist of third-person videos. They contain issues
like occlusion and atypical camera locations that make them ill-suited for procedure
learning. Additionally, the datasets rely on noisy videos from YouTube [6, 12, 15, 17].
In contrast, we propose to use egocentric videos that overcome the issues posed by
third-person videos. To this end, we create the EgoProceL dataset.

1.1 Outline

Figure 1 highlights issues with standard third-person datasets, motivating us
to use egocentric videos for procedure learning. In Section 2, we discuss the
annotation protocols, task-level details, and datasets excluded while creating
the EgoProceL dataset. In Section 3, we highlight multiple use-cases for our
work. In Section 4.1, we provide additional ablation results on EgoProceL. To
facilitate reproducing the results reported in the main paper and supplementary,
Section 4.2 lists the hyper-parameters used for CnC. Furthermore, we release the
EgoProceL dataset and code for the work on project’s webpage3.

3 Link 1: http://cvit.iiit.ac.in/research/projects/cvit-projects/egoprocel; Mirror link
2: https://sid2697.github.io/

http://cvit.iiit.ac.in/research/projects/cvit-projects/egoprocel
https://sid2697.github.io/
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2 EgoProceL

This section contains additional details on the proposed EgoProceL dataset.

2.1 Annotation Protocols followed for EgoProceL

CMU-MMAC [3], EPIC-Tents [8], MECCANO [13], PC Assembly, PC Disas-
sembly: A list of key-steps required to perform the task was created upon viewing
the videos. Two annotators were asked to identify the key-steps in the videos and
temporally mark the start and end locations. Once an annotator added temporal
segments to the videos, the other annotator verified them. We use the ELAN
software [5] to annotate the videos.

EGTEA Gaze+ [11]: We used the recipes provided by the dataset curators to
create the key-step’s list for each task. The dataset offers dense activity an-
notations for all the videos. We created a one-to-many mapping between the
key-steps and the provided annotations; this accelerated the annotations pro-
cess. The mapping generated was used to create key-step annotations for all
videos. Three people further watched the videos and verified the annotations
generated.

To accelerate future research, we release the EgoProceL dataset on the project
web page3.

2.2 Task-level details of EgoProceL

In Table 1, we share the statistics for each of the 16 tasks in the EgoProceL
dataset. Let N be the number of videos, K be the number of key-steps for a
task, un be the number of unique key-steps and gn be the number of annotated
key-steps for nth video. Following [6], we calculate the following:

Foreground Ratio: It is the ratio of total duration of the key-steps to the
total duration of the video. This helps to understand the amount of background
actions a task has. The foreground ratio is inversely proportional to the amount
of background. It is calculated as:

F =

∑N
n=1

tnk
tnv

N
(1)

Here, tnk and tnv are the key-step duration and video duration for nth video,
respectively. The range of F is between 0 and 1.

From Table 1, we can see that the tasks have significant variance in the
foreground ratio. Conversely, tasks like “PC Assembly” and “Tent Assembly”
have a high foreground ratio, suggesting fewer background actions. On the other
hand, tasks like preparing “Bacon and Eggs” and “Turkey Sanwich” have low
foreground ratios, suggesting more background actions.
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Table 1. Statistics of the EgoProceL across different tasks. The high range of the
foreground ratio and repeated steps highlights the complexity of the tasks involved in
EgoProceL

Task Videos
Count

Key-steps
Count

Foreground
Ratio

Missing
Key-steps

Repeated
Key-steps

PC Assembly 14 9 0.79 0.02 0.65
PC Disassembly 15 9 0.72 0.00 0.60
Toy Bike Assembly 20 17 0.50 0.06 0.32
Tent Assembly 29 12 0.63 0.14 0.73
Bacon and Eggs 16 11 0.15 0.22 0.51
Cheese Burger 10 10 0.22 0.22 0.65
Continental Breakfast 12 10 0.23 0.20 0.36
Greek Salad 10 4 0.25 0.18 0.77
Pasta Salad 19 8 0.25 0.19 0.86
Hot Dog Pizza 6 8 0.31 0.13 0.62
Turkey Sandwich 13 6 0.21 0.01 0.52
Brownie 34 9 0.44 0.19 0.26
Eggs 33 8 0.26 0.05 0.26
Pepperoni Pizza 33 5 0.53 0.00 0.26
Salad 34 9 0.32 0.30 0.14
Sandwich 31 4 0.25 0.03 0.37

Missing Key-steps: This measure captures the count of missed key-steps in
each video. It is defined as:

M = 1−
∑N

n=1 un

KN
(2)

The range of M is between 0 and 1. It helps understand if a task can be done
even if we miss some steps. For example, in Table 1, “Salad” has the highest
missing key-steps ratio suggesting that salad can be made if we miss multiple
key-steps. This makes sense, as one can miss adding mayonnaise to the salad
but still create an edible salad. On the other hand, tasks like “PC Disassembly”
and “Pepperoni Pizza” can not afford to miss key-steps as the task won’t be
complete. So, for such tasks, we see a missing key-step ratio of 0.
Repeated Key-steps: This measure captures the repetitions of key-steps across
the videos. It is defined as:

R = 1−
∑N

n=1 un∑N
n=1 gn

(3)

The range of R is between 0 and 1. Higher values of R indicate repetitions of
key-steps across videos. From Table 1, we can see preparing “Pasta Salad” has
the highest repeated key-steps and preparing “salad” has the lowest. Methods
that do not consider repetitions of the key steps, will not perform well for such
tasks. As CnC takes repetitions of the key steps into consideration, it performs
well.
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2.3 Datasets not included in EgoProceL

As mentioned in the main paper, we followed a set of criteria to select videos
from existing datasets for including in EgoProceL. Here we discuss two potential
datasets which we could not use for EgoProceL.

The Charades-Ego dataset [14], consisting of paired egocentric and third-
person videos, is essential for activity recognition. However, it is not practical for
procedure learning. The subjects do not perform a series of key-steps to achieve
a goal; instead, they perform activities like pouring a drink in a cup and having
it. Additionally, the average duration of the videos is 31.2 seconds compared to
13 minutes in EgoProceL, suggesting the briefness of the tasks acted out.

The EPIC-Kitchens dataset [2], consisting of 100 hours of kitchen recordings,
comes quite close to our requirements. However, due to the unscripted nature
of the dataset (which sets it apart from [11]), it becomes unsuitable. As for
procedure learning, we need videos of the same tasks performed multiple times.

3 Applications

Learning a procedure by observing multiple videos of the same task opens up a
range of possible applications.
Monitoring procedures: Consider a system trained to know the key-steps for
performing a task; if a new person does the same task again, the system will
identify if the person misses a step or does a step differently.
Guidance systems: A system trained to know the key-steps for performing a
task can identify the current step and show the next possible step for performing
the task.
Automated systems: The proposed framework benefits by enabling automated
robotic systems to autonomously learn the key-steps for performing the task by
observing the task being performed. Once the automated system learns the key-
steps, the next time, it can do the task without any human assistance.

4 Additional Experimental Details

4.1 Ablation Results

This section contains ablation results on parts of EgoProceL. Table 2 contains
the results obtained upon replacing the TC3I loss with TCC [4], LAV [7], and
a combination of LAV and TCC [7]. Additionally, Table 3 shows the results
obtained upon using various values of K. Finally, Table 4 shows the results
obtained after considering different combination of losses along with HC and SS
for [3, 11].

Consistent with the results obtained in the main paper, in Table 2, we observe
highest results when using the proposed TC3I loss. This is because TC3I accounts
for the loss of temporal coherency by TCC [4] with the help of C-IDM loss [7].
Additionally, the TC3I loss focuses on correspondences at the frame level as
compared to global alignment employed by LAV [7].
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Table 2. Effectiveness of the TC3I loss. Results after replacing TC3I loss in CnC
with TCC, LAV, and a combination of LAV and TCC. For the majority of the cases,
the proposed TC3I loss outperforms all the losses as it focuses on the frame-level
correspondences and adds temporal coherency by adopting the C-IDM loss

Experiment
MECCANO [13] EPIC-Tent [8]

Precision F-Score IoU Precision F-Score IoU

TCC+PCM 15.1 17.9 8.7 14.2 14.9 7.8
LAV+TCC+PCM 13.4 15.6 7.3 16.0 16.7 8.5
LAV+PCM 14.6 17.4 7.1 15.2 15.8 8.3
TC3I+PCM (CnC) 15.5 18.1 7.8 17.1 17.2 8.3

Experiment
PC Assembly PC Disassembly

Precision F-Score IoU Precision F-Score IoU

TCC+PCM 19.9 21.7 11.6 22.0 23.4 12.2
LAV+TCC+PCM 21.6 21.1 10.8 21.0 24.3 12.3
LAV+PCM 21.5 22.7 11.7 26.4 26.5 12.9
TC3I+PCM (CnC) 25.0 25.1 12.8 28.4 27.0 14.8

Consistent with our observations in the main paper, in Table 3, we achieve
the highest scores when K = 7. Additionally, for most cases, CnC results in the
highest scores for all the values of K.

Table 3. Selecting the value of K. Numbers in bold are highest in the respective
row and underlined numbers are highest in the respective column

Experiment
MECCANO [13] EPIC-Tents [8]

K=7 K=10 K=12 K=15 K=7 K=10 K=12 K=15

Random 13.4 10.1 8.8 7.4 14.1 10.6 9.1 8.3
TC3I+HC 16.6 14.0 11.4 10.8 15.4 12.1 10.6 9.9
TC3I+SS 16.3 12.6 12.2 10.7 15.9 11.9 10.7 10.4
CnC 18.1 15.2 13.5 11.9 17.2 11.1 12.1 9.46

Experiment
PC Assembly PC Disassembly

K=7 K=10 K=12 K=15 K=7 K=10 K=12 K=15

Random 15.1 11.0 10.4 9.2 15.3 11.8 10.7 9.6
TC3I+HC 21.7 17.3 20.7 19.2 24.9 18.3 18.0 20.7
TC3I+SS 24.7 18.1 18.1 19.7 23.6 19.7 21.0 20.7
CnC 25.1 18.7 20.7 19.0 27.0 26.5 24.5 23.6

Table 4 shows the results after using various losses with HC, SS, and PCM
for procedure learning [3,11]. Nearly all the experiments using PCM achieve the
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Table 4. Effectivenss of PCM. Results after replacing PCM with HC and SS with
different losses

Experiment
CMU-MMAC [3] EGTEA Gaze+ [11]

Precision Recall F-Score IoU Precision Recall F-Score IoU

TCC+HC 17.06 19.47 18.08 8.55 16.78 20.00 18.25 8.33
TCC+SS 17.34 19.71 18.31 8.66 16.96 20.29 18.48 8.18
TCC+PCM 18.46 21.45 19.71 9.46 17.46 22.71 19.74 8.81

LAV+TCC+HC 17.37 18.40 17.76 8.61 16.59 19.72 18.02 7.35
LAV+TCC+SS 17.46 17.94 17.57 8.53 16.16 20.05 17.90 7.39
LAV+TCC+PCM 18.80 21.11 19.71 9.03 16.44 21.40 18.60 7.45

LAV+HC 18.44 19.78 19.07 8.66 16.59 18.18 17.35 7.87
LAV+SS 17.82 18.99 18.36 8.53 16.08 18.13 17.04 7.87
LAV+PCM 20.62 21.95 21.11 9.40 17.42 21.17 19.12 8.02

TC3I+HC 18.47 20.27 19.15 8.98 18.74 23.70 20.82 7.93
TC3I+SS 18.53 21.13 19.66 8.86 17.71 24.09 20.36 7.94
CnC 21.62 24.38 22.72 11.08 19.58 24.68 21.72 9.51

highest scores for other losses. Additionally, we achieve the highest scores with
CnC. Due to the characteristics of TC3I loss and PCM, the results are consistent
with our previous observations.

4.2 Hyper-parameters

Table 5 lists the hyper-parametes used for CnC.

Table 5. Hyper-parameter settings for CnC.

Hyper-parameter Value

No. of key-steps (K) 7
No. of sampled frames 32
Batch Size 5
Learning Rate 10−4

Weight Decay 10−5

Window size (σ) 300
Margin (ζ) 2.0
Regularization parameter (ξ) 1.0
No. of context frames (c) 2
Context stride 15
Embedding Dimension 128
Optimizer Adam [9]
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