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Supplemental Material

In this supplemental document, we provide additional details. In the main pa-
per, we demonstrate the effectiveness of our approach on popular face manipu-
lation methods. The motivation behind choosing these specific manipulations is
explained in Section 1. Current forensic methods aim to only identify the ma-
nipulated images, which suffers from the limitation of not being able to prevent
malicious activities. However, it is practically more relevant to prevent creation
of fake images using real images. We achieve this using targeted adversarial
attacks, this is explained in Section 2. In Section 3, we provide details about
the network architecture and additional training details. We then elaborate the
implementation of the baseline methods in Section 4. Finally, in Section 5, we
perform ablations and additional experiments.

Fig. 1: Official github popularity distribution for open-source facial manipulation
tools. Methods chosen from last five years’ papers from top vision conferences.
Note that only a handful of methods show wide applicability in a practical
scenario (1.5K+ stars and 300+ forks per repo ) and roughly 94% of all methods
are not used very often.



2 Aneja et al.

1 Protection from popular Image Manipulations

We emphasize that it is important to protect images from the popular facial
manipulations. Compared to large number of open-source image manipulation
tools available online, we notice that very few methods have achieved wide ap-
plicability among users as shown in Fig. 1, thus attracting many users to employ
only these popular methods. Secondly, re-training or even running inference on
these methods requires specialized knowledge and skills, resulting in common
users to look for pre-trained models in an easily accessible way. Therefore, we
benchmark our results on these famous high quality facial manipulations that
can easily be accessed via web demos, see Tab. 1. We additionally show in Sub-
section 5.6 that our generated perturbations can also protect against new and
unseen manipulations built upon these protected manipulations. A complete list
of manipulation methods can be found here1.

Method Edit Type # Runs URL GPU

(Web Demo) Hours

pSp [13] Style Mixing 5,704 https://bit.ly/3I7ew22 100

SimSwap [3] FaceSwap 30,944 https://bit.ly/3i5mjmh 120

StyleClip [12] Text-Driven 374,636 https://bit.ly/3MIShmx 12 per style

Manipulation

Table 1: Training time and number of runs (as of 14.03.2022) on the web demo of
publicly accessible pre-trained models for the widely used manipulation methods.

2 Definitions

2.1 Targeted Adversarial Attack

Adversarial attacks [1] are typically used in the context of classification tasks as a
technique to fool the classifier model by maximizing the probability of outputting
an incorrect target class label other than its actual class. In a similar spirit, we
formalize targeted attacks for face image manipulation as a technique to trick
these generative models; however, in contrast to misleading a classifier, our goal
is to produce a predefined target image (uniformly colored solid white/blue/red
images in our experiments).

Recently, Ruiz et al. [15] proposed the term targeted disruption. Their key
aspect is to use a specific target image to drive the optimization such that it
destroys the output of the generative model. We on the other side propose to

1 https://bit.ly/35VSd1K

https://bit.ly/3I7ew22
https://bit.ly/3i5mjmh
https://bit.ly/3MIShmx
https://bit.ly/35VSd1K
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learn a perturbation that forces the manipulation model to produce a specific
target image instead of a random output image; we refer to this as a targeted
adversarial attack.

3 Training Details

Dataset. To train our models we define custom split on high resolution FFHQ [8]
dataset. We additionally evaluate the performance of our models on unseen
Celeb-HQ [7] and VGGFace2-HQ [18] datasets in the main paper. We used 10K
images for training and 1000 images for validation and test split each, see Tab. 2
for more details.

Task Model Mode No. of Images Dataset

Self-Reconstruction pSp [13]
Train 5000 FFHQ [8]
Val 1000 FFHQ [8]

Face-Swapping SimSwap [3]
Train 2 × 5000 FFHQ [8]
Val 2 × 1000 FFHQ [8]

Textual-Editing StyleClip [12]
Train 5000 FFHQ [8]
Val 1000 FFHQ [8]

Self-Reconstruction pSp [13] Test 1000 FFHQ [8]

Style-Mixing pSp [13] Test 2 × 500 FFHQ [8]

Face-Swapping SimSwap [3] Test 2 × 500 FFHQ [8]

Textual-Editing StyleClip [12] Test 1000 FFHQ [8]

Style-Mixing
pSp [13]

Test 2 × 500 Celeb-HQ [7]
(Unseen Dataset) Test 2 × 500 VGGFace2-HQ [18]

Table 2: Dataset split for different tasks used in our experiments. For self-
reconstruction, the manipulation model takes one image as input. For style-
mixing and face-swapping, two images are fed as input to the manipula-
tion model. For textual-editing, an image and a text prompt describing the
manipulation-style is given an input to the model. For consistency, all methods
are benchmarked on the same set of images (except unseen images).

Model Architecture. For all three model backones used in the paper Pro-
tectionNet gΦ, AttentionNet hω, and FusionNet rρ, we use a convolutional neu-
ral network based on U-Net [14] architecture. More specifically, we use UNet-64
architecture with 29.24M parameters, as shown in Fig. 2. The weights of the
network are normal initialized with scaling factor of 0.02.
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For ProtectionNet gΦ, the network takes a 6 channel input, channel-wise
concatenated original image Xi and the globally optimized perturbation δG to
predict the image-specific perturbation δi. For AttentionNet hω, the network
takes a 4 channel input, the image-specific perturbation δi and manipulation
method label Ck and generates spatial attention map αk

i . For FusionNet rρ, the
model takes a 3 channel input, the blended model-specific perturbation with
spatial attention maps and produces model-agnostic perturbation δalli .
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Fig. 2: Architecture Overview: Network architecture used for experiments.
Conv(.) and ConvTranspose(.) refer to the 2D convolution and 2D transposed
convolution operation. For both Conv and ConvTranspose, we use a kernel size
of 4× 4. For conv layers, values in bracket refers to the input and output chan-
nels; e.g., Conv(X, Y ) denotes a X channel input and Y channel output. The
input channel for the first Conv varies for different backbones: 6 for Protection-
Net gΦ, 4 for AttentionNet hω and 3 for FusionNet rρ. LReLU(0.2) denotes
the LeakyReLU activation with a negative slope 0.2. Concat denotes the con-
catenation operation. For ProtectionNet gΦ and FusionNet rρ, we use Tanh
non-linearity after the last layer and ReLU for AttentionNet hω.

4 Baseline Implementations

We compare our method against adversarial attack baselines I-FGSM [10] and
I-PGD [11]. These methods target classification tasks, where attack patterns are
optimized for each image individually. To this end, we adapt their method for our
targeted adversarial attack task on generative models. Similar to their original
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implementations, we define a loss that only consists of the reconstruction term;
i.e.,

LTotal = Lrecon =
∥∥∥fΘ(Xp)−Ytarget

∥∥∥
2
,

where Xp refers to the protected image and Ytarget refers to the predefined
manipulation target (solid color white/blue image in our case). The amount of
perturbation in the image can be controlled with the magnitude of the update
step.

I-FGSM [10] (Iterative Fast Gradient Sign Method): The protected image is
first initialized with the original image as:

Xp
0 := X,

and then updated iteratively as

Xp
n+1 = Clampε

{
Xp

n − α sign(∇XLrecon(Xp
n,Y

target))
}
,

where α is the perturbation strength, Clampε(ξ) clips the higher and lower
values in the valid range [−ϵ, ϵ] and sign(ζ) returns the sign vector of ζ. We
report results with 100 iterations.

I-PGD [11] Iterative Projected Gradient Descent): The protected image is ob-
tained by the following update steps:

Xp
0 := X,

Xp
n+1 = ΠS

{
Xp

n − α sign(∇XLrecon(Xp
n,Y

target))
}

where α is the step size and ΠS(.) refers to the projection operator that projects
onto the feasible set S. We report results with 100 iterations and a step size of
0.01.

5 Additional Experiments

In this section, we report results for some additional experiments. We first show
the performance of our model on unseen datasets in Subsection 5.1. Next we com-
pare our method against some additional baselines in Subsection 5.2. We then
show additional visuals for multiple manipulations simultaneously in Subsec-
tion 5.3. Next, we analyze the effect of incrementally adding more manipulation
methods in Subsection 5.4. We then investigate the importance of AttentionNet
backbone for blending manipulation-specific perturbations in Subsection 5.5.
We also show that our generated perturbations can efficiently protect against
related unseen manipulations in Subsection 5.6. We then analyze the distribu-
tion of different baselines in Subsection 5.7. Then, we report the performance of
our method for different norms in Subsection 5.8. In Subsection 5.9, we evaluate
the robustness of our method when compression is applied multiple times to the
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image. We show visual results for high perturbation levels in Subsection 5.10. Fi-
nally, in Subsection 5.11, we compare different round approximations for quanti-
zation step for the differentiable JPEG compression implementation. For brevity,
we show results on self-reconstruction task with white image as manipulation
target, unless otherwise stated.

5.1 Unseen Datasets

We further compare the performance of our method on two high-resolution un-
seen datasets, Celeb-HQ [7] and VGGFace2-HQ [18]. These datsets were neither
seen during training or validation. We simply evaluate our trained models on
these datasets. We show results on the style mixing task in Fig. 3. Note that our
model demonstrates comparable performance on these unseen datasets compared
to the seen FFHQ dataset [8].
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Fig. 3: Performance of unseen datasets on the style-mixing task with white ma-
nipulation target. The models are trained on FFHQ [8] and evaluated on unseen
Celeb-HQ [7] and VGGFace2-HQ [18] datasets. The protection is applied to
the target image. Perturbation is enlarged by a factor of four for better visibil-
ity. Our model demonstrates comparable performance on these unseen datasets
compared to the seen FFHQ dataset [8].

5.2 Comparison with additional baselines

Here we compare our method against some additional baseline methods. ODI-
PGD [17] (17751.72 ms) and APGD [4] (25786.96 ms) perform per-image op-
timization, and are therefore significantly slower; CMUA [6] is faster during
inference; however, it produces lower-quality targeted disruptions compared to
others. We outperform these baselines; see Fig. 4 and Fig. 5.
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Fig. 4: Comparison on pSp (white target): CMUA(*) and CMUA (Ours) refers to their
pretrained patterns and ours adapted.

Fig. 5: Quantitative comparison with baselines on pSp (white target).

5.3 Additional Results for Multiple Manipulations Simultaneously

Due to space limitation in the main paper, we show additional visual results
for generating manipulation-agnostic perturbations to protect against multiple
manipulation methods at the same time, see Fig. 6.
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Fig. 6: Visual results for multiple targets simultaneously. pSp Only, SimSwap
Only, and StyleClip Only refer to the individual protection models trained only
for the respective manipulations. Combined w/o Attention refers to a model
trained directly for all manipulation methods combined. Combined w/ Attention
refers to our proposed attention-based fusion approach. Our proposed attention
model performs much better than the no-attention baseline, and is comparable
to individual models.

5.4 Effect of adding more manipulation methods

We additionally analyze the effect of incrementally adding more manipulation
methods using our proposed attention mechanism. We perform experiments with
different combinations of manipulation methods. Results for pSp Encoder [13],
SimSwap [3] and StyleClip [12] are shown in Fig. 7, 8 and 9 respectively. Note
that gradually adding more methods using our proposed attention mechanism
can be easily extended to handle multiple methods at the same time. This indi-
cates that new manipulations can be easily integrated without significant dete-
rioration in the overall performance on the individual manipulation(s).

5.5 Analysis of AttentionNet Backbone

Next, we analyze the importance of attention network backbone to produce
manipulation-agnostic perturbation when handling multiple manipulations at
the same time. We notice that directly fusing the manipulation-specific per-
turbations by only using the FusionNet backbone leads to suboptimal results.
Thus, the attention backbone serves as an important component to generate ef-
ficient patterns for all methods together. Results for this experiment are shown
in Fig. 10. Note that this experiment differs from Combined w/o Attention base-
line comparison shown in the main paper, which refers to directly learning a
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Fig. 7: Performance graph (left) and visual results (right) for pSp model [13] when
incrementally adding multiple manipulations. pSp Only refers to the protection
model trained only for pSp. pSp + SimSwap refers to a model trained for pSp [13]
and SimSwap [3] manipulations combined. pSp + StyleClip refers to a model
trained for pSp [13] and StyleClip [12] manipulations combined. All Combined
refers to a model trained for all three manipulation methods combined. Our
method can be easily extended to handle multiple manipulations.
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Fig. 8: Performance graph (left) and visual results (right) for SimSwap [3] when
incrementally adding multiple manipulations. SimSwap Only refers to the protec-
tion model trained only for SimSwap. pSp + SimSwap refers to a model trained
for pSp [13] and SimSwap [3] manipulations combined. SimSwap + StyleClip
refers to a model trained for SimSwap [3] and StyleClip [12] manipulations com-
bined. All Combined refers to a model trained for all three manipulation methods
combined. Our method can be easily extended to handle multiple manipulations.
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Fig. 9: Performance graph (left) and visual results (right) for StyleClip [12] when
incrementally adding multiple manipulations. StyleClip Only refers to the protec-
tion model trained only for StyleClip. pSp + StyleClip refers to a model trained
for pSp [13] and StyleClip [12] manipulations combined. SimSwap + StyleClip
refers to a model trained for SimSwap [3] and StyleClip [12] manipulations com-
bined. All Combined refers to a model trained for all three manipulation methods
combined. Our method can be easily extended to handle multiple manipulations.

single model for multiple manipulations combined (without AttentionNet and
FusionNet backbone). Here we compare blending of manipulation-specific per-
turbations using FusionNet only (without AttentionNet).

Method # Runs URL (Web Demo)

SAM [2] 18,205 https://bit.ly/3KG7F19

Style-NADA [5] 22,031 https://bit.ly/3J4Da4F

Table 3: Number of runs on the web demo (as of 14.03.2022) of publicly accessible
pre-trained models for the unseen manipulation methods.

5.6 Transferability on Related Models

We further show that our perturbations can even provide protection against un-
seen related methods build using existing methods. We show results on two dif-
ferent methods: (1) SAM [2], an age transformation model. (2) Style-NADA [5], a
domain adaptation technique for image generators using only text prompt. Both
of these methods are built upon pSp [13] to encoder images, which is protected

https://bit.ly/3KG7F19
https://bit.ly/3J4Da4F
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Fig. 10: Analysis of AttentionNet backbone. w/o AttentionNet refers to direct
blending of manipulation-specific perturbations using FusionNet only, without
attention. w/ AttentionNet refers to blending of manipulation-specific perturba-
tions using both AttentionNet and FusionNet. w/ AttentionNet outperforms
w/o AttentionNet baseline indicating that using attention efficiently blends
manipulation-specific perturbations.

with white target in our experiments. For SAM [2], we show results across differ-
ent age distributions. For Style-NADA [5], we show results on several different
manipulation models/styles. Visual results are shown in Fig. 11 and Fig. 12 and
details on web demo are provided in Tab. 3.

Our applied protection can efficiently protect against both these unseen ma-
nipulations indicating that our generated perturbations can defend from newer
methods build upon existing protected methods. Note that we do not train our
model to protect against these new methods SAM [2] and Style-NADA [5]. We
only evaluate the robustness of our generated perturbations on these models.

5.7 Analysis of different baselines

We analyze the output distribution of the manipulation model for different meth-
ods in Fig. 13. We notice that per-image optimization techniques, like I-PGD [11]
show a number of outliers with high mean squared error in the generated out-
put images, whereas our proposed method shows quite less variance. One such
outlier is visualized in Fig. 14.

5.8 Ablations with different Norms: L1, L2, L∞

Our loss function/minimization objective is formulated in terms of the L2 norm.
In this section, we compare results of our method with L1 and L∞ norm re-
spectively. Visual results are shown in Fig. 15 and performance comparison in
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Fig. 11: Protection results on unseen Age Transformation Model SAM [2]. Our
model trained on a related method pSp [13] can protect against this new age
transformation manipulation. Note that our protection is robust to different age
transformations.

Fig. 16. We notice that L2 norm significantly outperforms the other norms evenly
distributing perturbation throughout the image making the changes in the im-
age much less perceptually visible. In addition, it is more effective in erasing the
image traces from the output of manipulation model.

5.9 Multi-level Compression

In a practical use case, an image might be compressed multiple times when shared
on social media platforms. Therefore, the protection applied to images should
be robust to consecutively applied compression. For simplicity, we show results
for bi-level compression, i.e. the compression is applied twice to the image. We
first apply a high compression (C-30) and thereafter a low compression (C-80)
for evaluation. The second compression is applied to the first compressed image.
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Fig. 12: Protection results on unseen models from Style-NADA [5] with different
manipulation types. Our model trained on a related method pSp [13] can protect
against these new image manipulations. Our generated perturbation can protect
against all the different variants of manipulations generated by different Style-
NADA models.

Results are shown in Fig. 17. We show that our method is robust to multi-level
compression as well.
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Fig. 13: Results for the self-reconstruction task [13] with white image as manip-
ulation target. We show violin plots for different methods visualizing the mean
squared error of the manipulation model output with the predefined manipula-
tion target image. Our method, denoted as Ours, outperforms alternate methods
showing a lot less variance in the output distribution. In contrast, per-image op-
timization techniques such as I-PGD have long tail distribution indicating that
the method is not equally effective for all the samples in the dataset.
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Fig. 14: Outlier case for the self-reconstruction task [13] with white image as
manipulation target. In some cases, I-FGSM [10] and I-PGD [11] produce outliers
with high mean squared error; cf. the high variance compared to our method in
Fig. 13.
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Fig. 15: Results for self-reconstruction task with white image as manipula-
tion target. Comparison for three different norms used for the loss function:
L1, L2 and L∞. L2 norm evenly distributes the perturbation over the image
making it less perceptually visible. Also, the output images are more similar to
white manipulation target.

Fig. 16: Results for self-reconstruction task with white image as manipulation
target. Performance comparison on PSNR graph for different norms. Orig and
Protected refer to the original and protected image. Output refers to the output
of the manipulation model and Target indicates predefined manipulation target.
Note that L2 norm outperforms L1 and L∞ based formulations.

5.10 Manipulation for higher perturbation levels

We show visual comparisons for lower perturbation levels since these are most
useful for practical purposes. To this end, in the graphs shown in the main
paper, we have analyzed our method at several different perturbation levels.
In this section, we visualize our results for higher perturbation levels, which
show more disturbance in the original images, but illustrated more significant
disruptions for manipulation model predictions. Fig. 18 shows the visual results
for the self-reconstruction task.
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Fig. 17: Results for the self-reconstruction task with white image as manipula-
tion target and for multi-level compression. First Compression denotes the first
applied high compression C-30, Second Compression denotes the second com-
pression (C-80) applied to the first compressed image. We apply different com-
pression to evaluate robustness. Compression Difference denotes the difference
between first and second compressed images amplified by 20X for visibility. Our
method can efficiently handle multiple compression levels of different qualities.
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Fig. 18: Visual results for higher perturbation levels for the self-reconstruction
task [13] with white image as manipulation target. Even for a higher perturbation
level, our proposed approach outperforms alternate methods.

5.11 Ablations with different JPEG approximations

There are three different approaches to approximate the round operation used
in the quantization step of the original JPEG compression technique. These are
formalized below.

1. Cubic Approximation [16]

x := ⌊x⌉+
(
x− ⌊x⌉

)3
.
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Fig. 19: PSNR performance for training our method with different approxi-
mations to round operation for JPEG compression for the self-reconstruction
task [13] with white image as manipulation target. Sin approximation outper-
forms other approximations with comparable results for Soft approximation.

2. Soft Approximation [9]

x̃ = x− sin(2πx)

2π
,

x :=
[
round(x)− x̃

]
detach

+ x̃,

where ”detach” indicates that no gradients will be propagated during back-
propagation.

3. Sin Approximation [9]

x := x− sin(2πx)

2π

We also compare against the identity operation x := x as the baseline. The
performance comparison for these methods is visualized in Fig. 19. We notice
that Sin approximation is better in performance compared to other approxima-
tions, therefore we use it for experiments in the main paper.
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