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Abstract. Convolutional neural network based face forgery detection
methods have achieved remarkable results during training, but strug-
gled to maintain comparable performance during testing. We observe
that the detector is prone to focus more on content information than
artifact traces, suggesting that the detector is sensitive to the intrinsic
bias of the dataset, which leads to severe overfitting. Motivated by this
key observation, we design an easily embeddable disentanglement frame-
work for content information removal, and further propose a Content
Consistency Constraint (C2C) and a Global Representation Contrastive
Constraint (GRCC) to enhance the independence of disentangled fea-
tures. Furthermore, we cleverly construct two unbalanced datasets to
investigate the impact of the content bias. Extensive visualizations and
experiments demonstrate that our framework can not only ignore the
interference of content information, but also guide the detector to mine
suspicious artifact traces and achieve competitive performance.

Keywords: Face Forgery Detection, Content Information, Disentangled
Representation

1 Introduction

With the incredible success of deep learning, numerous techniques for forgery
have emerged, such as Deepfakes[14], Face2Face [42], and FaceSwap [30]. Due
to the extremely low barriers and easy accessibility, generative techniques are
gradually being misused [1, 2].

To defend against, face forgery detection has attracted increasing attention.
Early works [22, 47, 32, 10, 17] used hand-crafted facial features (e.g., eyes blink-
ing, head poses, lip movements, etc.) to capture some visual artifacts and in-
consistencies resulting from the forgery generation process. Meanwhile, some
works [11, 35, 24] explored PPG signals representing heart rate information.
Later, learning-based methods [48, 45, 13, 7, 46] have made significant progress.
Nevertheless, these methods are vulnerable to image compression or noise in-
terference. Frank et al. [15] found that, compared to the time domain, mining
forgery information in the frequency domain can still maintain satisfactory re-
sults even under severe compression [15, 36, 31, 25, 20].
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Fig. 1. (a) Unlike the traditional methods (upper), we propose a disentanglement
framework (lower) for content information removal. Grad-CAM [39] shows that the
traditional detector is distracted by the red object, while our method still mine sus-
picious artifact traces and the activation region almost consistent with the mask. (b)
Visualization of the image (first row), traditional detector’s (Xception) features (sec-
ond row) and Grad-CAM [39] (third row).

We observe that most methods [53, 36, 31, 35] perform admirably in in-dataset
evaluations but struggle to maintain comparable results in cross-domain evalua-
tions, which inspire us to conduct an in-depth analysis of the previous method.
Existing methods take it for granted that after proper training, the detector will
selectively grasp artifact traces as the basis for authenticity judgment. However,
the visualization (shown in Figure 1 (b)) illustrates that the feature of the detec-
tor remains recognizable content clues, and the detector is prone to overfitting
to small local regions, or even focusing only on content information outside the
face region.

Based on this key observation, we conjecture that detectors may no longer
mine hard-to-capture artifact traces, and instead overfit certain non-artifact (i.e.,
content) information, thus leading to the failure of cross-domain evaluations.

Therefore, we propose an easily embeddable framework for disentangling con-
tent features and artifact features, and only the disentangled artifact features for
face forgery detection, thus ignoring the interference of content information. A
brief comparison between the traditional methods and our framework is sketched
in Figure 1 (a).

However, most disentanglement methods [51, 26, 33] consider only the com-
pleteness of features, but do not explore the independence of disentangled fea-
tures in-depth, which leads to the failure of the face forgery detection (see Ta-
ble 4). To enhance it, we propose a Content Consistency Constraint (C2C) to
ensure that the disentangled features contain the corresponding information and
a Global Representation Contrastive Constraint (GRCC) to further ensure the
purity of the disentangled features, which helps our disentanglement framework
to achieve competitive performance. Furthermore, we cleverly construct two un-
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balanced datasets based on the FaceForensics++ [38] to investigate the impact
of content bias, and further demonstrate that our framework can ignore the in-
terference of the content bias. Notably, our framework is easily embeddable, we
embed some backbones into our framework for extensive evaluations and ab-
lation experiments, and experimental results demonstrate the effectiveness and
generalization capability of our framework in face forgery detection.

The contributions of this paper could be summarized as three-fold:

– To the best of our knowledge, we are the first to explore the impact of content
information on the generalization performance of face forgery detection, and
cleverly construct two unbalanced datasets to further investigate the impact
of content bias, which brings a novel perspective for this field.

– We design an easily embeddable disentanglement framework for content in-
formation removal, and further propose a Content Consistency Constraint
(C2C) and Global Representation Contrastive Constraint (GRCC) to en-
hance the independence of disentangled features.

– Extensive visualizations and experiments demonstrate that our framework
can not only ignore the interference of content information, but also guide
the detector to mine suspicious artifact traces and achieve competitive per-
formance in face forgery detection.

2 Related Works

2.1 Forgery Detection

Benefiting from the great progress of GAN, forgery techniques, especially for
faces, have been incredibly advanced. To avoid its illegal use, researchers have
explored forgery detection extensively [21, 54, 28, 40, 4].

Later, various learning-based methods [48, 45, 13, 7, 46] demonstrated signif-
icant improvements. In addition, some works [3, 27, 8] suggested that shallow
local texture details and correlations between local regions of the face can better
reflect forgery information. However, almost all of these CNN-based methods
only utilize spatial domain information (i.e., RGB, YUV, HSV), and therefore
the performance is sensitive to the quality and distribution of the dataset. To
counter it, some works [15, 36, 31, 25, 20] transformed images into the frequency
domain by DCT transform and analyzed the frequency domain statistics, achiev-
ing satisfactory results even with severe compression. Recent attempts to boost
the generalization of face forgery detection by extending the activated attention
region of the network. Zhao et al. [53] proposed multiple spatial attention heads
to guide the network focus on different local regions. Wang et al. [44] encouraged
detectors to dig deeper into previously overlooked regions by masking the sen-
sitive facial regions. Although these CNN-based methods significantly enhance
the feature extraction capability of the detector, due to the neglect of the con-
tent bias implied in the features, the detector is trapped in the intrinsic bias
of the dataset, thus hindering the improvement of cross-domain generalization
performance.
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2.2 Disentangled Representation

Disentangled representation learning is to decompose complex dimensional cou-
pled information into simple features with a strong distinguishing ability [6].
DR-GAN [43] disentangled the face into identity and pose features for synthe-
sizing faces in arbitrary poses to aid in recognition. Niu et al. [33] proposed a
cross-verified feature disentangling strategy with robust multi-task physiological
measurements. Zhang et al. [52] also adopted a similar structure to disentangle
pose and appearance features from gait videos. In the field of face anti-spoofing,
Zhang et al. [51] decompose the facial image into content features and liveness
features and introduced LBP map, depth map as auxiliary supervision. Liu et
al. [26] proposed a new adversarial learning framework to separate the spoof
trace into a hierarchical combination of multi-scale patterns. In this paper, we
further propose a Content Consistency Constraint (C2C) and Global Represen-
tation Contrastive Constraint (GRCC) to enhance the independence of disentan-
gled features. And the disentanglement framework only serves as an underlying
architecture, a detailed ablation analysis can be found in Section 4.3.

3 Methods

3.1 Motivation

Consider a forged image, which consists of artifact traces and content informa-
tion, where the content information can be subdivided into identity information
and background information. The only difference between the forgery image and
the real image is the presence of artifact traces, which is the basis for the detector
to determine the authenticity.

We observe that most detectors perform admirably in in-dataset evaluations
but struggle to maintain comparable results in cross-dataset evaluation. For
further exploration, we visualize the features of the middle layer of the detector
and the Grad-CAM [39]. The visualization results (see Figure 1 (b)) illustrate
that the feature of the detector remains recognizable content information, and
the detector is prone to overfitting to small local regions (DF, NT), or even
focusing on content information outside the face region (FS).

Based on this key observation, we conjecture that with the weak constraint of
binary labels alone, detectors may no longer mine hard-to-capture artifact traces,
and instead overfit certain non-artifact information (i.e., content information),
thus failing in cross-dataset evaluations.

Therefore, we propose an embeddable disentanglement framework that dis-
entangles content and artifact features, and the artifact features are used for
forgery detection, thus eliminating the interference of content information.

3.2 Basic Disentanglement Framework

We assume that the high-dimensional latent representation of an image consists
of content and artifact features. The main purpose is to disentangle them and
use the disentangled artifact features for subsequent detection.



Exploring Disentangled Content Information for Face Forgery Detection 5

Feature
Reconstruction Loss

Classification

𝐼!!
"!

𝑎#

𝑎$

𝐸!

𝐸"

𝐼!"
""

𝑧!!
"!

𝑧!!
""

𝑧!"
""

𝑧!"
"!

𝐼%!!
""

𝐼%!!
"!

𝐼%!"
""

𝐼%!"
"!

𝐷

ℒ!%

𝐴𝑟𝑐𝐹𝑎𝑐𝑒

𝑉𝐺𝐺

𝐴𝑟𝑐𝐹𝑎𝑐𝑒

𝑉𝐺𝐺

GRCC

𝐸!

𝐸"

ℒ&' ℒ()

𝑐$

𝑐#

𝑅?𝐹
ℒ*%!
+%"

ℒ*%!
&,)

ℒ!

𝐶

Backbone

Push Pull

Add

Content Consistency Constraint

Image Reconstruction Loss

Cross-Combine

Fig. 2. The overview framework of our method. The input of our network is a pair of
images. First, we use artifact encoder Ea and the content encoder Ec to disentangle
the content and artifact features, respectively. Then, we feed the artifact features a0

and a1 to the classifier C for detection to compute Lce. Next, Global Representation
Contrastive Constraint (GRCC) is used to compute Lc, and the artifact and con-
tent features are cross-combined to get latent representation zac and then reconstruct
the images. Finally, the reconstruction loss Limg

rec , Lfea
rec and the Content Consistency

Constraint (C2C) loss Lid, Lenv are calculated to ensure the completeness and inde-
pendence of the disentangled features.

The disentanglement framework mainly consists of two independent encoders
Ec and Ea, for extracting content and artifact features, respectively, a decoder D
for the reconstruction of the images, and a classifier C for face forgery detection.
Among them, we use the front and back parts of the backbone as the artifact
encoder Ea and the classifier C , and the artifact encoder Ea and the content
encoder Ec have the same structure, but the parameters are not shared.

Specifically, as shown in Figure 2, with pairwise input images Ia0
c0 , I

a1
c1 , where

a0, a1 and c0, c1 denotes the corresponding artifact and content features of the
image, respectively. It is worth noting that one of the images is real and the
other one is fake. We first use the content encoder Ec and the artifact encoder
Ea to get the content features c0, c1 and the artifact features a0, a1, and the
formula is as follow:

ci = Ec(I
ai
ci ), ai = Ea(I

ai
ci ), (1)

where i denotes the index of feature.

Self-Reconstruction. Then element-wise addition is applied to the content and
artifact features encoded from the same image to obtain the high-dimensional
latent representation features of the image, i.e., zai

ci = ai + ci. Next, zai
ci is fed

into the decoder D to reconstruct the corresponding original image Ĩai
ci , and the
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formula is as follow:

Ĩai
ci = D(zai

ci ). (2)

Cross-Reconstruction. Moreover, we cross-combine content and artifact
features from different images to obtain the high-dimensional latent represen-
tation features, i.e., zai

c1−i
= ai + c1−i. Also, zai

c1−i
is fed into the decoder D to

reconstruct the image Ĩai
c1−i

, and the formula is as follow:

Ĩai
c1−i

= D(zai
c1−i

). (3)

Reconstruction Loss. The decoder D should effectively reconstruct the origi-
nal image to ensure the completeness of the high-dimensional latent representa-
tion feature, so the image reconstruction loss is formulated as:

Limg
rec =

1∑
i=0

∥∥∥Iai
ci − Ĩai

ci

∥∥∥
1
. (4)

Image reconstruction loss ensures that the reconstructed image and the orig-
inal image are consistent at the pixel level. In addition, the encoded features of
the reconstructed image should still be consistent with the reconstructed fea-
tures, so we introduce a feature reconstruction loss:

Lfea
rec =

1∑
i=0

(
∥∥∥Ec(Ĩ

ai
ci )− ci

∥∥∥
1
+
∥∥∥Ea(Ĩ

ai
ci )− ai)

∥∥∥
1

+
∥∥∥Ec(Ĩ

ai
c1−i

)− c1−i

∥∥∥
1
+
∥∥∥Ea(Ĩ

ai
c1−i

)− ai)
∥∥∥
1
).

(5)

3.3 Enhanced Independence of Disentangled Features

Although reconstruction loss can guarantee the completeness of features for the
combination of content and artifact features. However, there are still two el-
ements that cannot be guaranteed: (i) Whether the encoders can selectively
disentangle features (i.e., whether the disentangled features contain the corre-
sponding information). (ii) Whether the disentangled features contain only the
corresponding information. We are keenly aware that the key to successful dis-
entangling lies in the establishment of these two conditions, which is proved by
subsequent ablation study (Section 4.3). Unfortunately, none of the previous re-
lated methods [51, 26, 33] have explored the independence of features in depth.
We propose a Content Consistency Constraint (C2C) and a Global Represen-
tation Contrastive Constraint (GRCC) to further enhance the independence of
disentangled features.
Content Consistency Constraint. In cross-reconstruction, content features
should determine the background and face ID information of the reconstructed
image. Specifically, the cross-reconstructed image Ĩ

a1−i
ci should have the same

content attributes as the origin image Iai
ci that encodes the content features ci.
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As we mentioned before, content features consist of background and face ID, so
the Content Consistency Constraint (C2C) can be formulated as:

Content(Ĩa1−i
ci ) = Content(Iai

ci ),

⇕

Identity(Ĩa1−i
ci ) = Identity(Iai

ci ),

Backgroud(Ĩa1−i
ci ) = Backgroud(Iai

ci ),

(6)

based on this prior condition, we adopt the identity preservation loss Lid and
the content perception loss Lbg to preserve the content attributes of the cross-
reconstructed images. It is formulated as:

Lid = 1− cos(ArcFace(Ĩa1−i
ci ),ArcFace(Iai

ci )),

Lbg =
∥∥∥VGG(Ĩa1−i

ci )−VGG(Iai
ci )

∥∥∥
1
,

(7)

where ArcFace(·) and VGG(·) represents a pretrained VGG network and a pre-
trained ArcFace network, respectively, cos(·, ·) represents the cosine similarity of
two vectors. Here VGG(·) is considered to extract high-level semantic features,
and since artifacts are mainly concentrated in low-level texture details [27, 53],
the extracted content features is pure and does not contain artifact information.
Global Representation Contrastive Constraint. Artifact features and con-
tent features should be two fundamentally distinct spaces. In other words, arti-
fact features and content features can be regarded as two different classes, and
the inter-classes feature distance should be much larger than the intra-class fea-
ture distance. Specifically, we regard the intra-class features as positive pairs and
inter-class features as negative pairs, and adopt the contrastive learning protocol
to further eliminate the possible overlap of content features and artifact features.
Inspired by [27], we take the Gram matrix of content and artifact features as a
global and distinctive representation:

G = (FT
i Fj)n×n =

F
T
1 F1 · · · FT

1 Fn

...
. . .

...
FT
n F1 · · · FT

n Fn

 , (8)

where F denotes the feature, and n denotes the channel of the feature. For feature
distance measurement, we adopt the cosine distance, where closer features render
larger scores. Finally, we take the advantage of the InfoNCE [34] to construct a
Global Representation Contrastive Constraint (GRCC) between the artifact and
content features:

Lc =− log[
exp(d(Ga0

,Ga1
))

exp(d(Ga0
,Ga1

)) +
∑1

i=0 exp(d(Gai
,Gc1−i

))
]

− log[
exp(d(Gc0 ,Gc1))

exp(d(Gc0 ,Gc1)) +
∑1

i=0 exp(d(Gai
,Gc1−i

))
],

(9)

where Gai
and Gci represent the flattened vector of the gram matrix of ai and

ci, respectively, and d(·, ·) represents the cosine similarity.
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3.4 Overall Loss

The final loss function of the training process is the weighted sum of the above
loss functions.

L = Lce + λ1Limg
rec + λ2Lfea

rec + λ3Lid + λ4Lbg + λ5Lc, (10)

where Lce denotes the cross entropy loss, λ1, λ2, λ3, λ4, λ5 are the weights for
balancing the loss.

4 Experiments

4.1 Experimental Setting

Datasets. To validate the effectiveness of our method, we choose the most
widely used benchmark FaceForensics++ (FF++) [38] for training. It contains
1 real sub-dataset and 4 fake sub-datasets, i.e., Deepfakes (DF) [14], Face2Face
(FF) [42], FaceSwap (FS) [30] and NeuralTextures (NT) [41]. Each sub-dataset
contains 1,000 videos, and we follow the official standard by using 720 videos for
training, 140 videos for validation, and 140 videos for testing, and we adopt the
LQ version by default and specify the version otherwise. Celeb-DF [23] uses 59
celebrity interview videos on YouTube as the original videos. In total, 590 real
videos and 5,639 DeepFakes videos are included.
Metrics. We apply the accuracy score (ACC), equal error rate (EER), and
the area under the receiver operating characteristic (ROC) Curve (AUC) as
our evaluation metrics. For a comprehensive evaluation of performance, we also
report the true detection rate (TDR) for a given false detection rate (FDR).
Implementation Details. For data preprocessing, we only resize the facial
images into a fixed size of 224 × 224. For training, we set the size of the mini-
batch to 128, and the ratio of real and fake images to 1 : 1. We use Adam [19] as
our optimizer with an initial learning rate of 0.001 and a half decay every 5000
iters. The maximum iters number is 30000. And we set λ1 to λ5 in Equation 10
as 1, 0.01, 1, 0.01 and 0.01. All the code is based on the PyTorch framework and
trained with NVIDIA GTX 1080Ti.

4.2 Evaluations

To evaluate our method comprehensively, in this section, we perform in-dataset,
cross-method and cross-dataset evaluation to demonstrate the generalizability
and robustness of our method.
In-Dataset Evaluation. In-Dataset evaluation reflects the ability of the net-
work to fit the distribution of the dataset, as shown in Table 1. In general, with
the help of our framework, the performance of both detectors and mainstream
networks has been improved in different degrees, which fully proves the effective-
ness and adaptability of our framework, Among them, our methods (ResNest-50
+ Ours) achieve the state of the art on Deepfakes and NeuralTextures. Notably,
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Table 1. In-Dataset evaluation (ACC (%)) on FF++ (LQ). We combine each forgery
and real dataset in pairs to construct four sub-datasets, and evaluate the correspond-
ing performance. AVG: the average performance of the four sub-datasets. Noting that
results for some methods are from [36]. After embedding into our framework, all de-
tectors achieve considerable performance gains and even outperform other methods.

Method DF FF FS NT AVG

Steg.Features [16] 67.00 48.00 49.00 56.00 55.00
LD-CNN [12] 75.00 56.00 51.00 62.00 61.00
C-Conv [5] 87.00 82.00 74.00 74.00 79.25
CP-CNN [37] 80.00 62.00 59.00 59.00 65.00
MesoNet [3] 90.00 83.00 83.00 75.00 82.75
F3-Net [36] 96.81 94.01 95.85 79.36 91.51

Gram-Net [27] 95.12 88.01 93.34 76.12 88.15
+ Ours 95.67 89.06 94.01 76.96 88.93

RFM [44] 95.42 91.24 93.60 79.83 90.02
+ Ours 95.92 92.27 93.97 80.14 90.58

ResNet-50 [18] 95.23 87.79 92.34 76.28 87.91
+ Ours 95.43 88.94 93.99 77.19 88.89

Xception [9] 95.36 91.94 93.55 78.32 89.79
+ Ours 96.50 93.62 94.76 79.02 90.98

ResNest-50 [49] 95.98 92.16 93.13 78.22 89.87
+ Ours 98.95 94.32 94.56 80.46 92.10

for Deepfakes, we outperform the F3-Net [36] and baseline by 2.14% and 2.97%
in terms of ACC score. Although our best performance is still slightly worse than
F3-Net on FaceSwap, it is understandable because our method does not pursue
a magical modification of the network architecture.

Cross-Method Evaluation. Forgery techniques are constantly iterating, and
we need to address not only existing forgery methods, but also the most cutting-
edge ones. Table 2 shows our method is superior to the baseline in most cases, but
the performance of both methods will drop greatly in cross-method evaluation,
which is inevitable, because the extremely strong feature extraction capability
of convolutional networks leads to the overfitting of detectors. Our method only
mitigates the degree of overfitting to a certain extent. but does not significantly
improve the generalization performance.

Cross-Dataset Evaluation. Due to the differences in raw data and experimen-
tal details, there can be huge gaps in the distribution between different datasets
corresponding to even the same method. As shown in Table 3, regardless of
the method, the performance drops significantly when testing on the Celeb-DF
dataset, which implies that the difference in the distribution of different datasets
for the same method does exist. With the assistance of our framework, the per-
formance of each backbone on FF++ is slightly improved, but the improvement
on Celeb-DF is significant. Specifically, our method (ResNest-50+Ours) has a
14.38% improvement on Celeb-DF, while the improvement on FF++-DF is only
2.97%. Furthermore, our method (ResNest-50+Ours) outperforms the state-of-
the-art results (Chen et al. [8]) by 4.12% in terms of AUC score. Among the
methods using Xception as the backbone, our method also surpasses others.
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Table 2. Cross-Method evaluation (AUC (%)) on FF++ (C40). We adopt Xception [9],
which is widely used in face forgery detection, as a baseline for comparison on FF++.
Specifically, we use one of the sub-datasets for training, and the rest for testing.

Train Set Method
Test Set (AUC(%))

DF FF FS NT AVG

DF
Xception 99.21 58.81 64.79 59.69 70.63
+ Ours 99.22 60.18 68.19 61.17 72.19

FF
Xception 66.39 95.40 56.58 57.59 68.99
+ Ours 67.13 96.07 61.36 59.98 71.14

FS
Xception 80.00 56.65 94.55 53.42 71.16
+ Ours 82.68 56.77 94.76 54.23 72.11

NT
Xception 69.94 67.88 57.59 86.72 70.53
+ Ours 68.39 65.40 58.34 87.89 70.01

Table 3. Cross-Dataset evaluation on Celeb-DF (AUC (%) ) by training on FF++-
DF (ACC (%)). Our method outperforms all the methods with the same backbone
(Xception) and achieves the best performance with the backbone of ResNest-50.

BackBone Method FF++-DF (Train) Celeb-DF (Test)

Xception F3-Net [36] 97.97 65.17
Efficient-B4 Zhao et al. [53] - 67.44
HRNet Face X-ray [31] - 74.76
Xception SPSL [25] 96.91 76.88
- Chen et al. [8] 98.84 78.26

ResNet-18
Gram-Net [27] 95.12 67.14
+ Ours 95.67 74.94

Xception
RFM [44] 95.42 67.21
+ Ours 95.92 74.44

ResNet-50
ResNet-50 [18] 95.23 66.84
+ Ours 95.43 74.71

Xception
Xception [9] 95.36 65.50
+ Ours 96.50 76.91

ResNest-50
ResNest-50 [49] 95.98 68.00
+ Ours 98.95 82.38

4.3 Ablation Study

We perform several ablations to better understand the contributions of each
component in our method, the experimental results and visualizations are shown
in Table 4 and Figure 3, respectively.

From the comparison of Variant A and Baseline, we can find that the per-
formance of face forgery detection does not increase but decreases (0.81%) by
simply introducing the disentanglement framework. Furthermore, we add Con-
tent Consistency Constraint (C2C) and Global Representation Contrastive Con-
straint (GRCC) separately, with 4.97% and 7.46% improvement in terms of
AUC, respectively, which proves the effectiveness of the enhanced independence
of disentangled features. While the performance increases by 11.80% after com-
bining these two, which indicates the two can play a mutually reinforcing role.
Overall, C2C and GRCC play a dominant role as the key core of our method.
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Table 4. Ablation study on the FF++-DF and Celeb-DF. “Basic” represents the basic
disentanglement framework.

Method Basic C2C GRCC FF++-DF Celeb-DF

Xception 95.36 65.50
Variant A ✓ 94.55 65.11
Variant B ✓ ✓ 95.73 70.08
Variant C ✓ ✓ 96.33 72.57
Variant D ✓ ✓ ✓ 96.50 76.91

Table 5. Results (∆AUC (%)) of image- and feature-level data augmentation study.

Method
Augmentation Dataset (∆AUC (%))

Erasing [55] H-Flip Mixup [50] FF++-DF Celeb-DF

Image ✓ -2.13 +0.98
Feature ✓ +0.34 +0.94

Image ✓ -0.10 +0.23
Feature ✓ +0.22 +3.62

Image ✓ -0.85 +3.01
Feature ✓ -0.07 +3.57

4.4 Augmentation Study of Disentangled Features

Our framework first disentangles content features and artifact features from
the images, and then uses the artifact features for subsequent detection. It is
natural to guess that compared to image-level data augmentation, directly per-
forming data augmentation on artifact features may achieve better performance.
To validate it, we select common data augmentation methods such as Random
Erasing [55], Horizontal Flip, and Mixup [50] to experiment, the details of the
augmentation are shown in Figure 4. It is worth noting that data augmentation
is not used in other experiments.

It can be seen from Table 5 that the performance improvement in the cross-
dataset evaluation is greater than in-dataset evaluation. Our explanation is that
in the in-dataset evaluation, the distributions of the train and test sets are close,
and data augmentation disrupts the consistency of the distribution of the train
and test set, resulting in little performance improvement or even reduction. For
cross-dataset evaluation, data augmentation can enhance the diversity of the
train set, and then pull the distribution between the train and test sets. In
addition, the performance improvement of data augmentation at the feature-level
is significantly better than that at the image-level, which implies the effectiveness
of our disentanglement framework.

4.5 Investigation of Intrinsic Content Bias

To investigate the impact of intrinsic content bias within the dataset on the
performance of face forgery detection, we cleverly construct two unbalanced
datasets based on the FF++ dataset, the Identity Unbalanced dataset and the
Backgroud Unbalanced dataset.
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Raw Content Artifact
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Content Artifact

+ GRCC

Cross

Basic + C2C

Cross

Fig. 3. Visualization of the ablation study, which illustrates the impact of C2C on
the reconstructed images and GRCC on the disentangled features, respectively.“Raw”
represents the raw image, and “Cross” represents the cross-reconstruction image.

Horizontal FlipRandom Erasing Mixup

Fig. 4. Visualization of the image- (1st row) and feature-level (2nd row) augmentation.

We conduct comparative experiments on these datasets, and the experimental
results are shown in Table 6. We can find that the performance on the ID and BG
unbalanced datasets suffers a huge drop, which indicates that the existence of the
intrinsic bias does interfere with the optimization of the detector. In contrast,
our framework can maintain a high performance even on the unbalanced dataset
by stripping the content features and thus eliminating the interference of content
bias. Furthermore, compared with the ID unbalanced dataset, the performance
degradation on the BG unbalanced dataset is more serious.

For a more intuitive understanding of the impact of content bias, we also
visualize the t-SNE [29] feature spaces of the Xception network on the ID un-
balanced dataset (Figure 5 (a)) and BG unbalanced dataset (Figure 5 (c)). We

Table 6. Comparison of our framework with baseline methods on the identity and
background unbalanced dataset.

Method
ID Unbalanced Dataset BG Unbalanced Dataset

ACC AUC EER TDR0.1 ACC AUC EER TDR0.1

Gram-Net [27] 89.85 96.49 10.14 89.70 79.84 87.83 20.19 66.10
+ Ours 94.80 99.48 3.619 98.90 94.00 98.93 5.764 96.70

RFM [44] 90.34 95.34 9.232 90.93 85.09 92.33 14.89 79.58
+ Ours 95.49 99.11 4.102 97.90 95.02 98.34 4.839 96.93

ResNet-50 [18] 89.61 96.46 10.35 89.30 80.88 91.29 17.17 72.30
+ Ours 95.39 99.54 3.571 99.00 94.46 98.76 5.524 97.20

Xception [9] 91.06 96.91 8.967 91.50 84.39 92.42 17.17 78.10
+ Ours 95.85 99.32 3.434 99.10 95.14 98.71 4.762 97.00

ResNest-50 [49] 89.89 97.54 8.507 92.70 81.28 93.68 14.34 79.60
+ Ours 95.58 99.61 3.190 98.90 94.56 98.48 5.479 96.90
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(b) Construction process of unbalanced datasets (c) t-SNE of BG unbalanced dataset(a) t-SNE of ID unbalanced dataset

Fig. 5. (b) The construction process of unbalanced datasets. (a)(c) t-SNE feature vi-
sualization of the Xception network on the ID and BG unbalanced dataset.

Real Deepfakes Face2Face FaceSwap NeuralTextures

Fig. 6. Visualization of forgery mask (first row), Xception’s (second row) and ours
(third row) Grad-CAM on five sub-datasets of FF++. The activation region of our
method is comprehensive and almost consistent with the forgery mask.

can observe that some samples with similar content information tend to cluster
together, in other words, the distance between some samples with similar con-
tent information is much smaller than the distance between samples with similar
forgery methods, which reveals that the content bias induce the detector to use
content information for discrimination instead of artifact traces.

4.6 Visualization

To more intuitively demonstrate the effectiveness of our method, we visualize the
Grad-CAM [39] of the baseline and our method, respectively, and the forgery
mask, as shown in Figure 6. Grad-CAM shows that the baseline is prone to
overfitting to small local regions or focusing on content noise outside the forgery
region. In contrast, the activation region of our method is comprehensive and
almost consistent with the forgery mask. Such visualization results also explain
the motivation of this paper: without additional constraints, the detector has
difficulty in mining suspicious artifact regions thorough weak supervision of la-
bels only, and easily falls into content bias, which leads to overfitting or even
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(b) Visualization of images and features(a) t-SNE of artifact features (c) t-SNE of content features

Fig. 7. (b) Visualization of the image (first row), traditional detector’s (Xception) fea-
tures (second row), ours disentangled artifact (third row) and content features (fourth
row). (a)(c) t-SNE visualization of artifact features and content features.

misleading the direction of optimization. Instead, our goal is to remove the in-
terference of content bias by an pre-disentanglement framework, and guide the
detector to mine suspicious artifact trace.

As shown in the Figure 7 (b), traditional methods seek to allocate more
attention to the face region, which improve the fitting ability but also exacer-
bated the overfitting of content bias within the dataset. Instead, we separate
content features to eliminate misleading content information, guide the detector
to pay attention to suspicious artifact traces, and strengthen the generalization
capability fundamentally. Furthermore, Figure 7 (a)(c) demonstrate that the
disentangled artifact features are discriminative for forgery detection, while the
content features do not, which also validates the validity of our motives.

5 Conclusion

In this paper, we observe that detectors may no longer mine hard-to-capture
artifact traces, and instead overfit certain content information, thus leading to
the failure of generalization, which brings a novel perspective for face forgery de-
tection. Motivated by this key observation, we design an easily embeddable dis-
entanglement framework for content information removal, and further propose a
Content Consistency Constraint (C2C) and a Global Representation Contrastive
Constraint (GRCC) to enhance the independence of disentangled features. Fur-
thermore, we cleverly construct two unbalanced datasets to investigate the im-
pact of the content bias. Extensive visualizations and experiments demonstrate
our framework can not only ignore the interference of content bias but also guide
the detector to mine suspicious artifact traces and achieve competitive perfor-
mance in face forgery detection.
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