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Abstract. Finding dense semantic correspondence is a fundamental
problem in computer vision, which remains challenging in complex scenes
due to background clutter, extreme intra-class variation, and a severe
lack of ground truth. In this paper, we aim to address the challenge
of label sparsity in semantic correspondence by enriching supervision
signals from sparse keypoint annotations. To this end, we first propose
a teacher-student learning paradigm for generating dense pseudo-labels
and then develop two novel strategies for denoising pseudo-labels. In
particular, we use spatial priors around the sparse annotations to sup-
press the noisy pseudo-labels. In addition, we introduce a loss-driven
dynamic label selection strategy for label denoising. We instantiate our
paradigm with two variants of learning strategies: a single offline teacher
setting, and mutual online teachers setting. Our approach achieves no-
table improvements on three challenging benchmarks for semantic corre-
spondence and establishes the new state-of-the-art. Project page: https:
//shuaiyihuang.github.io/publications/SCorrSAN.
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1 Introduction

Estimating pixel-wise correspondence between images is a fundamental task in
computer vision applications. Correspondences like stereo disparities [47] and op-
tical flow [20] are widely used for applications such as surface reconstruction and
video analysis [3,8]. Recently, such instance-level dense correspondence has been
generalized to semantic correspondence, which, given a pair of images, aligns the
object instance from the first image to the one of the same category in the sec-
ond image [44,45,28,22,40,42,24,52]. It has attracted growing attention due to its
practical use in segmentation, style-transfer, and image editing [30,5,33,7,26,18].
However, background clutter, intra-class variations, viewpoint changes, and par-
ticularly the severe lack of annotations make it an extremely challenging task.

https://shuaiyihuang.github.io/publications/SCorrSAN
https://shuaiyihuang.github.io/publications/SCorrSAN
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Fig. 1. Motivation. Image pairs from SPair-71k dataset [41] training split show sparse
annotations for semantic correspondence.

Due to the high cost of dense annotation, the semantic correspondence task
only provides sparse keypoint annotations in the supervised setting [42,35,36,31]
as shown in Fig. 1. In this paper, we are motivated by how to better utilize the
limited supervision. Specifically, we explore the techniques to generate pseudo-
labels. However, due to the inevitably noisy effect of pseudo-labels, filtering
out noisy pseudo-labels remains a challenging problem. Our key observation is
that sparse keypoint annotations and their neighborhood encode rich semantic
information. By utilizing this spatial prior, one can seek reliable pseudo-labels
that are more likely in the foreground region of interest.

To this end, we propose a novel teacher-student framework to cope with
label sparsity. The teacher model is trained with sparse keypoint annotations to
generate dense pseudo-labels. To improve pseudo-labels quality, we propose (a)
using the sparse annotations as spatial prior to suppress the noisy pseudo-labels,
and (b) loss-driven dynamic label selection. To train the models, we propose two
variants of our strategy: (1) a single offline teacher with an online student, and (2)
two online teachers that learn from each other. Both variants lead to substantial
performance improvements over the state-of-the-art.

We instantiate our novel learning strategy based on our proposed simple,
yet effective network architecture for semantic correspondence. The proposed
network comprises three modules: (a) a feature extractor equipped with our
efficient spatial context encoder, (b) a parameter-free correlation map module,
and (c) a flow estimator with our designed high-resolution loss.

The contributions are summarized as follows:

– We propose a simple, yet effective model for semantic correspondence with-
out any transformer or 4D-conv for correlation refinement. The key ingredi-
ents are an efficient spatial context encoder and a high-resolution loss.

– We introduce a novel teacher-student learning paradigm to enrich the su-
pervision guidance when only sparse annotations are available. Two key
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techniques are a novel spatial-prior based label filtering and a loss-driven
dynamic label selection strategy for high-quality pseudo-label generation.

– Our novel learning strategy is simple to implement, and achieves state-of-
the-art results with good generalization performance on three semantic cor-
respondence benchmarks, demonstrating the effectiveness of our method.

2 Related Work

2.1 Semantic Correspondence

Conventional approaches for semantic correspondence mostly employ hand-crafted
features together with geometric models [37,51,49]. These methods establish cor-
respondences across images via energy minimization. SIFT Flow [37] pioneers
the idea of finding correspondences across similar scenes with SIFT descriptors.
Ham et al. [10] utilize object proposals as the matching primitives and establish
correspondence via HOG descriptors. Those methods often have difficulty deal-
ing with background clutter, intra-class variations, and large viewpoint changes
due to the lack of semantics in features.

Recently, deep CNN-based methods have been widely used in semantic cor-
respondences due to their powerful representations. Early methods formulate
semantic correspondence as a geometric alignment problem, with a major focus
on developing robust geometric models [19,44,27]. Rocco et al. [44,45] propose
a two-stage CNN architecture for regressing image-level transformation param-
eters, while other efforts regress local translation fields [27,26,29]. More recent
works tend to formulate semantic correspondence as a pixel-wise matching prob-
lem and cast it as a classification problem. Among these works, there are tech-
niques focusing on developing powerful feature representations [22,40,42], corre-
lation map filtering with 4D/6D-conv or transformers [35,38,6,39,18], effective
correspondence readout [32], and different levels of supervision [36,21,53]. How-
ever, none of these aforementioned methods have explicitly approached the task
of dense semantic correspondence from the perspective of sparse annotations.

2.2 Teacher-Student Learning

Teacher-student framework has been widely used in semi-supervised learning
(SSL) [48,54,50,34,13], where the predictions of the teacher model on unlabeled
samples serve as pseudo-labels to guide the student model. Teacher-student
framework also plays an important role in knowledge distillation [17,4,57,16,60],
where knowledge from a larger teacher model can be transferred into a smaller
student model without loss of validity. Recently, Xin et al. [36] extend teacher-
student to semantic correspondence, where they distill knowledge learned from
a probabilistic teacher model on synthetic data to a static student model with
unlabeled real image pairs. In contrast, we directly learn from real image pairs
labeled with sparse keypoints, and focus on addressing the label sparsity chal-
lenge via Siamese teacher-student network design [2]. Note that we tailor teacher-
student learning specifically for the dense prediction task of semantic correspon-
dence, where we conduct pixel-level semi-supervised learning within an image
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Fig. 2. Model overview. (a) Illustration of our network. Our network comprises three
main modules, including an efficient spatial context encoder, a correlation module, and
a flow estimator. (b) Comparison between our proposed efficient spatial context and
the full spatial context. Please refer Sec. 3 for more details. Best viewed in color.

and generate pseudo-labels for unlabeled pixels, while most existing work focus
on image-level semi-supervised learning.

3 Model Architecture

Semantic correspondence establishes dense correspondences between a source
image Ia and a target image Ib. We adopt a typical CNN-based method which
computes a correlation map between the convolution features of two images,
based on which a dense flow field is predicted as the final output. We additionally
encode spatial context efficiently to compute high-quality correlation map and
develop a novel teacher-student learning strategy to cope with label sparsity.

This section introduces our simple and powerful semantic correspondence
framework. As depicted in Fig. 2, our framework comprises of three main mod-
ules: (1) a sparse spatial context feature extractor that encodes context informa-
tion efficiently (Sec. 3.1), (2) a correlation operator to compute the correlation
map between two convolution features (Sec. 3.2), and (3) a flow estimation op-
erator with high-resolution loss (Sec. 3.3).

3.1 Efficient Spatial Context Encoder

Taking the conv features of the image pairs as the input, the first component
of our network is an efficient spatial context encoder that incorporates spatial
context into conv features. Recent methods adopt the self-similarity based de-
scriptor to encode spatial context [22,35]. However, the time complexity of the
self-similarity grows quadratically with respect to the kernel size of the self-
similarity descriptor due to dense sampling patterns they used [22,35]. Inspired
by the recent success of sparse attention on reducing the computational cost of
non-local operation [23,58,14,59], we propose a spatial context encoder based
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on sparse sampling patterns, which efficiently encodes context information and
reduces the time complexity from quadratic to linear.

As shown in Fig. 2(b), at location (i, j), its spatial context descriptor s(i,j) ∈
R4K is a self-similarity vector, where K is the self-similarity operator kernel size.
It is computed between its own feature vector z(i,j) ∈ Rdz and its 4K neighboring
feature vectors, where the neighbors are in its criss-cross and diagonal directions
in an fixed ordered. In contrast to dense sampling patterns [22,35], our sparse
sampling patterns reduce the time and space complexity for computing spatial
descriptors from O(K2) to O(K).

To combine spatial context and conv features, we employ a simple fusion
step to generate the final context-aware semantic feature map G following [22].
Concretely, we concatenate z(i,j) and s(i,j) and feed the result into a linear

transformation with parameter W ∈ R(dz+4K)×dg followed by a ReLU opera-
tion, resulting in a context-aware semantic feature vector g(i,j) ∈ Rdg . We add

subscripts to represent the context-aware semantic feature mapGa ∈ Rdg×ha×wa

and Gb ∈ Rdg×hb×wb for the image Ia and Ib, resp., where hb, wb (resp. ha, wa)
is the spatial size of Gb (resp. Ga).

3.2 Correlation Map Computation

We compute a 4D correlation map from the context-aware semantic feature maps
Ga, Gb and filter it with the mutual nearest neighbor module [46]. We denote
the resulting 4D correlation map as C ∈ Rha×wa×hb×wb .

We propose to learn a high-resolution correlation map for high-quality dense
matching in contrast to learning correspondence in stride16 [22,45]. We upsample
the correlation map C (4 times) instead of upsampling the feature maps for
memory efficiency. We denote the resulting upsampled correlation map as

C = U(C), C ∈ RHa×Wa×Hb×Wb , (1)

where Ha, Wa, Hb, and Wb are the upsampled spatial sizes, U is the upsample
operation. Note that we achieve high performance with single layer feature, while
DHPF [42] requires multi-layer features with higher complexity.

3.3 Flow formation and High-resolution loss

To obtain differentiable flow, we adopt the kernel soft-argmax operator [32] to

transform the upsampled correlation map C into dense semantic flow f̂ as below:

f̂ = S(C), f̂ ∈ R2×Hb×Wb (2)

where S is the kernel soft-argmax operator without any learnable parameters, f̂
is the predicted semantic flow in the direction of the target to source.

During training, as we only have sparse keypoint labels, the ground-truth
flow fgt ∈ R2×Hb×Wb have valid values only at labeled positions. We use a sparse
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Fig. 3. Sparse Label Densification with Teacher-Student Learning. (a) Our
Teacher-Student Learning Pipeline. Solid lines stand for Single Offline Teacher, with
additional dashed lines standing for Mutual Online Teacher. (b) Illustration of Label
Mask Dilation. Please refer to Sec. 4 for more details. Best viewed in color.

binary label mask M ∈ RHb×Wb to indicate valid positions with ground-truth
labels as below:

M(p) =

{
1 if p is labeled,
0 otherwise,

(3)

where p is the position index in fgt.
Given M, the objective is then defined as the L2 norm between the predicted

flow and the ground-truth flow at labeled subpixel positions:

Lgt(p) = ∥f̂(p)− fgt(p)∥2 ·M(p) (4)

where Lgt(p) is the ground-truth loss at position p. It is worth noting that
our network does not involve any 4D-conv or transformer for correlation re-
finement [6,22], but as shown later it achieves high performance thanks to our
efficient spatial context encoder and high-resolution design.

4 Learning with Sparse Annotations

While our network design enables us to encode spatial context efficiently and uti-
lize high-resolution correlation maps, the sparsely-annotated keypoint pairs (8 on
average on PF-PASCAL [10]) greatly hinder the learning of the dense matching
model. We address this with a novel teacher-student learning framework which
we will elaborate below.
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Our goal is to enrich the supervision when only sparse annotations are pro-
vided, as shown in Fig. 3. We first densify the sparse labels with a teacher-student
paradigm (Sec. 4.1). Then we introduce two novel techniques to denoise the gen-
erated pseudo-labels (Sec. 4.2): (a) leveraging spatial-priors and (b) loss-driven
dynamic label selection. Finally, we investigate two variants of the proposed
learning paradigm (Sec. 4.3).

4.1 Sparse Label Densification via Teacher-Student Learning

To enrich the sparse supervision signals, we generate dense pseudo-labels for
unlabeled region via a teacher-student paradigm, which consists of a student
model Fs and a teacher model Ft. The teacher model Ft trained with sparse
annotations generates dense flows f̂t, providing pseudo-labels fpseudo

s for the
student model Fs. Formally,

fpseudo
s = Ft(Ia, Ib), fpseudo

s ∈ R2×Hb×Wb . (5)

Then, the optimization objective Ls(p) for the student Fs is a combination of
the ground-truth loss Lgt

s (p) and a dense pseudo-label loss Lpseudo
s (p) calculated

as follows:

Ls(p) = Lgt
s (p) + λLpseudo

s (p) (6)

Lgt
s (p) = ∥f̂s(p)− fgt(p)∥2 ·M(p) (7)

Lpseudo
s (p) = ∥f̂s(p)− fpseudo

s (p)∥2 (8)

where f̂s ∈ R2×Ht×Wt is the predicted flow of the student model Fs given Ia
and Ib, λ is the scale hyper-parameter, p indexes the positions in f̂s.

4.2 High Quality Pseudo-label Generation

The dense pseudo-labels generated by the teacher model are inevitably unreliable
and inaccurate for supervision. To filter out erroneous pseudo-labels, we use: (a)
label filtering based on spatial priors, and (b) loss-driven dynamic label selection.

Spatial-prior Based Label Filtering. Our key insight is that, as the anno-
tated keypoints are in the object foreground region, we are able to suppress noisy
background pseudo-labels by exploiting the spatial-smoothness prior of the se-
mantic correspondence in the neighborhood of the sparse keypoints. Motivated
by this, we generate a densified binary label mask M̂ via dilating the sparse
label mask M as follows, which will be used for label filtering:

M̄ = M ∗ K (9)

M̂(p) =

{
1 if M̄(p) > 0
0 otherwise

(10)
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where ∗ is a convolution operator with zero padding, K ∈ Rk×k is a kernel filled
with one with k as the kernel size. Note that dilation here refers to expanding the
existing foreground region in M. Compared with using CAM [62] or uncertainty
estimation [36], our proposed label filtering technique is easy to implement and
utilizes the spatial prior around the sparse annotations.

Given the dilated label mask M̂, the pseudo-loss L̂pseudo
s (p) for the student

model is calculated as below:

L̂pseudo
s (p) = ∥f̂s(p)− fpseudo

s (p)∥2 · M̂(p). (11)

where p indexes the positions. In this way, we are able to significantly suppress
noisy background pseudo-labels as shown in Sec 5.3.

Loss-driven Dynamic Label Selection. While many background pseudo-
labels can be filtered out by our dilated label mask, some noisy labels still exist
due to inaccurate predictions from the teacher model. To further filter out in-
accurate labels, we introduce a loss-driven label selection strategy following the
small-loss principle [11]. Denoting R as the ratio of pixels being selected, we

choose the pixel set P on the foreground region in M̂ with the smallest loss as
below:

P = argmin
D̄:|D̄|≥R(T )NM̂∧D̄⊆D̂

∑
p∈D̄

L̂pseudo
s (p) (12)

D̂ = {p | M̂(p) = 1} (13)

where R(T ) controls the selection percentage in training epoch T , p indexes the

positions, D̂ is a collection of foreground positions in the dilated label mask M̂,
NM̂ is the total number of non-zero positions in M̂.

Hence the final optimization objective Ls for the student model Fs over
an image pair is a combination of the sparse ground-truth loss Lgt

s at labeled
positions G = {p | M(p) = 1} and the dense pseudo loss Lpseudo

s at selected
positions P as below:

Ls = Lgt
s + λLpseudo

s (14)

Lpseudo
s =

1

|P|
∑
p∈P

L̂pseudo
s (p) (15)

Lgt
s =

1

|G|
∑
p∈G

Lgt
s (p) (16)

4.3 Variants of Teacher-Student Learning

To investigate the optimization strategy of our proposed teacher-student learn-
ing, we propose two variants of our learning strategy, including (a) single offline
teacher, and (b) mutual online teachers, which are detailed below.
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Single offline Teacher (ST). This variant consists of two learning stages.
Specifically, we first learn a baseline network, which acts as the teacher model,
given spare ground-truth annotation only. In the second stage, the pseudo-labels
are generated by the fixed teacher network as described in Sec. 4.1 and Sec. 4.2.
Given the enriched supervision, we then train the student model from scratch,
which is used for the inference stage finally.

Mutual online Teacher (MT). Inspired by the recent advances in multi-
view learning [1,55], we additionally explore a one-stage variant with two mutual
online teachers which learn from scratch. We simultaneously train two networks
of the same architecture, each of which takes predictions from the other network
as the pseudo-labels for optimization. These two networks can learn knowledge
of correspondence with enriched pseudo-labels from each other. The one with a
higher validation performance is selected for the inference stage.

Specifically, we maintain two networks Fs and Ft of the same architecture.
The network Ft (resp. Fs) provides its predicted flow f̂t (resp. f̂s) as the pseudo-

label fpseudo
s (resp. fpseudo

t ) for the peer network Fs (resp. Ft). Both networks

use the shared dilated label mask M̂ for label filtering. For each model, the
pseudo-loss filtered by dilated label masks is described as below:

L̂pseudo
s (p) = ∥f̂s(p)− fpseudo

s (p)∥2 · M̂(p) (17)

L̂pseudo
t (p) = ∥f̂t(p)− fpseudo

t (p)∥2 · M̂(p), (18)

where p indexes the position, fpseudo
s (resp. fpseudo

t ) equals to f̂t (resp. f̂s).

L̂pseudo
s (p) and L̂pseudo

t (p) will then go through the dynamic label selection pro-

cedure as described in Sec. 4.2 to compute pseudo-label loss Lpseudo
s and Lpseudo

t ,
respectively. The final optimization objective for each model is a combination of
sparse ground-truth loss and pseudo loss as below:

Ls = Lgt
s + λLpseudo

s (19)

Lt = Lgt
t + λLpseudo

t (20)

5 Experiments

We evaluate our method on the supervised semantic correspondence task by con-
ducting comprehensive experiments on three public benchmarks: PF-PASCAL [10],
PF-WILLOW [9], and SPair-71k [41]. In the following sections, we first elaborate
on the implementation details of our proposed method in Sec. 5.1, and follow
that with the quantitative and qualitative comparison with prior state-of-the-art
(SOTA) competitors in Sec. 5.2. Then, we provide ablation studies and compre-
hensive analysis in Sec. 5.3. For more detailed results and analysis, we refer
readers to the supplementary material.
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Table 1. Comparison with SOTA methods on SPair-71k [41]. Per-class and
overall PCK (αbbox = 0.1) results are shown in the table. Numbers in bold indicate
the best performance and underlined ones are the second best. All models in this table
use ResNet101 as the backbone. Sup. denotes the type of supervision. * means the
backbone is finetuned. † means ground truth bbox used.

Sup. Methods aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv all

self
CNNGeo [44] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6

A2Net [19] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3

weak
WeakAlign [45] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9

NCNet [46] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

trn-none / HPF [40] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2

val-strong SCOT [38] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6

strong

DHPF [42] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3

PMD [36] 38.5 23.7 60.3 18.1 42.7 39.3 27.6 60.6 14.0 54.0 41.8 34.6 27.0 25.2 22.1 29.9 70.1 42.8 37.4

MMNet* [61] 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 64.2 43.6 40.9

CHM [39] 49.6 29.3 68.7 29.7 45.3 48.4 39.5 64.9 20.3 60.5 56.1 46.0 33.8 44.3 38.9 31.4 72.2 55.5 46.3

CATs†* [6] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

PMNC* [31] 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4

Ours (ST)* 56.9 37.0 76.2 33.9 50.1 51.7 42.4 68.2 22.4 70.7 61.0 47.7 43.6 47.8 47.8 38.6 77.0 67.1 52.4

Ours (MT)* 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7 55.3

5.1 Implementation Details

Datasets. SPair-71k is a newly-released challenging and largest-scale bench-
mark [41]. There are keypoint-annotated 70,958 image pairs with large viewpoint
and scale variation in diverse scenes. SPair-71k [41] is a reliable test bed for
studying real problems of semantic matching. PF-PASCAL dataset [10] contains
1351 image pairs with limited variability and scale, which is approximately split
into 700, 300, and 300 pairs for train, val, and test set, resp. PF-WILLOW [9]
dataset consists of 900 image pairs of 4 categories, which is a widely-used bench-
mark for the verification of generalization ability.

Evaluation Metric. In line with prior work, we report the percentage of correct
keypoints (PCK) [56]. The predicted keypoints are considered to be correct if
they lie within α·max(h,w) pixels from the ground-truth keypoints for α ∈ [0, 1],
where h and w are the height and width of either an image (αimg) or an object
bounding box (αbbox).

Experimental Configuration. For the feature extractor, we use ResNet-
101 [15] pre-trained on ImageNet with a single feature at stride 16. Learnable
parameters are randomly initialized. For our base model, we set Efficient SCE
kernel size K = 7 and dg = 2048 for SPair-71k; K = 13 and dg = 1024 for PF-
PASCAL, resp. We upsample the correlation map to stride 4 for high-resolution
loss. For label mask dilation, dilation kernel size k = 7 is set for both SPair-
71k and PF-PASCAL by validation search. For dynamic label selection, we set
R(T ) linearly increases from the ratio of 20% to 90% in a duration of 10 epochs
for both SPair-71k and PF-PASCAL. λ is 10.0 for weighting pseudo-loss. We
strictly follow previous work for data augmentation [6] (e.g., color jittering) ex-
cept that [6] uses ground truth box for random crop while we do not. An AdamW
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Table 2. Comparison with SOTA methods on PF-PASCAL [10]. Numbers in
bold indicate the best performance and underlined ones are the second best. † means
ground truth bbox used.

Sup. Methods
PCK@αimg αbbox

α = 0.05 α = 0.10 α = 0.15 α = 0.1

none PF-LOMHOG [10] 31.4 62.5 79.5 45.0

self CNNGeoResNet-101 [44] 41.0 69.5 89.4 68.0

weak

WeakAlignResNet-101 [45] 49.0 74.8 84.0 72.0

NC-NetResNet-101 [46] 54.3 78.9 86.0 70.0

DCCNetResNet-101 [22] 55.6 82.3 90.5 -

GSFResNet-101 [25] 62.8 84.5 93.7 -

trn-none HPFResNet-101 [40] 60.1 84.8 92.7 78.5

val-strong SCOTResNet-101 [38] 63.1 85.4 92.7 -

strong

SCNetVGG-16 [12] 36.2 72.2 82.0 48.2

ANCNetResNet-101 [35] - 86.1 - -

DHPFResNet-101 [42] 75.7 90.7 95.0 87.8

PMDResNet-101 [36] - 90.7 - -

MMNetResNet-101 [61] 77.6 89.1 94.3 -

CHMResNet-101 [39] 80.1 91.6 - -

CATs†ResNet-101 [6] 75.4 92.6 96.4 89.2

PMNCResNet-101 [31] 82.4 90.6 - -

Ours (ST)ResNet-101 81.4 92.9 96.1 90.5

Ours (MT)ResNet-101 81.5 93.3 96.6 91.2

optimizer with a learning rate of 3e-6 for the backbone and 3e-5 for the remaining
parameters are used. All the implementations are in PyTorch [43].

Images of all three datasets are resized to 256×256. Our model is trained
on PF-PASCAL and SPair-71k, resp. Following the previous work [42,6,22], we
validate the generalization ability of our method by testing on PF-WILLOW
with our model trained on PF-PASCAL without any finetuning.

5.2 Comparison with State-of-the-art Methods

SPair-71k. We compare our method with the most recent work [40,38,42,61,31,6]
on SPair-71k in Table 1. Our two variant settings (ST and MT) both achieve
an overall SOTA results, with our method (MT) achieving an overall PCK
(αimg = 0.1) of 55.3%, outperforming the previous SOTA [31] by a large margin
(4.9%). Note that our method does not involve any parameterized correlation
refinement compared with [31], clearly illustrating the power of the proposed
pipeline. Fig. 4 shows qualitative results on SPair-71k. We observe that our
method is robust to diverse variations in scale and viewpoint thanks to our
enriched training signals.

PF-PASCAL. Our results on PF-PASCAL are summarized in Table 2. Our
method outperforms the previous state-of-the-art [31,6] on almost all thresh-
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Source                     Target                        CATs                        Ours                          Source                        Target                     CATs                        Ours                     

Fig. 4. Qualitative results of our method on SPair-71k [41]. From left to right
are source image, target image, result from CATs [6], and result from ours (MT), resp.

olds even if the performance on PF-PASCAL is near saturated, reaching a new
SOTA of 93.3% PCK (α = 0.1). Note that even if we did not use sophisticated
parameterized correlation map refinement as in PMNC [31], we can still achieve
comparable PCK at α = 0.05.

PF-WILLOW. We test on PF-WILLOW [9] using our model trained on PF-
PASCAL [10] to verify dataset generalization ability of our method. As shown
in Table 3, our method (MT) outperforms the prior SOTA [39,6] in α = 0.05,
0.1 by 1.4% and 0.6%, resp, indicating superior dataset generalization ability of
our learning method. Note that our method (MT) are 0.5% behind at α = 0.15
compared with [6], we argue that CATs [6] used ground truth bounding box
during training while we did not.

5.3 Ablation Study

In this section, we conduct ablation studies to verify the effectiveness of each
individual module of the proposed model. We train all the variants on the train-
ing split of SPair-71k [41] and report PCK (αbbox = 0.1) on the test split. Each
ablation experiment is conducted under the same experimental setting for a fair
comparison.
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Table 3. Comparison with SOTA methods on PF-WILLOW [9]. Numbers in
bold indicate the best performance and underlined ones are the second best. † means
ground truth bbox used.

Sup. Methods
PCK@αbbox

α = 0.05 α = 0.10 α = 0.15

none PF-LOMHOG [10] 28.4 56.8 68.2

self CNNGeoResNet-101 [44] 36.9 69.2 77.8

weak

WeakAlignResNet-101 [45] 37.0 70.2 79.9

NC-NetResNet-101 [46] 44.0 72.7 85.4

DCCNetResNet-101 [22] 43.6 73.8 86.5

GSFResNet-101 [25] 47.0 75.8 88.9

trn-none HPFResNet-101 [40] 45.9 74.4 85.6

val-strong SCOTResNet-101 [38] 47.8 76.0 87.1

strong

SCNetVGG-16 [12] 38.6 70.4 85.3

DHPFResNet-101 [42] 49.5 77.6 89.1

PMDResNet-101 [36] - 75.6 -

CHMResNet-101 [39] 52.7 79.4 -

CATs†ResNet-101 [6] 50.3 79.2 90.3

Ours (ST)ResNet-101 53.5 79.4 89.5

Ours (MT)ResNet-101 54.1 80.0 89.8

Effect of individual modules. Table 4 summarizes the ablation results of each
individual module. First, we note that applying the proposed Efficient-SCE (ID
A1) yields significant gain over the baseline (ID A0), showing the effectiveness
of the proposed feature enhancement module. Second, enforcing high-resolution
loss improves to a remarkable 49.8% after finetuning (ID A3). Our proposed net-
work achieves competitive results without any Conv4D or transformer modules
for correlation map refinement. Third, densifying labels combined with our two
denoising techniques achieves 5.5% boost further and promotes the performance
to 55.3%, showing the effectiveness of our proposed learning strategy. In con-
trast, teacher-student learning alone without any denoising provides little boost
as the dense pseudo-labels might be too noisy (ID A4).

Single offline Teacher vs. Mutual online Teacher. Table 5 shows the
comparison between our proposed two variants of teacher-student learning. Both
settings have greatly surpassed the performance of the base network (ID A3),
showing the effectiveness of our proposed label densification strategy. We note
that the mutual online teacher setting is 2.9% higher than the single offline
teacher setting. The reason could be that performance is bounded by the fixed
teacher model while the mutual online teacher setting could improve each other
over the training process.
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Table 4. Effects of each component on SPair-71K [41] test split. HRLoss
refers to high-resolution loss, FT refers to finetuning the backbone, Teacher-Student
here refers to the variant with mutual online teacher.

Model ID Efficient-SCE HRLoss Finetune Teacher-Student
Label Denoise

PCK

Dynamic Selection Mask Dilation

A0 - - - - - - 14.7

A1 ✓ - - - - - 33.4

A2 ✓ ✓ - - - - 40.6

A3 ✓ ✓ ✓ - - - 49.8

A4 ✓ ✓ ✓ ✓ - - 49.7

A5 ✓ ✓ ✓ ✓ ✓ - 51.5

A6 ✓ ✓ ✓ ✓ ✓ ✓ 55.3

Table 5. Comparing single offline
teacher and mutual online teacher set-
ting on SPair-71K [41] test split.

Variant Setting PCK

none 49.8

single offline teacher 52.4

mutual online teacher 55.3

Table 6. Effects of kernel size for
label mask dilation on SPair-71K [41]
test split.

Dilation Kernel Size PCK

none 49.8
3 54.0
7 55.3
15 52.0

Effects of kernel size for label mask dilation. Table 6 summarizes the
results of different kernel size for label mask dilation. When increasing the kernel
size, the performance rises first but then drops, with kernel size 7 being the best,
which demonstrates the necessity of restricting pseudo-labels in a meaningful
local neighborhood.

6 Conclusion

In this work, we propose a novel teacher-student learning paradigm in order to
address the challenge of label sparsity for semantic correspondence task. In our
teacher-student paradigm, we generate dense pseudo-labels by the teacher net-
works which are trained with sparse annotations. To improve quality of pseudo-
labels, we develop two novel techniques to denoise pseudo-labels. Specifically,
we first dilate the sparse label masks derived from the sparse keypoint annota-
tions to suppress background pseudo-labels. A dynamic label selection strategy
is then introduced to further filter noisy labels. We investigate two variants of
the proposed learning paradigm, a single offline teacher setting, and a mutual
online teacher setting. Our method achieves state-of-the-art performances on
three standard datasets. The effectiveness of our method provides new insight
into the problem, and is one step closer towards a more realistic application of
semantic correspondence.
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