18 Grabinski et al.

A Appendix

A.1 Training Schedules

CIFAR-10 adversarial training schedule: For our baseline experiments on
CIFAR-10, we used the PRN-18 as well as the WRN-28-10 architecture as they
give a good trade-off between complexity and feasibility. For the PRN-18 models,
we trained for 300 epochs with a batch size of 512 and a circling learning rate
schedule with the maximal learning rate 0.2 and minimal learning rate 0. We set
the momentum to 0.9 and weight decay to 5e~%. The loss is calculated via Cross
Entropy Loss and as an optimizer, we use Stochastic Gradient Descent (SGD).
For the AT, we used the FGSM attack with an € of 8/255 and an « of 10/255
(in Fast FGSM the attack is computed for step size a once and then projected
to €). For the WRN-28-10 we used a similar training schedule as for the PRN-18
models but used only 200 epochs and a smaller maximal learning rate of 0.08.

CIFAR-10 clean training schedule: Each model is trained without AT. We
used 300 epochs, a batch size of 512 for each training run and a circling learning
rate schedule with the maximal learning rate at 0.2 and minimal at 0. We set the
momentum to 0.9 and a weight decay to 5e~*. The loss is calculated via Cross
Entropy Loss and as an optimizer, we use Stochastic Gradient Descent (SGD).

CINIC-10 adversarial training schedule: For our baseline experiments on
CINIC-10 we used the PRN-18 architecture. We used 300 epochs, a batch size of
512 for each training run and a circling learning rate schedule with the maximal
learning rate at 0.1 and minimal at 0. We set the momentum to 0.9 and weight
decay to 5e~%. The loss is calculated via Cross Entropy Loss and as an optimizer,
we use Stochastic Gradient Descent (SGD). For the AT, we used the FGSM
attack with an epsilon of 8/255 and an alpha of 10/255.

CIFAR-100 adversarial training schedule: For our baseline experiments
on CIFAR-100 we used the PRN-18 architecture as it gives a good trade-off
between complexity and feasibility. We used 300 epochs, a batch size of 512 for
each training run and a circling learning rate schedule with the maximal learning
rate at 0.01 and minimal at 0. We set the momentum to 0.9 and a weight decay
to 5e~4. The loss is calculated via Cross Entropy Loss and as an optimizer, we
use Stochastic Gradient Descent (SGD). For the AT, we used the FGSM attack
with an epsilon of 8/255 and an alpha of 10/255.

ImageNet adversarial training schedule: For our experiment on ImageNet
we used the ResNet50 architecture. We trained for 150 epochs with a batch size
of 400, and a multistep learning rate schedule with an initial learning rate 0.1,
~ = 0.1, and milestones [30, 60, 90, 120]. We set the momentum to 0.9 and weight
decay to 5e~%. The loss is calculated via Cross Entropy Loss and as an optimizer,
we use Stochastic Gradient Descent (SGD). For the AT, we used FGSM attack
with an epsilon of 4/255 and an alpha of 5/255.

FLC Pooling 19

A.2 TImageNet Training Efficiency

When evaluating practical training times (in minutes) on ImageNet per epoch,
we can not see a measurable difference in the costs between a ResNet50 with
FLC pooling or strided convolution.

We varied the number of workers for dataloaders with clean training on 4 A-
100 GPUs and measured ~ 43m for 12 workers, ~ 22m for 48 workers and ~ 18m
for 72 workers for both. FGSM-based AT with the pipeline by [42] takes 1:07
hours for both FLC pooling and strided convolutions per epoch. We conclude
that training with FLC pooling in terms of practical runtime is scalable (runtime
increase in ms-s range) and training times are likely governed by other factors.

The training time of our model should be comparable to the one from Wong
et al. [45] while other reported methods have a significantly longer training time.
Yet, the clean accuracy of the proposed model using FL.C pooling improves about
8% over the one reached by [45], with a 1% improvement in robust accuracy.
For example [12] has an increased training time by factor four compared to our
model, already on CIFARI10 (see Table @ This model achieves overall compara-
ble results to ours. The model by Salman et al. [38] is trained with the training
schedule from Madry et al. [32] and uses a multi-step adversarial attack for train-
ing. Since there is no release of the training script of this model on ImageNet,
we can only roughly estimate their training times. Since they adopt the training
schedule from Madry et al., we assume a similar training time increase of a factor
of four, which is similar to the multi-step times reported for PGD in Table [6}

A.3 Aliasing Free Down-Sampling

Previous approaches like [50I51] have proposed to apply blurring operations be-
fore down-sampling, with the purpose of achieving models with improved shift
invariance. Therefore, they apply Gaussian blurring directly on the feature maps
via convolution. In the following, we briefly discuss why this setting can not guar-
antee to prevent aliasing in the feature maps, even if large convolutional kernels
would be applied, and why, in contrast, the proposed FLC pooling can guarantee
to prevent aliasing.

To prevent aliasing, the feature maps need to be band-limited before down-
sampling [I4]. This band limitation is needed to ensure that after down-sampling
no replica of the frequency spectrum overlap (see Figure [3)). To guarantee the
required band limitation for sub-sampling with a factor of two to N/2 where N
is the size of the original signal, one has to remove (reduce to zero) all frequency
components above N/2.

Spatial Filtering based Approaches [50/51] propose to apply approximated
Gaussian filter kernels to the feature map. This operation is motivated by the
fact that an actual Gaussian in the spatial domain corresponds to a Gaussian in
the frequency (e.g. Fourier) domain. As the standard deviation of the Gaussian
in the spatial domain increases, the standard deviation of its frequency represen-
tation decreases. Yet, the Gaussian distribution has infinite support, regardless

20 Grabinski et al.

of its standard deviation, i.e. the function never actually drops to zero. The con-
volution in the spatial domain corresponds to the point-wise multiplication in
the frequency domain.

Therefore, even after convolving a signal with a perfect Gaussian filter with
large standard deviation (and infinite support), all frequency components that
were # 0 before the convolution will be afterwards (although smaller in magni-
tude). Specifically, the convolution with a Gaussian (even in theoretically ideal
settings), can reduce the apparent aliasing but some amount of aliasing will al-
ways persist. In practice, these ideal settings are not given: Prior works such as
[50J51] have to employ approximated Gaussian filters with finite support (usually
not larger than 7 x 7).

FLC Pooling Therefore, FLC pooling operates directly in the frequency do-
main, where it removes all frequencies that can cause aliases.

This operation in the Fourier domain is called the ideal low pass filter and
corresponds to a point-wise multiplication of the Fourier transform of the feature
maps with a rectangular pulse H (1, 7).

(6)

m,n) =

Hm, i) = 1 for all 7,7 below M/2 and N/2
0 otherwise

This trivially guarantees all frequencies above below M/2 and N/2 to be zero.

Could we apply FLC Pooling as Convolution in the Spatial Domain? In
the spatial domain, the ideal low pass filter operation from above corresponds to
a convolution of the feature maps with the Fourier transform of the rectangular
pulse H(m,#n) (by the Convolution Theorem, e.g.[14]). The Fourier transform of
the rectangle function is

sinc(m, n) _ { Vm2+n2 m,n 7& 0 (7)
1 m,n =10

However, while the ideal low pass filter in the Fourier domain has finite support,
specifically all frequencies above N/2 are zero, sinc(m,n) in the spatial domain
has infinite support. Hence, we need an infinitely large convolution kernel to
apply perfect low pass filtering in the spatial domain. This is obviously not
possible in practice. In CNNs the standard kernel size is 3x3 and one hardly
applies kernels larger than 7x7 in CNNs.

A.4 Model Confidences

In Table we evaluate the confidence of model predictions. We compare each
model’s confidence on correctly classified clean examples to its respective confi-
dence on wrongly classified adversarial examples. Ideally, the confidence on the

FLC Pooling 21

Table 10. Evaluation for clean and robust accuracy, higher is better, on AutoAttack
[O] with our trained models. The models reported by the original authors may have
different numbers due to different hyperparameter selection. We report each models
confidence on their correct predictions on the clean data (Clean Confidence) and the
models confidence on its false predictions due to adversarial perturbations (Perturba-
tion Confidence). The top row reports the baseline without adversarial training.

Clean Perturbation
Method Clean Acc AA Acc Confidence Confidence
Baseline ‘ 95.08 0.00 ‘ 100.00 97.89
FGSM & early stopping [45] 82.88 11.82 90.50 84.26
FGSM & FLC Pooling (Ours) 84.81 38.41 98.84 70.98
PGD [27] 83.11 40.35 56.58 75.00
Robustness lib [12] 76.37 32.10 95.22 78.91
AWP [46] 82.61 49.43 88.83 37.98
MART [44] 55.49 8.63 24.44 50.17
TRADES [48] 81.49 46.91 53.94 50.46

adversarial examples should be lower. The results for the different methods show
that FLC yields comparably high confidence on correctly classified clean exam-
ples with a 20% gap in confidence to wrongly classified adversarial examples. In
contrast, the baseline model is highly confident in both cases. Other, even state-
of-the-art robustness models have on average lower confidences but are even
less confident in their correct predictions on clean examples than on erroneously
classified adversarial examples (e.g. MART [44] and PGD [27]). Only the model
from [46] has a trade-off preferable over the one from the proposed, FLC model.

A.5 AutoAttack Attack Structure

In the main paper we showed one example of an image optimized by AutoAt-
tack [9] to fool our model and the baseline in Figure 5| In Figure [6| we give more
examples for better visualisation and comparison.

A.6 Ablation Study: Additional Frequency Components

In addition to the low frequency components we tested different settings in which
we establish a second path through which we aim to add high frequency or the
original information. We either add up the feature maps or contacted them.
The procedure of how to include a second path is represented in Figure [7} One
approach is to execute the standard down-sampling and add it to the FLC
pooled feature map. The other is to perform a high pass filter on the feature
map and down-sample these feature maps. Afterwards, the FLC pooled feature
maps as well as the high pass filtered and down-sampled ones are added. With
this ablation, we aim to see if we do lose too much through the aggressive FLC

22 Grabinski et al.

Spectrum Spectrum Difference Spectrum Spectrum Difference
Example Image Example Image to Original Image Example Image Example Image to Original Image

Original Image

s
E
g
£
g
5
15

Baseline
Perturbation

Baseline
Perturbation

FLC Pooling
Perturbation
FLC Pooling
Perturbation

Spectrum Spectrum Difference Spectrum Spectrum Difference
Example Image Example Image to Original Image Example Image Example Image to Original Image

Original Image

Baseline
perturbation

Baseline
Perturbation

-~

FLC Pooling
Perturbation

FLC Pooling
Perturbation

Spectrum Spectrum Difference Spectrum Spectrum Difference
Example Image Example Image to Original Image Example Image Example Image to Original Image

Original Image
FLC Pooling
Perturbation

Original Image

Baseline
Perturbation

<

2
of
EH
32
g
&5

2

<
25
£3
S

g€
&5
2k

Fig. 6. Spectrum and spectral differences of adversarial perturbations created by Au-
toAttack with e = % on the baseline model as well as our FLC Pooling. The classes
from top left down to the bottom right are: Bird, Frog, Automobile, Ship, Cat and

Truck.

FLC Pooling 23

n

n2
w2 n

FFT n low pass cut l L
G
n| T lnf2
feature

feature feature feature
map X size X\ map X size nxn map X size 22 map X size ni2xn/2
in the spatial Inkespace I kspace in the spatial
domain domain

o
b down-sampling ﬂ\}

down-sampling in the spatial
in the spatial domain (conv.
domain (conv. with stride =2)
with stride =2)

Tow pass cut L

—
ni2

FFT

feature feature
mapXsizenxn map X size nxn
in the spatial in k-space
domain

feature feature
map X size nf2xn/2 Map X size n/2«ni2
in k-space in the spatial
domain

high pass filler

Fig. 7. LC pooling plus, which either includes the original down-sampled signal like
it is done traditionally (right) or with the high frequency components filtered by a
high pass filter in the Fourier domain and down-sampled in the spatial domain by an
identity convolution of stride two (left).

pooling and if we would need additional high frequency information which is
discarded through the FLC pooling. Table show that we can gain minor
points for the clean but not for the robust accuracy. Hence we did not see any
improvement in the robustness and an increase in training time per epoch as
well as a minor increase in model size, we will stick to the simple FLC pooling.

Table 11. Accuracies for CIFAR-10 Baseline LowCutPooling plus the original or high
freqeuncy part of the featuremaps down-sampled in the spatial domain for FGSM
Training. We can see that the additional data does not improve the robust accuracy
and gives only minor improvement for the clean accuracy. Due to the additional com-
putations necessary for the high frequency /original part we decided to fully discard
them and stick to the pure low frequency cutting.

PGD Lijns Seconds per Model size
Method ‘ Clean € — % ‘ epoch (avg) ‘ (MB)
FLC pooling 84.81 38.41 34.6 £ 0.1 42.648
FLC pooling + HighPass pooling 85.38 38.02 45.2 £ 0.4 42.652
FLC pooling + Original pooling 85.37 38.30 35.4 £ 0.1 42.652

	FrequencyLowCut Pooling - Plug & Play against Catastrophic Overfitting

