
Dual-Stream Knowledge-Preserving Hashing for
Unsupervised Video Retrieval
(Supplementary Material)

Pandeng Li1, Hongtao Xie1, Jiannan Ge1, Lei Zhang2, Shaobo Min3, and
Yongdong Zhang1

1 University of Science and Technology of China
2 Kuaishou Technology

3 Tencent Data Platform
{lpd,gejn}@mail.ustc.edu.cn, {htxie,zhyd73}@ustc.edu.cn,

zhanglei06@kuaishou.com, bobmin@tencent.com

This supplementary material provides more details of the proposed Dual-
stream Knowledge-Preserving Hashing (DKPH) framework: (1) Time efficiency
of DKPH; (2) More experiment results; (3) Pseudo code of DKPH.

1 Time Efficiency of DKPH

Training time. We train our teacher-student model from scratch on the Py-
torch framework [4] with a single TITAN X GPU with 12GB memory. Table 1
shows the training time of DKPH. Compared to BTH [3], DKPH reduces train-
ing time by about 1% ∼ 8% on FCVID [2], ActivityNet [1] and YFCC [5]. Since
DKPH has a dual-stream structure to deal with the task heterogeneity problem,
binary codes can focus on learning semantic knowledge. Therefore, DKPH con-
verges faster than BTH, resulting in a shorter training time. For example, DKPH
achieves optimal results at 48 epoch on FCVID, while BTH is at 55 epoch.
Testing encoding time. The time cost to generate binary codes for query
videos is crucial to evaluate the practical retrieval system. Table 1 also shows
the encoding efficiency of BTH and DKPH. Because the hash layer and the
temporal layer in the dual-stream structure are designed in parallel, which has
less impact on the encoding time.

2 More Experiment Results

More cross-dataset evaluation comparisons. As the essence of DKPH is
to focus on capturing the semantic-dependent discriminative similarity informa-
tion, DKPH could provide robust binary codes. To demonstrate this, we inves-
tigate the generalization of DKPH for cross-dataset retrieval. We train DKPH
and BTH [3] on FCVID and test on YFCC in Table 2, which shows MAP@k
results for cross-dataset retrieval at different bits. DKPH improves MAP@k per-
formances for all bits. These gains show that the dual-stream structure can
additionally provide beneficial information for hashing learning, and establish

2 Li et al.

Table 1. The training and testing encoding time for BTH and DKPH at
16 bits on FCVID, ActivityNet and YFCC.

Method
Training time Testing encoding time

FCVID ActivityNet YFCC FCVID ActivityNet YFCC

BTH [3] 5018.84s 1894.22s 75021.11s 0.294ms 0.351ms 0.309ms

DKPH 4860.41s 1738.59s 74273.74s 0.296ms 0.353ms 0.309ms

Table 2. Cross-dataset MAP@k results when training on FCVID and test on YFCC.

Method
16 bits 32 bits 64 bits

k=5 k=20 k=60 k=100 k=5 k=20 k=60 k=100 k=5 k=20 k=60 k=100

BTH [3] 0.151 0.098 0.073 0.065 0.298 0.123 0.099 0.081 0.331 0.134 0.108 0.101

DKPH 0.189 0.109 0.089 0.077 0.312 0.153 0.104 0.089 0.342 0.171 0.119 0.106

the importance of information decomposition in video hashing. Binary codes
focus on semantic concepts rather than the underlying reconstruction informa-
tion, ensuring good transferability and generalization of DKPH when retrieving
unknown datasets.
Iterative training. We try to update features of trained ΩS to construct the
Gaussian-adaptive graph Â, and train again (DKPH-I). However, DKPH-I does
not bring significant improvement in Table 3. Considering that iterative training
brings more consumption and less benefit, we finally do not adopt this strategy.
Effects of loss weights. We further study the influence of loss weights γ1 and
γ2 . Fig 1 shows the effect of γ1 on FCVID dataset. We fix γ2 to 0.9 and evaluate
the MAP@k by varying γ1 between 0.05 and 0.17. The performance shows that
our model performs relatively better with γ1 between 0.08 and 0.14.

Fig 2 shows the effect of γ2 on FCVID dataset. We fix γ1 to 0.11 and evalu-
ate the MAP@k by varying γ2 between 0.5 and 1.3. Experimental results show
that our DKPH is quite robust to this parameter. For values from 0.5 to 1.3,
the trained models consistently achieve promising results. We attribute these
achievements to such a guess that Ltsim and Lbsim are complementary losses.
Lbsim acts on binary representations directly, while Ltsim focuses on how to align
the teacher-student visual embeddings to learn the semantic knowledge of the
teacher model. Ltsim only implicitly affects binary codes, so adjustments to the
weight γ2 have the slight effect on the results.
Qualitative results. Top-5 retrieval results are illustrated in Fig. 3. It is dif-
ficult for SSVH to distinguish different semantics, our model can still search
videos in the same class, which proves the discrimination of binary codes with
the knowledge preservation strategy.

3 Pseudo Code of DKPH

Pseudo code of the student model. Algorithm 1 provides the pseudo-code
of the forward process of the student model in a PyTorch-like style. The student

Dual-Stream Knowledge-Preserving Hashing 3

Table 3. Iterative training on FCVID.

Method
16 bits 32 bits 64 bits

k=5 k=20 k=60 k=100 k=5 k=20 k=60 k=100 k=5 k=20 k=60 k=100

DKPH 0.297 0.174 0.120 0.097 0.441 0.275 0.203 0.171 0.494 0.331 0.255 0.228

DKPH-I 0.293 0.172 0.121 0.098 0.439 0.277 0.205 0.172 0.491 0.332 0.257 0.229

0

0.1

0.2

0.3

0.4

5 10 20 40 60 80 100

16 bits

M
AP

k

M
AP

0.1

0.2

0.3

0.4

0.5

5 10 20 40 60 80 100

32 bits

k

0.1

0.2

0.3

0.4

0.5

5 10 20 40 60 80 100

64 bits

k

M
AP

0.1

0.2

0.3

0.4

16 bits

0.05 0.08 0.11 0.14 0.17

Fig. 1. The MAP@k scores with various configurations about the weight γ1 of binary
structure similarity loss Lbsim on FCVID.

model designs a simple but effective dual-stream structure, containing a temporal
layer and a hash layer. The goal of dual-stream structure: the temporal layer tries
to capture reconstruction-dependent information by learning dynamic frame-
level features, while the hash layer focuses on the semantic-dependent part from
a global video-level perspective.
Pseudo code of the training process. The step-by-step training description
of the proposed DKPH is summarized in Algorithm 2.

4 Li et al.

0

0.1

0.2

0.3

0.4

5 10 20 40 60 80 100

16 bits
M
AP

k

M
AP

0.1

0.2

0.3

0.4

0.5

5 10 20 40 60 80 100

32 bits

k

0.1

0.2

0.3

0.4

0.5

5 10 20 40 60 80 100

64 bits

k

M
AP

0.1

0.2

0.3

0.4

16 bits

0.5 0.7 0.9 1.1 1.3

Fig. 2. The MAP@k scores with various configurations about the weight γ2 of visual
embedding similarity loss Ltsim on FCVID.

Query SSVH Ours

FC
VI
D

Ac
ti
vit
yN

et

h5_name_file['names'][24]
Out[25]: b'-0qzYzJ6DYs'

h5_name_file['names'][28376]
Out[26]: b'bI55BN2d4Ns'

h5_name_file['names'][16175]
Out[27]: b'KYlBvIndwHw'

h5_name_file['names'][23315]
Out[28]: b'UwC9K-QB2k0'

h5_name_file['names'][27608]
Out[29]: b'aHUqiS3gh4M'

h5_name_file['names'][42462]
Out[30]: b'vDXJeHOG2ig'

h5_name_file['names'][29092]
Out[31]: b'cF1yE2oMBfc'

h5_name_file['names'][3417]
Out[32]: b'3TFRi41X1cA'

h5_name_file['names'][4658]
Out[33]: b'51w2TtgLhzE'

h5_name_file['names'][5755]
Out[34]: b'6SVS_jGallc'

h5_name_file['names'][5155]
Out[35]: b'5fO8FZ6VjWc'

h5_name_file['names'][15461]
Out[36]: b'J_fSXfqsFBA'

h5_name_file['names'][20860]
Out[37]: b'RELnds9LzkI'

Lightning

Inside
airplane

Playing
guitar

Playing
accordion

Fig. 3. Top-5 retrieval results on FCVID and ActivityNet at 16 bits. Positives are
highlighted with green, while negatives are red.

Algorithm 1. Pseudo code of the student model in a PyTorch-like style.

cat: concatenation

def forward(self, x): # input frame features: B × M × D

transformer encoder

t = self.transformer(x)# visual embeddings : B × M × d

temporal layer

l = self.temporal(t)# latent features : B × M × K

hash layer

hid b = self.hash(t.reshape([B, M × d]))# real-valued codes: B × K

binarization

b = self.binary tanh(hid b)# binary codes: B × K

decoder

x̃ = self.decoder(cat(torch.unsqueeze(b,dim=1).repeat(1,M,1),l))#

decoder features : B × M × D

return b, x̃, t

Dual-Stream Knowledge-Preserving Hashing 5

Algorithm 2. The Training Process of DKPH.

Input: Unlabeled video points V = {vi}Ni=1 ∈ RN×M×D; Teacher epochs ΓT ; Student
epochs ΓS ; Batch size B; Teacher code length KT ; Student code length K;

Output: The trained student network ΩS ;
1: Initialize: Randomly initialize the teacher model ΩT and the student model ΩS ;
2: Warm up:
3: for i in 0, . . . , ΓT do
4: for j in 0, . . . ,

⌊
N
B

⌋
do

5: Randomly mask batch video points VB
j ;

6: Visual embeddings Tj ∈ RB×M×d , Binary codes Bj ∈ {−1, 1}B×M×KT

, De-
coder video points Ṽj ∈ RB×M×D ← ΩT

(
VB
j

)
;

7: Calculate Lrecon with VB
j , Ṽj ;

8: Update the teacher model parameters by the backpropagation algorithm;
9: end for
10: end for
11: Graph construction:
12: Calculate teacher visual embeddings T ∈ RN×M×d with the trained ΩT ;
13: Clustering center C ∈ RNc×d ← K-means clustering for video-level teacher visual

embeddings T̄ ∈ RN×d;
14: Calculate 1-NN nearest center C1 ∈ RN×d of corresponding video-level visual em-

bedding T̄ with C ;
15: Calculate the approximate graph adjacency A ∈ RN×N with T̄ , C;
16: Calculate the Gaussian-adaptive graph adjacency matrix Â ∈ {−1, 0, 1}N×N ;
17: Knowledge preservation:
18: for i in 0, . . . , ΓS do
19: for j in 0, . . . ,

⌊
N
B

⌋
do

20: Equal sampling positive and negative points VB
j
′ for VB

j with Â;

21: Randomly mask batch video points VB
j , VB

j
′ ;

22: Visual embeddings Tj ∈ RB×M×d , Binary codes Bj ∈ {−1, 1}B×K , Decoder
video points Ṽj ∈ RB×M×D ← ΩS

(
VB
j

)
;

23: Visual embeddings Tj′ ∈ RB×M×d , Binary codes Bj
′ ∈ {−1, 1}B×K , Decoder

video points Ṽj′ ∈ RB×M×D ← ΩS
(
VB
j
′

)
;

24: Calculate Lrecon with VB
j , Ṽj ,VB

j
′ , Ṽj′ ;

25: Calculate Lbsim with Bj ,Bj
′ , Â;

26: Calculate Ltsim with Tj , Tj′ , Â, C1;
27: Update the student model parameters by the backpropagation algorithm;
28: end for
29: end for

6 Li et al.

References

1. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: A
large-scale video benchmark for human activity understanding. In: CVPR (2015)

2. Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class
relationships in video categorization with regularized deep neural networks. TPAMI
(2017)

3. Li, S., Li, X., Lu, J., Zhou, J.: Self-supervised video hashing via bidirectional trans-
formers. In: CVPR (2021)

4. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. NeurIPS (2019)

5. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth,
D., Li, L.J.: The new data and new challenges in multimedia research. arXiv preprint
arXiv:1503.01817 (2015)

