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1 Results on DFDC

To further demonstrate the effectiveness of our proposed SIA, we conduct quan-
titative results on the DFDC dataset [3]. DFDC is a large-scale deepfake datasets
that contains 1133 real videos and 4080 fake videos with several manipulated
methods. The results in Tab.1 show that our method achieves SOTA perfor-
mance compared with recently face forgery detection methods. Specifically, our
method outperforms the Multi-Attentional method by around 3% in terms of
ACC, which demonstrate the self-information can provide more guidance for at-
tention mechanism and the effectiveness of the design of dual attention scheme.

Table 1. Performance on DFDC datasets in terms of ACC and AUC

Method
DFDC

ACC AUC
Xception [2] 80.23 89.50

EfficientNet-b4 [16] 80.91 89.91
Add-Net [22] 79.90 89.85

RFM [17] 80.83 89.75
F3-Net [11] 77.66 88.39
MAT [21] 78.43 90.12

Ours 81.31 90.96

2 Robustness Analysis

In this section, we explore the robustness of our SIA module. Fig. 1 shows the
quantitative results of baseline (EfficientNet-b4) and our method under different
noises. Specifically, we conduct Gaussian blur with 3 × 3 kernel size, Gaussian
noise, Salt and Pepper noise and jpeg compression on the test image of FF++
(HQ) dataset. The results show that compared with baseline, our SIA module is
more robust especially under the Gaussian and Salt Pepper noise, which achieves
about 6% on average improvement. This is because our SIA module help to
adaptively extract more informative regions and further avoid the influence of
invalid noise on input images.
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Fig. 1. Histograms of baseline and our method under different noises on FF (HQ) in
terms of AUC. (Best viewed in color.)

3 Self-information Metric with Different Backbones

In this section, we first explore the impact of the backbones with different con-
volutional operations via several toy experiments. Then we introduce the self-
information metric to explain the reason and further prove the effectiveness of
the self-information metric in deepfake detection task.

According to [12,7], depthwise separable convolution based network, such
as XceptionNet [2] and EfficientNet [16] is becoming the basic backbones in the
deepfake detection tasks. To further explore the impact of the backbones and
eliminate the influence of structures, three toy networks named Norm network,
CDC network [20] and Depthwise network are constructed and detailed in Tab 2.
The structure of these toy networks is the same while the convolutional opera-
tion is different. Specifically, Norm network means all the convolution method is
vanilla convolution; CDC network replaces all the vanilla convolution as Central
Difference Convolution which can capture the detailed features and prove effec-
tive in face anti-spoofing; Depthwise network replaces all the vanilla convolution
as depthwise separable convolution.

Then we evaluate these networks on FaceFornsics++ dataset, the results are
shown in Tab 3. We can observe that the performance of the Norm network
drop significantly compared with both the CDC network and Depthwise net-
work on both datasets while the parameters of the Norm network are far more
than Depthwise network. This is very different from the experience of general
classification tasks.

To prove the self-information metric really satisfy the deepfake detection task
and explain the reason for this phenomenon at the same time, we calculate each
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Table 2. Our toy network about different convolution methods, Conv (input, output,
kernel size, stride, group) and CDC(input, output, kernel size, stride, group) denote
the vanilla and central difference convolution with their corresponding parameters. For
example, Conv (4,128,3,2,1) denotes input channel is 64, output channel is 128 with
3 × 3 kernel size, stride is 2 and group is 1.

Layer Norm network CDC network Depthwise network

Layer1
Conv(3,32,3,2,1)

BatchNorm
RELU

CDC(3,32,3,2,1)
BatchNorm

RELU

Conv(3,32,3,2,1)
BatchNorm

RELU

Layer2
Conv(32,64,3,1,1)

BatchNorm
RELU

CDC(32,64,3,1,1)
BatchNorm

RELU

Conv(32,32,3,2,32)
Conv(32,64,1,1,1)

BatchNorm
RELU

Layer3
Conv(64,128,3,2,1)

BatchNorm
RELU

CDC(64,128,3,2,1)
BatchNorm

RELU

Conv(64,64,3,2,64)
Conv(64,128,1,1,1)

BatchNorm
RELU

Layer4
Conv(128,256,3,1,1)

BatchNorm
RELU

CDC(128,256,3,1,1)
BatchNorm

RELU

Conv(128,128,3,1,128)
Conv(128,256,1,1,1)

BatchNorm
RELU

Layer5
Conv(256,512,3,2,1)

BatchNorm
RELU

CDC(256,512,3,2,1)
BatchNorm

RELU

Conv(256,256,3,1,256)
Conv(256,512,1,1,1)

BatchNorm
RELU

Layer6
Conv(512,1024,3,1,1)

BatchNorm
RELU

CDC(512,1024,3,1,1)
BatchNorm

RELU

Conv(512,512,3,1,512)
Conv(512,1024,1,1,1)

BatchNorm
RELU

FC
pooling

fc
pooling

fc
pooling

fc

Table 3. ACC(%) of three different toy models on DeepFakes HQ/LQ (DF HQ/LQ),
Face2Face HQ/LQ (F2F HQ/LQ), FaceSwap HQ/LQ (FS HQ/LQ), NeuralTexures
HQ/LQ (NT HQ/LQ) and Celeb-DF datasets. The last column represents the amount
of parameters.

Toy-Model DF HQ DF LQ F2F HQ F2F LQ FS HQ FS LQ NT HQ NT LQ Celeb-DF Param
Norm 84.16 74.89 61.09 57.14 64.58 61.45 59.30 53.20 72.69 6.29M
CDC 90.05 78.95 82.90 64.69 89.87 67.74 81.93 62.14 89.65 6.29M

Depthwise 91.38 86.99 91.47 77.11 90.19 79.83 82.97 66.59 95.43 4.90M

layer’s channel-wise average self-information of Norm network, CDC network,
and Depthwise network on the high-quality of FaceFornsics++ dataset. Specif-
ically, given t-th layer feature map f t

k, the channel-wise self-information metric
is defined as:

Itavg =

C∑
k=1

∑H
i=1

∑W
j=1 I(f t

k(i, j))

H ×W
, (1)
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where the H,W is the size of the feature map and C represents the number of
channels I. The calculation method of I follows the original paper in E.q. (3).

The overall results are shown in Tab. 4, we can observe that the self-information
metric of Depthwise network is larger than the Norm network and the CDC net-
work, which means the depthwise separable convolutional based network can cap-
ture higher information content. Furthermore, by comparing Tab. 3 and Tab. 4,
we find that the more self-information the feature map contained, the better
performance the model has. So the self-information metric is satisfied with the
deepfake detection task, which explains the rationality of our method from an-
other perspective.

Table 4. Channel-wise average self-information of different toy models with their cor-
responding layers on the HQ of the FaceFornsics++ database.

Model Layer2 Layer3 Layer4 Layer5 AVG
Norm Network 12.56 12.39 12.71 12.17 12.45
CDC Network 13.01 13.31 13.95 13.21 13.37

Depthwise Network 13.56 13.97 14.69 13.88 14.03

4 Verify the compatibility of SIA

To demonstrate the compatibility of SIA, we reproduce the recent SPSL [10],
F3-Net [11] and DCL [15] and inject our SIA into their backbones, respectively.
The results on DFDC and WildDeepfake are reported in Tab 5. We can observe
that the performance achieve consistent improvement over three competitors
after integrating our SIA module, which mainly benefits from the more efficient
feature extractor based on self-information metric.

5 Related Work of Attention Mechanism

Attention mechanisms have been widely applied in many vision tasks [8,9,13].
The existing attention mechanisms can be categorized into channel-wise and
spatial-wise. For channel attention, Hu et al. [5] first use squeeze and excitation
operation to exploit the inter-channel relationship. For spatial attention, the
work [18] introduces non-local operation in spacetime for images and videos to
capture long-range context information. The work [4,19] extract informative fea-
tures by blending cross-channel and spatial information together. What’s more,
some methods [1] improve the localization accuracy of CNN using an attention-
based dropout layer. Other method [6] combine attention with multiple kernel
selection to further improve performance. Furthermore, attention mechanism
has been used in face forgery detection task. Stehouweret al. [14] first use at-
tention map to locate the forgery region under the supervision of the ground
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Table 5. Quantitative results on DFDC and WildDeepfake (WDF) in terms of ACC
and AUC.

Method
DFDC WDF

ACC AUC ACC AUC

SPSL 78.49 89.52 76.14 84.40

SPSL+SIA 80.75 90.69 78.93 88.35

F3-Net 77.66 88.39 80.66 87.53

F3-Net+SIA 79.01 89.11 81.35 89.29

DCL 79.27 88.77 79.19 89.27

DCL+SIA 80.84 90.00 81.32 90.33

truth mask. Multi-attentional [14] produce multiple spatial attention adaptively
to make the network cover the local parts. Different from them whose generate
attention map without any guidance and only consider the spatial-wise dimen-
sion, our SIA module provide a more suitable metric for both spatial-wise and
channel-wise attention, which achieve better performance.

6 Future Work

In addition to the face forgery detection, we believe the proposed SIA can benefit
the vision tasks that depend on extracting imperceptible but abnormal clues
such as camouflaged object segmentation (COS), face anti-spoofing and image
manipulation detection. Specifically, those tasks all suffer from the ignorance of
the subtle features by deep models, e.g. camouflage object boundaries in COS,
abnormal noises in face attacks and inconsistent image patterns in manipulated
images. To this end, our proposed SIA module can be used to highlight those
high-informative artifacts in both spatial and channel dimensions and preserve
them through SI aggregation operation. Currently, we only evaluate our SIA
module on the RGB domain. In future work, we will evaluate it in the frequency
domain to further demonstrate its effectiveness and generality.
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