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Abstract. Video anomaly detection (VAD) aims at localizing unex-
pected actions or activities in a video sequence. Existing mainstream VAD
techniques are based on either the one-class formulation, which assumes
all training data are normal, or weakly-supervised, which requires only
video-level normal/anomaly labels. To establish a unified approach to
solving the two VAD settings, we introduce a self-supervised sparse repre-
sentation (S3R) framework that models the concept of anomaly at feature
level by exploring the synergy between dictionary-based representation
and self-supervised learning. With the learned dictionary, S3R facilitates
two coupled modules, en-Normal and de-Normal, to reconstruct snippet-
level features and filter out normal-event features. The self-supervised
techniques also enable generating samples of pseudo normal/anomaly to
train the anomaly detector. We demonstrate with extensive experiments
that S3R achieves new state-of-the-art performances on popular bench-
mark datasets for both one-class and weakly-supervised VAD tasks. Our
code is publicly available at https://github.com/louisYen/S3R.
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1 Introduction

These days surveillance/security cameras are ubiquitously deployed in various
public places, such as factories, offices, shopping malls, and intersections. To
strengthen public safety, it is constructive to automatically detect abnormal
events such as accidents, illegal activities, or crimes. In practice, abnormal events
are rare and diverse in nature; manually identifying abnormal events is laborious
and time-consuming, especially for long-duration video sequences. To facilitate
recognizing the varied anomalies, developing intelligent computer vision algo-
rithms, i.e., video anomaly detection (VAD) systems, is a pressing need.

Recent efforts to tackle the VAD task can be categorized into unsupervised
and weakly-supervised techniques, depending on the annotations or assumptions
about the training video sequences. The unsupervised VAD scenario, which we
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Fig. 1: The proposed S3R framework couples dictionary learning with self-
supervised techniques to model the concept of feature-level anomaly. First, a
feature extractor E represents each untrimmed video x as the snippet-level fea-
ture F , and all the normal training videos X̃ are collected to build the task-
specific dictionary. Next, the en-Normal module employs F and the dictionary
to reconstruct the feature F̂ . Then, the de-Normal module explores F and F̂
differences to filter out the normal-event patterns. Finally, the filtered features
are ready to discriminate the normal and anomalous events of the snippet-level
and video-level features.

instead refer to as one-class VAD, assumes that only anomaly-free videos are
available for training. The widely adopted approaches to discriminating normal
and anomalous patterns are embedding-space learning or data reconstructing.
The weakly-supervised VAD assumes that video-level normal/anomaly labels are
given for training. Compared to the unsupervised VAD, obtaining such video-
level labels requires more human effort but could achieve significant performance
gains. A popular strategy to tackle weakly-supervised VAD is the inclusion of
multiple instance learning (MIL). Specifically, an MIL-based weakly-supervised
VAD algorithm treats each video and snippet as the bag and instance respec-
tively, and the annotation for each bag, indicating whether a bag contains at
least one anomalous instance, is known in the training stage.

In dealing with a VAD task, exhaustively modeling all possible scenarios of
abnormal events is infeasible. Our method casts VAD as an out-of-distribution
problem. A video clip that cannot be well reconstructed or explained by the
normal-event dictionary is supposed to involve abnormal events. To realize such
an idea, we develop the self-supervised sparse representation (S3R) framework
to model the concept of feature-level anomaly by generalizing a dictionary-based
representation with self-supervised techniques. We further infuse the MIL strat-
egy into the proposed S3R to form a unified reconstruction-based method for
effectively solving both unsupervised VAD and weakly-supervised VAD tasks.

In sum, S3R learns a normal-event dictionary for generating two opposite
network modules, i.e., en-Normal and de-Normal, to reconstruct snippet-level
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features and filter out the normal-event features. These two modules comple-
ment each other and enable the processed features to be better discriminated
by our snippet-level and video-level anomaly classifiers. With the aid of self-
supervised techniques, we can generate more pseudo anomaly data concerning
a specific dictionary to optimize the anomaly detector training. Since all sam-
ples in inference are unseen from the training stage, S3R indeed can adequately
distinguish between unseen normal and unseen anomalous snippets.

We validate the usefulness of S3R by conducting experiments on both one-
class and weakly-supervised VAD tasks, which include model evaluations on
three popular datasets, i.e., ShanghaiTech, UCF-Crime, and XD-Violence. We
also ablate each module within S3R to evaluate their effectiveness. To our knowl-
edge, S3R is the first unified framework that can be applied to both one-class and
weakly-supervised VAD task. We highlight the main contributions as follows.

– We introduce a novel self-supervised sparse representation (S3R) framework
for modeling and generating the feature-level anomalies through the (offline)
learned dictionary and self-supervised learning. Our experimental results
support the advantage of such a strategy in addressing the VAD task.

– We propose two coupled modules, en-Normal and de-Normal, leading to a
unified framework for tackling both one-class and weakly-supervised tasks.

– Our method achieves significant performance gains over other state-of-the-
art on one-class and weakly-supervised video anomaly detection tasks.

2 Related Work

2.1 Anomaly Detection

Anomaly detection aims to discover the irregular pattern with subtle or signif-
icant differences to the normal data. With the remarkable progression for deep
neural networks, several types of research on anomaly detection are prosper-
ing. Ruff et al . [29] used the simulated image-based dataset and tackled it in
the one-class framework in the early periods due to the absence of the corre-
sponding data. The one-class anomaly detection intends to determine whether
the test image belongs to the said class or not. Following the development of
one-class anomaly detection, the industrial dataset named MVTec AD[2], which
with pixel-level annotation for the manufacturing inspection, is proposed. The
purpose of anomaly detection using MVTec AD focuses on image-level anomaly
classification or pixel-level anomaly localization. Various works handle MVTec
using different manners such as knowledge distillation [3], self-supervised learn-
ing [18], and meta-learning [45].

Another more challenging anomaly detection leverages temporal information,
known as video anomaly detection, searching for unexpected actions or illegal ac-
tivities in a video clip. Specifically, it is demanding to estimate whole anomalous
patterns for all types of anomaly detection in real-world applications. Therefore,
the approaches for numerous types of anomaly detection are usually completed
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in an unsupervised manner, assuming that only access normal data during train-
ing while it has been unsuitably termed as the unsupervised VAD. Several works
engage in one-class VAD from different perspectives. For instance, Liu et al . [20]
took VAD as a video prediction framework and measured the anomaly score
based on the gap between the ground-truth the predicted future frame. An-
other work [21] proposed a multi-level memory-augmented autoencoder with
skip connection conditioned on reconstructed optical flow. Moreover, several ap-
proaches [11,15] embedded a pre-trained object detector into the model and used
motion cues to deal with VAD. Recently, the VAD with weak supervision [34]
that contains video-level labels in the training stage shows noticeable progress.
It is considerable and trades the human annotations off against performance.
Several approaches have evident improvement compared to unsupervised VAD.
For example, RTFM [36] uses feature magnitude with the multi-scale temporal
scenario from the video to select the top-k snippets and determine whether it
belongs to an abnormal video or not. MSL [19] proposes multi-sequence learning
and designs the exclusive ranking loss to select the most anomalous sequence. In
contrast to previous works, we introduce an architecture with flexibility to deal
with one-class and weakly-supervised VAD together.

2.2 Video Feature Extractors

Recently, neural network-based models have achieved a substantial performance
boost for tackling the action recognition task and serve as powerful video feature
extractors to obtain robust representations in downstream tasks. These popular
models fall into two major categories of two-stream networks [9,32,41] and 3D
networks [5,28,37,47]. The two-stream network exploits RGB images and stacked
optical flow clues separately to generate appearance and motion features. The
3D networks directly employ raw video volumes to learn spatio-temporal rep-
resentations. In this paper, we follow current efforts on VAD and employ the
latter style as the video feature extractor, i.e. I3D, to encode untrimmed video
and acquire snippet-level representation F .

2.3 Self-Supervised Sparse Dictionary Learning

The goal of dictionary learning is to find a linear combination using the elements
in a dictionary and keep the sparsity of the weights as possible at the same
time. With the optimization for dictionary learning, the redundant atoms are
filtered out, and pivot ones are preserved [1]. Cong et al . [8] proposed sparse
reconstruction cost over a dictionary to estimate the anomaly score for local
and global abnormal events in the testing stage. Lu et al . [22] adopted this
strategy to encode normal event patterns in the surveillance video and boost
the running time speed by constraint the sparsity coefficient. Luo et al . [23]
proposed temporally-coherent sparse coding accompanying a stacked recurrent
neural network to speed up the time of the testing phase. In contrast to the
most of former works focusing on acceleration, we explore the capability of sparse
representation learning and optimize all features obtained from the video feature
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extractor to formulate the universal dictionary DU and task-specific dictionary
DT . Notably, since the most standard video feature extractors such as C3D or
I3D are pre-trained on Kinetics-400 [16], we formulate the DU and DT using
Kinetics-400 and the target dataset, respectively. The resulting dictionaries are
then employed to feature reconstruction and pseudo label generation.

Self-supervised learning aims to increase the labels without manual annota-
tion. [10] Some recent works deal with VAD adopt this strategy by generating
pseudo labels. For example, Pang et al . [26] proposed formulating the ordinal
regression as a pretext task. The model initially learns anomaly scores for pseudo
normal and anomaly-free frames and applies the pseudo label to an end-to-end
detector. Feng et al . [10] proposed to train a generator via MIL and predict
the pseudo label for the segments of anomalous videos and address VAD in
the self-training scheme. In this paper, we introduce pseudo label generation to
deal with VAD. By comparison, we generate video-level pseudo labels in latent
representation space with non-parametric sparse dictionary learning.

3 Our Method

Learning to carry out video anomaly detection is often cast in two different set-
tings. The first is a one-class formulation that the provided training data include
only the video samples describing the underlying normal activities. Despite that
the one-class scenario has explicitly assumed the training data are all from the
normal category, it has been unsuitably termed as the unsupervised VAD task
in most previous works [12,35,43]. Departing from the anomaly-free assumption,
the other popular setting is called the weakly-supervised VAD task. In this case,
video samples in the training set are categorized by their video-level label into
normal (label 0) and anomaly (label 1); however, the frame-level labels are not
available to precisely locate exact segments of abnormal activities. For the ease
of presentation, we hereafter refer to the two settings of video anomaly detection
as oVAD (“o” for one-class) and wVAD (“w” for weakly-supervised).

We aim at developing a unified reconstruction-based method that can be ef-
fectively applied to solve both oVAD and wVAD tasks. To this end, we consider
establishing a dictionary learning approach, coupling with self-supervised tech-
niques, to model the concept of anomaly at the feature level, no matter which
of the two VAD settings we are exploring. In the following sections, we will
first elaborate our method for tackling the oVAD task as the problem is more
challenging due to the lack of anomaly samples in the training data, and then
explain how our method is also applicable to solving the wVAD task.

3.1 Sparse Representation for oVAD

One-class VAD assumes that only anomaly-free videos are accessible in the train-
ing set X = {xi}. Now given an untrimmed frame-level video x ∈ X , we de-
compose x into the snippet-level video sequence V = {vt}Tt=1 of T snippets,
where each snippet vt comprises 16 consecutive frames. We follow previous work
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Fig. 2: The pipeline for en-Normal. This module takes the snippet-level feature
F and task-specific dictionary DT to reconstruct feature F̂ via an attention
mechanism.

[6,10,19,36] to adopt a pre-trained I3D network [5] as the default feature extrac-
tor E to each snippet-level video V, resulting in snippet-level representations
F = {ft}Tt=1, where ft ∈ RC stands for each encoded snippet feature.

The dictionary learning [17,25] presumes an overcomplete basis, and prefers
a sparse representation to succinctly explain a given sample. With the training
set X , whose video samples are anomaly-free, we are motivated to learn its
corresponding dictionary D of N atoms. More specifically, we apply dictionary
learning technique to each representation F = E(x) ∈ RT×C and optimize as

argmin
D,{wt}

∑
x∈X

∑T

t=1
(∥ft −Dwt∥2 + λ∥wt∥0) , (1)

where D ∈ RC×N is the resulting VAD dictionary, and wt ∈ RN is the coefficient
vector constrained by the sparsity prior. Since the derivation of D is specific to
the training dataset X , we will use the notation DT to emphasize that the
underlying dictionary from (1) is task-specific.

3.2 A Dictionary with Two Modules

With the learned task-specific dictionary DT from (1), we can design two op-
posite network components: the en-Normal and de-Normal modules. Given a
snippet-level feature F , the former is used to obtain its reconstructed normal-
event feature, while, on the contrary, the latter is applied to filter out the normal-
event feature. The two modules complement each other and are central to our
approach to anomaly video detection.

en-Normal Module. With the learned task-specific dictionary DT , we design a
dictionary-based attention module to better correlate the snippet-level feature F
and the resulting DT , leading to the corresponding normal-event feature F̂ . That
is, since DT is assumed to span the feature space of all normal-event patterns,
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Fig. 3: The illustration of the de-Normal module. This module takes the channel-
wise difference between F and F̂ to form the cross-video semantics S. Then, the
channel scale δ is derived to depress S for describing normal events.

we use the attention mechanism [38,42] to reweigh snippet-level input feature
F with respect to DT to obtain its reconstructed normal-event feature F̂ . In
particular, we employ linear embeddings ϕ to project F and DT . The attention
is computed in the embedding space and defined as

F̂ = softmax
(
ϕq(F )ϕk(DT )

⊺
)
ϕv(DT ) , (2)

where ϕq, ϕk, and ϕv separately represent linear functions to derive query, key,
and value embeddings as in [38,42]. Thus, we adaptively involves normal-event
patterns from the dictionary DT based on F to reconstruct normal feature F̂ .
Fig. 2 depicts how the normal-event feature F̂ is obtained from an input feature
F and DT .

de-Normal Module. Opposite to the previous design, the de-Normal module aims
to depress the normal-event patterns within the input video feature. Thus, pat-
terns related to normal events are expected to be filtered out, and the remaining
can be used to infer whether the input video includes anomalous events or not.
In practice, given the snippet-level feature F ∈ RT×C and the reconstructed
normal feature F̂ ∈ RT×C , we first explore the temporal dependency via the
multi-scale temporal network (MTN) [36] and retrieve the enhanced features as
ψ(F ) ∈ RT×C and ψ(F̂ ) ∈ RT×C , where ψ denotes the MTN operation. Next, we
employ the global average pooling (denoted as g(·)) temporally to collect global
events, where each channel includes normal or anomalous semantics. We express
the retrieved cross-video semantics of g(ψ(F )), g(ψ(F̂ )) ∈ RC as S ∈ RC which
is formulated as their channel-wise difference,

S = g(ψ(F ))− g(ψ(F̂ )) , (3)

Notice that the cross-video semantics S from (3) remove the normal-event se-
mantic channels. Hence, the cross-video semantics S is able to depress semantic
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features for describing those normal events. To further keep the anomalous-
event channels of cross-video semantics and simultaneous depress normal-event
channels, we employ SENet-style [14] operations to explore the channel-wise re-
lationship and derive the corresponding channel scales for depressing normal
event within the input video representation as

δ = σ(MLP(S)) , (4)

U = δ ⊙ F, Û = (1− δ)⊙ F̂ . (5)

where MLP comprises two fully-connected layers to probe the channel-wise rela-
tionship, σ denotes the sigmoid activation, and ⊙ means the channel-wise mul-
tiplication. The scale vector δ ∈ Rc indicates the channel-level weights to keep
anomalous events, while 1 − δ denotes channel weights for focusing on normal
events. Finally, we use multiple fully-connected layers to predict snippet-level
P = {pt} and video-level p̂ probability using U and g(Û), respectively. (See
Fig. 3.)

3.3 Dictionary-based Self-Supervised Learning

We have described how to learn a task-specific dictionary DT from anomaly-free
training data, and use it to establish two useful modules for achieving video
anomaly detection. However, as illustrated in Fig. 1, the overall training of the
proposed model has implicitly assumed the availability of training data compris-
ing anomaly events (i.e., of label 1). Whereas the oVAD setting does not provide
training data other than anomaly-free, we propose effective self-supervised tech-
niques to generate pseudo anomaly data with respect to a given dictionary D.
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Assume now we are given a training set X̃ , the steps to generate a pseudo
anomaly video based on D are listed below.

1. Collect all normal videos in X̃ to form the training set X . (This step is for
the consideration of wVAD; otherwise, we already have X = X̃ .)

2. For each atom in D, compute its averaged cosine similarity to X , and obtain
a ranking list according to their similarity scores in ascending order.

3. Divide D into two equal-size dictionaries, D = Di ∪Dr, where Di includes
those irrelevant atoms from the first half of the ranking list, andDr comprises
the remaining relevant atoms. The self-supervised scheme usesDi to generate
pseudo anomaly features and Dr for pseudo normal features.

4. By sampling from X , a normal video with representations F = {ft}Tt=1, we
create an anomalous video by replacing its 2× t snippets as follows:

(a) We randomly select t snippets from F . For each snippet, we randomly
select n atoms {dj}nj=1 from Di as pseudo anomalous candidates.

(b) We further apply the weighted fusion to get a new snippet feature

f̂t = αft + (1 − α)
∑

j aj · dj , where aj denotes the weight vector. (We
set α = 0.01 for pseudo anomaly, and 0.5 for pseudo normal.)

(c) Repeat 4-(a) and 4-(b) steps for replacing the other t snippets with
pseudo normal features from relevant atoms of Dr.

5. The process of creating a pseudo anomaly video is completed.

In our study, we have considered two reasonable choices of D. The first is
simply the task-specific dictionary DT , and the second is a task-independent
universal dictionary DU , which is optimized via (1) over the Kinetics-400 [16]
dataset. Notice that in learning DU , we do not need any label information, and
instead consider DU as a general dictionary to account for a rich variety of
activities. The steps of pseudo anomaly generation are illustrated in Fig. 4.

3.4 S3R: A Unified VAD Framework

To show the proposed self-supervised sparse representation (S3R) is indeed a
unified framework for solving both the oVAD and wVAD problems, we are left
to justify that our method works equally well for the weakly-supervised scenario.
Assume that we are given the training dataset X̃ for solving the wVAD task. We
can readily collect those anomaly-free videos (with label 0) to form the dataset X
and obtain the corresponding dictionary DT from (1). Then all other procedures
remain the same as before except that we now have the choice to decide whether
the technique to generate pseudo anomaly data is employed or not.

Our network is end-to-end trained and built upon RTFM [36] with respect
to the following multi-task objective/loss:

L = Lsep + γLcls , (6)

where Lsep measures the separability of normal and anomalous videos, and Lcls

optimizes the snippet-level and video-level classifiers. The weight γ balances the
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two loss terms and is set to 0.001. In addition, we have

Lsep =
∑
k

(
∣∣m− ∥U+ = {u+t }k∥2

∣∣+ ∥U− = {u−t }k∥2) , (7)

wherem is the adopted margin (m = 100 in our experiments) and ∥·∥2 represents
the ℓ2-norm operation. We denote U+ = {u+t }k and U− = {u−t }k as the top-k
feature magnitude of U when y = 0 and y = 1, respectively. Finally, Lcls is the
binary logistic regression loss defined by

Lcls = BCE(P = {pt}k, y) +BCE(p̂, y) , (8)

where P = {pt}k denotes the top-k snippet probabilities based on the feature
magnitude of U as in RTFM (k is set to 3). Following [34], we also adopt temporal
smoothness and sparsity regularization in our implementation. Please refer to
[36] for the details of training the MIL model.

4 Experiments

4.1 Dataset and Metric

We evaluate our S3R against SOTA methods on three datasets: ShanghaiTech
[20], UCF-Crime [34], and XD-Violence [46]. Notably, ShanghaiTech is used for
one-class and the others are for weakly-supervised VAD primitively. To facilitate
the evaluation for both settings, we choose the existing variants or follow the
previous procedure to create corresponding types of supervision for VAD. Specif-
ically, Zhong et al . [49] transferred ShanghaiTech to weak supervision VAD by
reorganizing the dataset. Sun et al . [35] collects all normal training videos as the
training set and remains the same in the testing set in UCF-Crime to perform
oVAD. We use the same criteria as the former one to obtain an one-class version
XD-Violence. We briefly state the composition of each dataset in the following
and report details in the form of a table in supplementary material.

ShanghaiTech The ShanghaiTech contains 437 videos from 13 scenes of cam-
pus surveillance. The original one-class version comprises 330 regular videos and
107 irregular videos, carrying 130 abnormal events for training and testing, re-
spectively. After reorganization, it retains 238/199 videos that cover all 13 scenes
for training/testing in the weakly-supervised setting.

UCF-Crime The UCF-Crime has 1900 surveillance videos covering 13 real-
world anomalous classes such as robbery, explosion, and road accident. Com-
pared to ShanghaiTech, which nearly includes pedestrian activities in the univer-
sity, the scenes in this dataset are more diverse and more complex. The number
of videos for training/testing is 1610/290 in incipient weakly-supervised require-
ment and reduce the number of training to 800 by discarding anomalous videos
for the unsupervised assumption.
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Table 1: Comparison of frame-level AUC performance for VAD on ShanghaiTech.
We present the current SOTA with the corresponding feature and published year.
S3R⋆ and S3R† indicate using DU to generate pseudo labels and reconstruct
features, respectively. TSNflow and I3Dflow represent only access flow, and I3Df2

means access to both frame and flow.

oVAD wVAD

Method Feature Year AUC (%) Method Feature Year AUC (%)

Conv-AE [13] - 2016 60.85 Sultani et al . [34] I3D 2018 85.33

Stacked-RNN [23] - 2017 68.00 GCN-Anomaly [49] C3D 2019 76.44

Frame-Pred [20] - 2018 73.40 GCN-Anomaly [49] TSNflow 2019 84.13

Mem-AE [12] - 2019 71.20 GCN-Anomaly [49] TSN 2019 84.44

MNAD [27] - 2020 70.50 AR-Net [39] I3Dflow 2020 82.34

VEC [48] - 2020 74.80 AR-Net [39] I3D 2020 85.38

STC Graph [35] - 2020 74.70 AR-Net [39] I3Df2 2020 91.24

CAC [44] - 2020 79.30 MIST [10] C3D 2021 93.13

AMMC [4] - 2020 73.70 MIST [10] I3D 2021 94.83

HF2-VAD [21] - 2021 76.20 RTFM [36] C3D 2021 91.51

ROADMAP [43] - 2021 76.60 RTFM [36] I3D 2021 97.21

SVD-GAN [30] - 2021 78.42 MSL [19] C3D 2022 94.81

BDPN [7] - 2022 78.10 MSL [19] I3D 2022 96.08

S3R I3D 2022 79.89 S3R I3D 2022 97.48

S3R⋆ I3D 2022 80.47 S3R† I3D 2022 97.47

XD-Violence The XD-Violence is the latest and the most large-scale dataset,
which involves 4754 untrimmed videos together with audio signals. The sources
of scenery are various, including surveillance, movies, dashcam, games, etc. The
videos number for one-class and weakly-supervised scenarios are 3954/800 and
2049/800, respectively. To measure the effectiveness of our model fairly, we use
the same features as previous works that access video only.

Metric For evaluating the model performance in VAD, we calculate the Area
Under Curve (AUC), a conventional threshold-independent metric used for ear-
lier works. We follow [46] for evaluating the XD-Violence experiment and use
the same Average Precision (AP) metric to compare the performance.

4.2 Implementation Details

For a fair comparison, we adopt the I3D network [5] pre-trained on Kinetics-400
[16] as [6,10,19,36] for the video feature extraction. During training, we train our
S3R through Adam optimizer with a batch size of 64 for 50 epochs on all dataset,
and sample each video with 32 snippets via the linear interpolation, i.e. T = 32.
Furthermore, we randomly sample 32 normal and 32 anomalous videos to form
a mini-batch under wVAD and oVAD settings. Notably, we establish anomalous
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Table 2: Comparison of frame-level AUC performance for VAD on UCF-Crime.
S3R⋆ and S3R† indicate using DU to generate pseudo labels and reconstruct
features, respectively.

oVAD wVAD

Method Feature Year AUC (%) Method Feature Year AUC (%)

SVM Baseline - 50.00 Sultani et al . [34] I3D 2018 77.92

Conv-AE [13] - 2016 50.60 GCN-Anomaly [49] TSN 2019 82.12

S-SVDD [33] - 2018 58.50 MIST [10] I3D 2021 82.30

Lu et al . [22] C3D 2013 65.51 Wu et al . [46] I3D 2020 82.44

BODS [40] I3D 2019 68.26 RTFM [36] I3D 2021 84.30

GODS [40] I3D 2019 70.46 Chang et al . [6] I3D 2021 84.62

STC Graph [35] RPN 2020 72.70 MSL [19] I3D 2022 85.30

S3R I3D 2022 77.15 S3R I3D 2022 85.99

S3R⋆ I3D 2022 79.58 S3R† I3D 2022 85.00

videos when training through a dictionary for the oVAD setting , e.g . DT or
DU , as mentioned in Sec. 3.3. Following the previous work [36], our S3R uses
the learning rate of 0.001 for ShanghaiTech and UCF-Crime, and 0.0001 for
XD-Violence.

4.3 Results of oVAD

Previous methods [4,7,12,13,20,21,22,23,27,30,31,33,35,40,43,44,48] deal with VAD
in the one-class setup. The left part in Table 1, 2 and 3 show the comparison
results of the oVAD on the corresponding dataset. We provide a variant S3R⋆

that adopts the universal dictionary DU for pseudo label generation. As seen
in Table 1, 2 and 3, our model outperforms the other state-of-the-art models
for all benchmarks. Our model achieves new art on ShanghaiTech, UCF-Crime,
XD-Violence, improving around 1.2%, 6.9% and 2.7%, respectively.

4.4 Results of wVAD

We consider VAD approaches under weakly-supervised fashions in recent year,
including [6,10,19,34,36,39,46,49]. The right part in Table 1, 2 and 3 show the
comparison results of the weakly-supervised VAD on the corresponding dataset.
The feature column without emphasis shows that the extractor accesses the
frame solely. In particular, we report the AP scores that utilize video but discard
audio for proper comparison on XD-Violence.We provide a variant S3R† that
adopts the universal dictionary DU for the en-Normal. As seen in Table 1, 2 and
3, our model outperforms the other state-of-the-art models for all datasets. Our
model achieves new art on all benchmarks, improving around 0.3%, 0.7% and
2%, respectively.
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Table 3: Comparison of AP performance on XD-Violence. S3R⋆ and S3R† indi-
cate using DU to generate pseudo labels and reconstruct features, respectively.

oVAD wVAD

Method Feature Year AUC (%) Method Feature Year AP (%)

- - - - Sultani et al . [34] I3D 2018 75.68

SVM Baseline - - 50.78 Wu et al . [46] I3D 2020 75.41

OCSVM [31] - 1999 27.25 RTFM [36] I3D 2021 77.81

Conv-AE [13] - 2016 30.77 MSL [19] I3D 2022 78.28

S3R I3D 2022 51.64 S3R I3D 2022 80.26

S3R⋆ I3D 2022 53.52 S3R† I3D 2022 79.54

4.5 Ablation Study

To verify the effectiveness of each module in the S3R, we consider four config-
urations for the model deal with wVAD, i.e., baseline without de-Normal and
dictionary, S3R with de-Normal using X̃avg, DU or DT , respectively. Table 4
shows the ablation study on these configurations. All the models are end-to-
end trained and under the same remaining configuration. Precisely, the baseline
model is similar to RTFM since we adopt MTN and also build an MIL-based
model. Consequently, the AUC of baseline does not perform much of a difference
to RTFM. The second configuration employs de-Normal without any dictionary
but uses the averaged feature of all normal training videos. The configuration
shows the benefit and effectiveness of the proposed de-Normal module, which
significantly improves AUC on ShanghaiTech and UCF-Crime. The last two
configurations ablate our full model by utilizing the different dictionaries. Par-
ticularly, S3R using the task-specific dictionary obtains the best score with a
broad margin on UCF-Crime.

Another ablation exploits the composition of the pseudo label. As shown in
Table 5, we generate pseudo normal and pseudo anomaly by referring to several
ratios. Notably, the snippets and atoms are selected according to their mutual
similarity rather than the hand-crafted annotations [24]. The ratio for anomaly
and normal is 25%, i.e., T/4 snippets are replaced, which obtains the best score
in our framework.

Table 6 ablates the channel reduction rate for en-Normal and de-Normal
modules on the ShanghaiTech dataset under the oVAD setting, respectively.
The first row shows different rates of the embedding layers, i.e. ϕq and ϕk. With
the 25% reduction rate, we obtain the best performance of 80.47 in AUC. As
the reduction rate increases or decreases, the performance drops at least 2.59%
in AUC. The second row ablates the channel reduction of MLP in (4) for the
de-Normal module. With the 25% rate, we get the worst performance of 66.14%
in AUC. Using the rate of 6.25%, we improve the performance by 14.33% AUC.
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Table 4: Ablation study on S3R’s modules tackling wVAD task with AUC metric
and AUC’s improvement against the baseline on ShanghaiTech and UCF-Crime.

Configuration ShanghaiTech UCF-Crime

de-Normal en-Normal AUC (%) improvement AUC (%) improvement

- - 96.97 - 83.42 -

✓ X̃avg 97.28 ↑ 0.77 84.19 ↑ 0.77

✓ DU 97.47 ↑ 0.19 85.00 ↑ 0.81

✓ DT 97.48 ↑ 0.20 85.99 ↑ 1.80

Table 5: Ablation study on snippet ratio tackling oVAD task with AUC metric on
ShanghaiTech. A and N represent the ratio of anomaly and normal, respectively.

ratio (A / N) 25% / 25% 25% / 0% 25% / 50% 25% / 12.5% 50% / 25% 12.5% / 25%

AUC (%) 80.47 79.59 79.18 76.46 78.02 60.43

Table 6: Ablation study on channel reduction rate in en-Normal module (2) and
de-Normal module (4) tackling oVAD task with AUC metric on ShanghaiTech.

channel reduction rate 50% 25% 12.5% 6.25% 3.125%

en-Normal (embedding layers ϕq, ϕk in (2)) 70.38 80.47 77.88 76.01 73.36

de-Normal (MLP in (4)) 72.73 66.14 70.31 80.47 68.77

5 Conclusion

We establish a self-supervised sparse representation framework, a unified model
for simultaneously tackling both oVAD and wVAD tasks. At the core of S3R
is to model the feature-level anomaly through the offline trained dictionary
and self-supervised learning. Our design results in two opposite modules. The
first module, en-Normal, is in charge of reconstructing normal-event features,
while the second one, de-Normal, filters out the normal-event feature. By us-
ing the self-supervised techniques, we are able to further generate the pseudo
anomaly/normal data concerning the learned dictionary to guide the training of
our anomaly detector. The extensive experiments on three public benchmarks
show that S3R consistently surpasses state-of-the-art oVAD and wVAD meth-
ods, demonstrating that our unified reconstruction-based framework effectively
solves both one-class and weakly-supervised video anomaly detection tasks.
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