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1 More details of the Attribution88 benchmark

1.1 Training GAN models

To compose the Attribution88 benchmark, we need to train 77 GAN models for 7
GAN architectures and 11 semantics. Tab. 1 shows the source repositories that
we employed to train those GAN models. We use the recommended settings.
Specifically, Stylegan3 [7] has configuration stylegan3-t, batch size 32, and 20M
training iterations. Stylegan2 [9] has configuration config-f, batch size 32, and
10M training iterations. Stylegan [8] settings are the same as Stylegan2 except
using configuration config-a. Progan [6] has batch size 32 and 12M training iter-
ations. Cramergan [2] has a g-resnet5 backbone, 256 dof-dim, gradient penalty
of 10.0 and 150k training iterations. MMDgan [3] also has a g-resnet5 backbone,
16 dof-dim, gradient penalty of 1.0 and 150k training iterations. SNgan [11] has
resnet backbone, batch size 32, hinge loss, and 100k training iterations. To avoid
mode collapse, we checkpoint regularly and manually examine the quality and
diversity of the output sampled images.

Despite our training efforts, several models are hard to train. We therefore
use publicly released models if available. Specifically, there are pretrained Progan
[6] models4 for all the 10 LSUN semantics, which are used in Attribution88. For
CelebA face where there does not exist an official pretrained Progan model,
we use an unofficial version on tensor-hub5. For computational efficiency and
eco-friendly validation, all synthesized images are downscaled to 128×128 if its
public-release corresponding models were trained for higher resolutions. The
diversity in our GAN model collection makes Attribution88 more practical and
challenging. Example images are shown in Fig. 1.

4 https://drive.google.com/drive/folders/15hvzxt XxuokSmj0uO4xxMTMWVc0cIMU
5 https://tfhub.dev/google/progan-128/1
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Fig. 1. Image examples of each source/semantic categories in Attribution88 bench-
mark.

1.2 Data cleaning

We describe in Sec.3 of the main paper our cleaning procedure for Attribution88.
The goal is to remove images with artifacts without reducing the level of diversity
in the generated data. Removing images with artifacts is achieved by selecting
the synthesized images that are perceptually closest to a real one, while diversity
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Table 1. Code repositories used in our GAN model training for Attribution88 bench-
mark

Architecture Codebase

Stylegan3 https://github.com/NVlabs/stylegan3
Stylegan2, Stylegan https://github.com/NVlabs/stylegan2
Progan https://github.com/tkarras/progressive growing of gans
Cramergan, MMDgan https://github.com/mbinkowski/MMD-GAN
SNgan https://github.com/pfnet-research/sngan projection

(a) Random (b) Yu et al . [13] (c) Proposed

Fig. 2. Data cleaning examples for Stylegan2 model source, LSUN Bedroom semantics.
(a) random images without cleaning - high diversity but often contain artifacts; (b)
data cleaning using Yu et al . method - high quality but lack diversity; (c) proposed
method - balancing diversity and quality.

is maintained via clustering. We note that Yu et al . [13] also performed data
cleaning, however their method sacrifices diversity for quality, leading to many
similar images. Fig. 2 compares our data cleaning method with Yu et al . on
Stylegan2 bedroom images. It is worth noting that, although models from the
Stylegan family [8, 9, 7] have an internal truncation mechanism to enhance the
overall quality of the generated images, artifacts are still present in some of
them (Fig. 2a). Our cleaning method filters out the images with artifacts at a
neglectable cost of only 1.5 degradation in FID, as opposed to 8.8x degradation
in Yu et al . approach.

1.3 Perturbations

Fig. 3 shows the effect of 19 ImageNet-C perturbations [5] on an example syn-
thesized image. These transformations further complicate the attribution task as
it deteriorates fine-level features on the image. Fig. 4 illustrates the mean pixel
and mean spectrum of several sources and semantics, before and after random
perturbations. Unique GAN patterns are visually observable on the mean spec-
trum of the clean images, which are successfully exploited for image attribution
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Fig. 3. Effects of different perturbations on a Stylegan3 CelebA generated image. All
perturbations have strength 3 (out of 5). Best view in color when zoom in.

in DCT-CNN [4]. However, random perturbations make it difficult to recognize
and attribute these patterns to the GAN architectures.

CelebA versus the other semantics. Fig. 4 also shows the difference
between CelebA faces and the other semantics in Attribution88 benchmark. The
visible mean pixel images regardless of generator sources demonstrate that face
images are more aligned than the other semantic objects. This demonstrates the
needs of validating an image attribution algorithm (and even an image synthesis
algorithm) on multiple semantic sets, which is a design feature of Attribution88.
The inclusion of CelebA along with other LSUN semantics also adds diversity
to our benchmark.

2 Baseline implementation

Tab. 2 shows the code repositories that we employed to train and evaluate the
baseline models. We follow the recommended settings and only change the data
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Fig. 4.Mean images and spectrums of several generator classes and semantics. For each
inset, top: mean image before (left) and after (right) random perturbation, bottom:
corresponding mean of DCT images.

Table 2. Code repositories of the baseline methods reported in Tab.1 of the main
paper.

Baseline Codebase

Yu et al . [13], Eigen Face [12] https://github.com/ningyu1991/GANFingerprints
DCT-CNN [4], PRNU [10] https://github.com/RUB-SysSec/GANDCTAnalysis
Reverse Eng. [1] https://github.com/vishal3477/Reverse Engineering GMs

augmentation strategy (i.e. ImageNet-C [5]) for fair comparisons with our pro-
posed method. For Yu et al . [13] approach, we also re-implement their method
using Pytorch instead of Tensorflow and add an extra 256-D FC layer and report
the improved performance in Tab.1 of the main paper. For DCT-CNN [4], we ob-
serve that the training of their recommended architecture, a 1-layer multinomial
regression model, collapses due to the complexity of Attribution88 benchmark.
We therefore use a Resnet50 backbone (same as RepMix) instead.

3 Further results

3.1 More backbones

Tab. 3 shows performance of RepMix on more advanced backbones, Resnet101
and Densenet121, on the ablated set (c.f. Tab.3 of the main paper). We achieve
slightly better performance at the cost of more expensive models.

3.2 Beta distribution in the RepMix layer

Fig. 5 shows our experiment with the beta distribution in RepMix layer on the
ablated set of Attribution88 benchmark. RepMix is robust to β value of 0.25
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Table 3. RepMix with Resnet101 and Densenet121 backbones on the ablated set.

Backbone Detection Acc. ⇑ Attribution Acc. ⇑ Attribution NMI ⇑

Resnet101 0.9523 0.7430 0.5546
Densenet121 0.9504 0.7474 0.5673

Fig. 5. Effects of beta on RepMix. Dash lines refer to the no-mixing baselines.

and above, performing favorably even at uniform distribution (β = 1.0). We
argue that the RepMix layer is positioned close to the loss layer in our network,
resulting in a stronger regularization and less dependence on the value of the
mixing ratio.

3.3 Confusion matrix

Fig. 6 shows in details the contribution of each source class’s performance to-
wards the overall attribution accuracy of RepMix and other baselines. It is con-
sistent across all deep-learning methods that attribution performance is high
for Real, Progan and SNgan, probably because of the unique data distribution
(Real) or distinct GAN architecture (Progan, SNgan). The source of confusion
mainly comes from attributing images from the Stylegan family and Cramer-
gan/MMDgan because of the similarities in design of these GAN architectures.
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Fig. 6. Confusion matrices of RepMix and all baselines on Attribution88.
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