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Abstract. Person search is a challenging task which aims to achieve
joint pedestrian detection and person re-identification (ReID). Previous
works have made significant advances under fully and weakly supervised
settings. However, existing methods ignore the generalization ability of
the person search models. In this paper, we take a further step and
present Domain Adaptive Person Search (DAPS), which aims to gener-
alize the model from a labeled source domain to the unlabeled target
domain. Two major challenges arises under this new setting: one is how
to simultaneously solve the domain misalignment issue for both detec-
tion and ReID tasks, and the other is how to train the ReID subtask
without reliable detection results on the target domain. To address these
challenges, we propose a strong baseline framework with two dedicated
designs. 1) We design a domain alignment module including image-level
and task-sensitive instance-level alignments, to minimize the domain dis-
crepancy. 2) We take full advantage of the unlabeled data with a dynamic
clustering strategy, and employ pseudo bounding boxes to support ReID
and detection training on the target domain. With the above designs, our
framework achieves 34.7% in mAP and 80.6% in top-1 on PRW dataset,
surpassing the direct transferring baseline by a large margin. Surpris-
ingly, the performance of our unsupervised DAPS model even surpasses
some of the fully and weakly supervised methods. The code is available
at https://github.com/caposerenity/DAPS.
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1 Introduction

Person search [44,39] aims to detect and identify the query person from natural
images. The mainstream approaches to tacking this task is to simultaneously ad-
dress both tasks in an end-to-end manner, where supervised learning [44,34,6,26]
that rely on both pedestrian bounding boxes annotation and identity labels have
been actively investigated. However, these supervised methods may suffer from
significant performance degradation on unseen domains due to domain gaps.
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(a) Fully supervised setting (b) Weakly supervised setting (c) Proposed domain adaptive setting
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Fig. 1: Comparison of three person search settings. (a) Fully supervised setting:
bounding boxes and identity annotations are available. (b) Weakly supervised
setting: only bounding boxes annotations are available. (c) Domain adaptive
setting: neither bounding boxes nor identity annotations on the target domain
is accessible, and there exists obvious domain gaps between different domains,
e.g., the size of human crops. The network is trained with both the labeled source
domain and the unlabeled target domain images.

To address this problem, several recent works [40,20] propose the weakly
supervised person search (WSPS) setting without accessible ID annotations,
shown in Fig. 1. Nevertheless, several limitations are still waiting to be ad-
dressed. First, these works still require manual annotation of the ground-truth
bounding boxes for the detection task, which obviously is not an economical op-
tion for real-world applications. Second, there exist several large-scale annotated
person search datasets, e.g., CUHK-SYSU [39] and PRW [44], which can serve as
supervised source domains and help improve the performance on the unlabeled
target data. Unfortunately, the weakly supervised setting does not fully unleash
the potential of the available training data. Third, these methods adopt an in-
consistent training strategy with supervised detection and unsupervised ReID,
which ignores the essential correlation between the two sub-tasks.

Inspired by the unsupervised domain adaptation (UDA) [16,23,36], as shown
in Fig. 1, we present the Domain Adaptive Person Search (DAPS) framework,
where person search models trained on labeled source domain are transferred to
unlabeled target domains. Compared to weakly supervised person search, neither
the identity labels nor the bounding boxes are accessible in DAPS. Our frame-
work faces two major challenges: (1) Both the detection and the ReID sub-tasks
suffer from domain gap. However, detection focuses on the commonness of people
regardless of the identities, while ReID needs to learn the uniqueness of different
persons. This conflict can be more serious in domain adaptation. (2) Since the
ground-truth detection boxes are not available, it will be extremely challenging
to accurately localize the pedestrians in the target domain, which further in-
creases the difficulty for the ReID sub-task. Therefore, directly extending WSPS
methods to take advantage of target domain data is infeasible.

To address the first challenge, we explore domain alignment for robust do-
main invariant feature learning. In the context of pedestrian detection, this is
typically achieved by domain adversarial training [8] on both image-level and
instance-level features. Following this line of research, we design a domain align-
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ment module (DAM) to alleviate the discrepancy between different domains.
Specifically, on the one hand, we introduce domain discriminators at intermedi-
ate backbone layers. On the other hand, we perform a task-sensitive instance-
level alignment to mitigate the conflicts between two sub-tasks. We observe that
such a domain alignment operation is beneficial for both branches.

To tackle the second challenge, we generate pseudo bounding boxes on the
target domain images iteratively, and perform the training process with GT and
pseudo boxes for domain adaptation. Furthermore, we present a dynamic clus-
tering strategy to generate pseudo identity labels on the target domain. To fully
release the potential of the target domain training data, the proposed framework
refines the detection task with selected proposals, and enhances the interaction
between the two sub-tasks with hybrid hard case mining. Experimental results
demonstrate that this design surprisingly achieves comparative performance with
directly adopting ground-truth bounding boxes.

Our contributions are summarized as three-fold:

– We introduce a novel unsupervised domain adaptation paradigm for person
search. This setting requires neither bounding boxes nor identity annotations
on the target domain, making it more practical for real-world applications.

– We present the DAPS framework to overcome the challenges caused by
cross-domain discrepancy and cross-task dependency. We propose domain
alignment for person search to enhance domain-invariant feature learning.
Meanwhile, a dynamic clustering and a hybrid hard case mining strategy are
introduced to facilitate unsupervised target domain learning.

– Without any auxiliary label in the target domain, our framework achieves
promising performance on two target person search benchmarks, surprisingly
outperforming several weakly and fully supervised models.

2 Related Work

2.1 Person Search

With the development of deep learning and large scale benchmarks [39,44], per-
son search [4] has recently become a popular research topic. Existing fully su-
pervised person search models can be divided into two-step and one-step frame-
works. Two-step frameworks typically consist of separately trained detection and
ReID models [34,21]. Zheng et al. [44] make a systematic evaluation on different
combination of detection and ReID models. Wang et al. [34] solve the inconsis-
tency between detection and person ReID tasks. One-step frameworks [6,26,41]
design a unified model to jointly solve detection and ReID tasks in an end-
to-end manner, making the pipeline more efficient. Yan et al. [43] introduce a
graph model to explore the impact of contextual information for identity match-
ing. Chen et al. [6] disentangle the person representation into norm and angle
to eliminate the cross-task conflict. Li et al. [26] develop a sequential structure
to reduce the low-quality proposals. Several recently studies [40,20] adopt the
weakly supervised setting without no accessible person ID labels. In this work,
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we explore a novel person search setting to generalize labeled source to unlabeled
target domain without any bounding boxes and ID labels annotation.

2.2 Domain Adaptation for Person ReID

Unsupervised domain adaptation (UDA) ReID [7,10,28,15,17,32,42] typically
trains a model with labelled source domain and transfers to the target do-
main under the unsupervised setting. Mainstream UDA ReID methods can be
divided into two categories. The first category employs generative adversarial
networks [19] to mitigate the style discrepancy and translate the labelled source
domain data into the target domain [7,10,28]. For the second category, they gen-
erate pseudo labels by clustering [15,17,32] or assigning soft labels [35] on target
domain, and use these pseudo labels to further supervise target domain training.
Recently, pseudo label-based methods raise more attention due to their superior
performance. However, UDA ReID requires the cropped images, which cannot
be directly extended to adaptive person search due to the lack of bounding boxes
on target domain. To address this, we propose a dynamic clustering strategy to
generate high-quality pseudo boxes to facilitate target domain training.

2.3 Domain Adaptive Object Detection

Existing Domain Adaptive approaches object detection can be categorized
into three main branches, including adversarial-based methods [33,8,45,37,31],
discrepancy-based methods [24,2,3] and reconstruction-based methods [27,1,11].
Adversarial-based methods utilize a domain discriminator to distinguish the do-
main of input data, the adversarial training is performed to encourage domain
confusion between the source domain and the target domain. The discrepancy-
based strategy utilizes the unlabeled target domain images to fine-tune the de-
tector, and further followed by mean-teacher learning [2] or auto-annotation [3].
The reconstruction-based approaches bridge the domain gap by reconstructing
the source or target samples, which is usually realized by image-to-image trans-
lation [1,27]. In this work, we consider the conflicts between sub-tasks of person
search, and develop a task-sensitive alignment module to alleviate such conflicts.

3 Methodology

3.1 Framework Overview

The general pipeline of the proposed DAPS framework is illustrated in Fig. 2.
Given the input images from both the source and the target domain, the image-
level feature maps are extracted with a backbone network. Then, these fea-
tures are input into the Region Proposal Network (RPN) to generate candidate
bounding boxes, which are subsequently fed into the ROI-Align layer to repre-
sent instance-level feature maps. To close the domain gaps for the downstream
detection and ReID tasks, we design a domain alignment module (DAM) to align
both image-level and instance-level features from different domains.
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Fig. 2: Architecture of the DAPS framework. “GRL” denotes the gradient reverse
layer [16]. The backbone follows SeqNet [26], and we employ a domain alignment
module to minimize domain discrepancy on both image-level and instance-level.
We further impose dynamic clustering, hybrid hard case mining and target de-
tection training to take full advantage of the unlabeled target domain data.

Subsequently, the domain-aligned instance-level feature maps are input into
both the detection and the ReID branch. Since the ground-truth bounding boxes
are not available in the target domain, the model will generate different pedes-
trian detection results for each training epoch. Therefore, it is infeasible to fol-
low the traditional UDA ReID methods, which generally perform clustering on
a fixed size of instances to generate pseudo labels. To address this issue, we
design a novel dynamic clustering strategy, which continuously associates the
bounding boxes generated from consecutive epochs, to guarantee the stability
of instance-level ReID features. Based on dynamic clustering strategy, we fur-
ther introduce the hybrid hard case mining and the target domain detection
refinement to sufficiently take advantage of the unlabeled training data.

3.2 Domain Alignment Module

Image-level Alignment. As discussed in [36,8,7,10], minimizing domain dis-
crepancy is beneficial for both sub-tasks of person search, and an effective way
is to guide the model to learn domain-invariant representation. Motivated by
the recent progress in domain adaptive detectors [8,45,37,31], where intermedi-
ate features are imposed with image-level alignment constraints, we introduce a
domain alignment module into our DAPS framework. As shown in Fig. 2, DAM
employs a patch-based domain classifier to predict the domain where the input
feature comes from. A min-max formulation is adopted to misdirect the domain
classifier and encourage domain-invariant representation learning.
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Fig. 3: Details of the two heads and the task-sensitive instance-level alignment.

Suppose we have N training images {I1, ..., IN} with corresponding domain
labels {d1, ..., dN}. Particularly, di = 0 indicates that image Ii comes from the
source domain, while di = 1 denotes the target domain. We denote the backbone
of DAPS as Φ and the image-level domain classifier as Dg, and further represent
the domain prediction result of input Ii as pi. We apply a cross entropy loss to
perform domain alignment in an adversarial training manner:

Limg = −
∑
i

[di log pi + (1− di) log (1− pi)] . (1)

We have tried to conduct image-level alignment on different intermediate features
and multi-scale alignment, but achieve no better results.

Task-sensitive Instance-level Alignment. As illustrated in Fig. 3, our
framework consists of two head networks, where the detection performance
mainly depends on the first standard Faster R-CNN [18] head, while the NAE
[6] head is highly relevant to ReID. When the scale of the source domain is much
smaller than the unlabeled target, the target pseudo bounding boxes predicted by
detector trained on the source can be severely overfitted to the smaller domain,
but no reliable target detection guidance can relieve this issue. When the target
is much smaller, pseudo target ID labels can be easily obtained by clustering,
but these might provide insufficient generalizing for the ReID sub-task.

According to the characteristics of the up- and down-stream tasks, we propose
the task-sensitive instance-level alignment module by balancing the alignment
weight on instance-level features for both sub-tasks. Suppose we have K1 in-
stances in the standard head and K2 instances for the NAE head, two domain
classifiers {Dd

i , D
r
i } are built in the same way with image-level alignment, and

the domain predictions of the two local classifiers are denoted as {pdi,1, ..., pdi,K1
},

{pri,1, ..., pri,K2
}, respectively. The instance-level loss can be formulated as:

Lins =− λ
∑
i,j

[
di log p

d
i,j + (1− di) log

(
1− pdi,j

)]
− (1− λ)

∑
i,k

[
di log p

r
i,k + (1− di) log

(
1− pri,k

)]
.

(2)
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Fig. 4: Illustration of the dynamic clustering and hard case mining. At start of
each epoch, we employ generated proposals, including both qualified ones and
hard cases, to update the memory bank. Qualified proposals are adopted for
matching pseudo boxes memory, and hard cases will directly be added.

where j ∈ {1, ...,K1}, and k ∈ {1, ...,K2}. The source and target domain con-
tains Ns and Nt images respectively, and the balancing factor λ is obtained by

λ = σ

(
4 · sign (Nt −Ns)

(
max(Ns, Nt)

min(Ns, Nt)
− 1

))
. (3)

where the σ (·) is Sigmoid function to normalize the domain scale ratio. Moreover,
we impose a L2-norm regularizer to ensure the consistency between image-level
and instance-level classifiers.

3.3 Training on Unlabeled Target Domain

Dynamic Clustering. UDA ReID models typically employ the clustering strat-
egy (e.g., DBSCAN) to generate pseudo labels for the target domain instances,
and employ memory-based losses [17] for metric learning. However, without
ground-truth bounding boxes on target domain, the instances can be only gen-
erated from the detection results, which varies with the training process. This
makes it infeasible to directly apply typical clustering approach to DAPS. To
address this issue, we propose a novel dynamic clustering strategy to make full
use of the detection results for continuous ReID training.

As illustrated in Fig. 4, an asynchronized training strategy is introduced
to progressively update pseudo bounding boxes with the selected proposals
as ground-truth boxes on the target domain. Specifically, for the beginning α
epochs, DAPS is trained only on the source dataset labeled with both bound-
ing boxes and ID labels. After that, we maintain a bounding box memory
MB = {B1, ..., BNt} and a feature vector memory MV = {V1, ..., VNt}, cor-
responding to each of Nt target domain images. At the start of each subse-
quent epochs, DAPS filters out high-confidence candidate proposals {c1, ..., cm}
from xt

i, and employ them to match pseudo bounding boxes in box memory
Bi = {b1, ..., bn} according to IOU scores. Every proposal is assigned to the
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most relevant box in memory if their IOU score is above the threshold, and the
boxes which fail to match any qualified proposal will be removed from mem-
ory Bi. The remaining boxes in the memory are continuously updated in the
Exponential Moving Average (EMA) method.

For example, suppose the proposals cj1, cj2, cj3 are mapped to the box bk,
then bk is updated by:

bk ← γbk + (1− γ)avg (cj1, cj2, cj3) , (4)

where γ ∈ [0, 1] controls the update rate. Eventually, the proposals without
any matched box will also be fed into the memory Bi, and further, the feature
memoryMV is updated in the same way. Afterwards, we perform clustering upon
MV to obtain N c

t clusters {C1, ..., CNc
t
} with centroids W = {w1, ..., wNc

t
}, and

No
t instances F = {f1, ... fNo

t
} not belonging to any cluster. By extracting the

identity features V in the source domain, we eventually build a unified memory
M = {V,W,F} for ReID training. The loss function can be expressed :

L = − log
exp (x · z+/τ)∑Nc

t

k=1 exp (x · wk/τ) +
∑No

t

k=1 exp (x · fk/τ) +
∑Nc

s

k=1 exp (x · vk/τ)
,

(5)
where w, f , and v represents the target domain clusters, the independent in-
stances and the source domain classes, respectively. z+ is the corresponding class
prototype of the input feature x, and · denotes the inner product to measure the
feature similarity. The features in the memory will be updated in a momentum
way during backward stage:

zt ← γzt + (1− γ)x, (6)

where zt is the t-th prototype in the memory bank M.

Hybrid Hard Case Mining. A significant challenge for dynamic clustering
is to generate reliable bounding boxes. We treat those boxes with lower confi-
dence than a threshold as negative samples. In order to sufficiently exploit target
domain information, we explore the potential of adding these “negative” sam-
ples to the ReID training. Proposals with relatively low confidence scores can
be divided into highly overlapped with high-confidence boxes, the undetected
persons and the background clutters. It is undesirable to enhance the ReID sub-
task by treating all these proposals as negative samples. As a result, we design
a hierarchical scheme to categorize the candidate proposals, and employ both
of the low-confidence person proposals and non-trivial background clutters to
enhance the discrimination of the ReID branch.

Specifically, proposals with confidence score in the range of (ϵh, ϵp) defined by
upper and lower bound thresholds are regarded as non-trivial cases. We exclude
highly overlapped duplicates by further screening IOUs with positive proposals,
while the hybrid of undetected persons and the negative clutters are reserved for
training. The features of these hard cases will be added to M, and be used for
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the contrastive learning process. The memory loss in Eq. 5 is modified as:

L =− log
exp (x · z+/τ)∑
z∈M exp (x · z/τ)

,

∑
z∈M

exp (x · z/τ) =
Nc

t∑
k=1

exp (x · wk/τ) +

No
t∑

k=1

exp (x · fk/τ)+

Nc
s∑

k=1

exp (x · vk/τ) +
Nn

t∑
k=1

exp (x · hk/τ) ,

(7)

where h denotes the hybrid hard cases. It is noteworthy that the hybrid hard
cases will be involved into the dynamic clustering before the next epoch. Once a
hard case is matched with new qualified proposals, it will be treated as a positive
sample and updated in a momentum way.

Target Detection Training. Although DAM can minimize the domain dis-
crepancy, the over-fitting towards the source domain is still likely to take place,
especially when the source domain data is extremely less complex and compre-
hensive than the target domain images. To this end, simultaneously training
detection with both of the source and the target domain data is beneficial for
the generalization ability of model. DAM and dynamic clustering provide rela-
tively reliable pseudo bounding boxes, and specifically, we employ such pseudo
bounding boxes after the α epoch to supervise detection on the target domain.
In this way, the potential of unlabeled target domain images is released for both
ReID and detection training.

4 Experiment

4.1 Datasets and Evaluation Protocols

Datasets. We employ two large-scale benchmark datasets, CUHK-SYSU [39]
and PRW [44] in our experiments. CUHK-SYSU is one of the largest public
datasets for person search, composed of 18,184 images and 96,143 bounding
boxes from 8,432 different identities. It is divided into a training set of 11,206
images with 5,532 identities, and a test set with 6,978 gallery images and 2,900
query images. The widely used PRW dataset contains 11,816 images, 43,110
annotated bounding boxes from 932 identities. The training set includes 5,704
images and 482 labelled persons, while the other 6,112 images and 2,057 probe
persons from 450 identities are adopted as test set.

Evaluation Protocols. Our experiments employ the default splits for both
datasets. For domain adaptation settings, the annotations of dataset used as the
source domain is accessible, while neither bounding boxes nor identity labels of
datasets as the target domain are available. All evaluations are performed on
the test set of target domain. We adopt the widely used mean average precision
(mAP) and cumulative matching characteristic (CMC) top-1 accuracy as eval-
uation metrics for ReID sub-task, while average precision (AP) and recall rate
are adopted as the metrics for detection.
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Table 1: Comparative results when combining different components. DAM: Do-
main Alignment Module. DC: Dynamic Clustering. HM: Hybrid hard case Min-
ing. DTD: Detection on Target Domain.

Target: PRW Target: CUHK-SYSU
DAM DC HM DTD

mAP top-1 recall AP mAP top-1 recall AP

× × × × 30.3 77.7 94.0 88.3 52.5 54.8 55.2 55.1
✓ × × × 30.9 79.3 96.3 90.7 62.2 63.6 70.8 63.1
× ✓ × × 32.2 79.4 96.8 90.3 70.9 72.3 67.8 62.2
✓ ✓ × × 32.7 79.6 95.9 90.4 72.6 74.3 68.3 63.2
✓ ✓ ✓ × 34.5 80.7 97.0 91.0 73.2 74.8 70.4 64.1
✓ ✓ × ✓ 33.1 79.9 96.6 91.2 76.8 78.7 79.4 71.1
✓ ✓ ✓ ✓ 34.7 80.6 97.2 90.9 77.6 79.6 77.7 69.9

Table 2: Comparative results of task-sensitive instance-level alignment.

Target: PRW Target: CUHK-SYSU
instance da

mAP top-1 recall AP mAP top-1 recall AP

normal 21.7 76.0 96.7 91.1 58.2 60.5 66.3 56.3
task-sensitive 30.9 79.3 96.3 90.7 62.2 63.6 70.8 63.1

4.2 Implementation Details

We adopt ResNet50 [22] pretrained on ImageNet-1k [9] as our default backbone
network. DBSCAN [14] with self-paced learning strategy [25] is employed as the
basic clustering method, we set default hyper-parameters ϵp = 0.95, ϵh = 0.8
and λt = 0.1. During training, the input images are resized to 1500 × 900, and
random horizontal flip is applied for data augmentation. Our model is optimized
by Stochastic Gradient Descent (SGD) for 20 epochs. We set a mini-batch size
of 4, and an initial learning rate of 0.0024, which is reduced by a factor of
0.1 at epoch 16 with warmed up in the first epoch. The momentum and weight
decay are set to 0.9 and 5×10−4, respectively. We set the momentum factor γ for
memory updating to 0.2. The starting epoch of α is set to 8 when PRW is chosen
as target domain, and 0 for CUHK-SYSU. All experiments are implemented
with one NVIDIA Tesla A100 GPU. We also plan to support this project with
MindSpore in our future work.

4.3 Ablation Study

We perform analytical experiments to verify the effectiveness of each detailed
component in our proposed framework. In table 1, we compare the baseline
method with different combinations of proposed components, and report the
results on both CUHK-SYSU and PRW datasets. For example, when we use
CUHK-SYSU as the target domain dataset, the directly transferring baseline
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Table 3: Comparative results when employing different strategies to handle the
lack of bounding boxes. ‘GT’ refers to using the ground truth bounding boxes
for all the training process of ReID, and ‘GT for init’ only employs these boxes
to initialize the memory bank. ‘static’ means directly employing the qualified
proposals before each epoch.

Target: PRW Target: CUHK-SYSU
strategy

mAP top-1 recall AP mAP top-1 recall AP

GT 34.9 79.9 94.9 89.5 73.6 76.0 74.6 68.2
GT for init 33.5 79.6 92.9 88.5 73.5 75.4 64.4 60.8

Static 25.3 77.3 96.6 90.8 64.0 66.1 67.6 62.5
Dynamic Update 32.7 79.6 95.9 90.4 72.6 74.3 68.3 63.2

Table 4: Comparative results of when to start asynchronized training.

Target: PRW Target: CUHK-SYSU
starting epoch

mAP top-1 recall AP mAP top-1 recall AP

0 31.5 79.7 95.8 89.4 77.6 79.6 77.7 69.9
4 31.4 79.4 95.8 89.1 73.6 75.3 76.6 67.7
8 34.7 80.6 97.2 90.9 73.2 74.7 76.7 69.0
10 33.4 80.6 97.5 90.7 71.4 73.3 74.8 65.8

model achieves 52.5% mAP and 54.8% top-1. After individually adding the do-
main adaptive module (DAM) and dynamic clustering (DC), the performance
improves 9.3% and 18.4% in terms of mAP. When combining DAM and DC,
the mAP is further promoted to 72.6%, surpassing the 52.5% of baseline by a
large margin. Furthermore, to make full use of the unlabeled target data, we
implement the hybrid hard case mining (HM) and detection on target domain
(DTD). HM improves the ReID performance by 0.6% in mAP, and DTD promi-
nently enhances the detection branch with a 7.0% gain for AP. Eventually, DAPS
achieves 77.6% mAP and 79.6%top-1 with all designed modules, outperforming
the baseline by 25.1% in mAP, 24.8% in top-1, 22.5% in recall, and 14.8% in AP.

Effectiveness of task-sensitive instance-level alignment. To validate
the effectiveness of our task-sensitive instance-level alignment design, we com-
pare it with normal instance-level alignment, which conducts instance alignment
on both head networks without balancing between them. As observed in Table 2,
the task-sensitive design successfully alleviates the inner task conflicts and out-
performs normal strategy by a large margin.

Effectiveness of dynamic clustering. As aforementioned, the key to
utilizing unlabeled target domain data is generating reliable pseudo bounding
boxes. To validate the quality of the pseudo bounding boxes we use, we compare
different strategies of obtaining bounding boxes, and the results are reported
in Table 3. We first measure the performance achieved by using ground-truth
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Fig. 5: Target domain performance with different ϵp on CUHK-SYSU dataset.
(a): ReID accuracy results; (b): Numbers of generated positive proposals. The
ground truth instances number is 55,260.

bounding boxes for training the ReID task. Furthermore, we report the perfor-
mance achieved by directly employing the qualified proposals before each epoch,
which is denoted as ‘static’ in Table 3. The results reveal that our proposed
dynamic clustering strategy can generate trustworthy pseudo bounding boxes to
achieve comparable performance with using ground-truth boxes.

Effectiveness of asynchronized training. We conduct experiments for in-
fluences by the training stage hyper-parameter α on final performance. As shown
in Table 4, when PRW is adopted as the target domain, the best performance is
achieved with α = 8, while with α = 0 for CUHK-SYSU. The results might be
counterintuitive but indeed validate our task-sensitive motivation. For smaller
source dataset, even limited additional target information might be helpful for
cross-domain generalization. In contrast, for larger source dataset, unreliable
target proposals can be harmful for domain gap bridging.

Analysis on hyper-parameter ϵp. We visualize the influence of hyper-
parameter ϵp in Fig. 5. We observe that the value of ϵp influences the ReID
performance to a large extend, and the best performance is achieved with ϵp =
0.95. From Fig. 5b, it can be observed that the selection of ϵp is a trade-off
between recall rate and proposal quality. Setting it to a extremely high value
leads to discarding useful proposals, while a low threshold will induct clutters
to undermine the quality of clustering.

4.4 Comparison with State-of-the-Art Methods

Since no existing person search methods with such domain adaptation settings
can be directly compared, we further compare DAPS with fully supervised meth-
ods in Table 5, including both of the two-step methods and one-step ones. It is
surprising that our framework even surpasses some supervised methods. For
example, DAPS outperforms MGTS [5], OIM [39], IAN [38], NPSM [29] and
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Table 5: Comparison with fully supervised person search models

PRW CUHK-SYSU
Method

mAP top-1 mAP top-1

DPM [18] 20.5 48.3 - -
MGTS [5] 32.6 72.1 83.0 83.7
RDLR [21] 42.9 70.2 93.0 94.2
IGPN [13] 47.2 87.0 90.3 91.4
TCTS [34] 46.8 87.5 93.9 95.1
OIM [39] 21.3 49.9 75.5 78.7
IAN [38] 23.0 61.9 76.3 80.1

NPSM [29] 24.2 53.1 77.9 81.2
CTXGraph [43] 33.4 73.6 84.1 86.5
QEEPS [30] 37.1 76.7 88.9 89.1
HOIM [4] 39.8 80.4 89.7 90.8
BINet [12] 45.3 81.7 90.0 90.7
NAE [6] 44.0 81.1 92.1 92.9

AlignPS [41] 45.9 81.9 93.1 93.4
SeqNet [26] 46.7 83.4 93.8 94.6
DAPS (ours) 34.7 80.6 77.6 79.6

CTXGraph [43] on PRW. The comparison with the state-of-the-art fully super-
vised methods indicate that there exists a large performance gap, and we hope
our work will encourage more explorations for this setting. Moreover, to make
measure the theoretical upper limit of DAPS setting, we train some state-of-
the-art method with both datasets in a supervised manner, and more details are
described in the supplementary material.

The comparisons with existing weakly supervised methods are shown in Ta-
ble 6, and we also present the results of training R-SiamNet with both datasets
in the weakly supervised manner. When evaluated on the PRW dataset, DAPS
outperforms all existing weakly supervised methods by a significant margin. For
the CUHK-SYSU dataset, DAPS still underperforms the state-of-the-art weakly
supervised models, which is mainly caused by the limitation brought by detec-
tion capabilities. As mentioned in Sec. 4.1, the images and identities in PRW
are prominently fewer than those in CUHK-SYSU, and this further leads to the
poor detection performance of adopting CUHK-SYSU as target domain.

4.5 Qualitative Results

To better illustrate the distributions of our hybrid hard cases, we visualize some
qualitative results from both datasets in Fig. 6. As is observed, the hybrid
hard cases consist of undetected persons (column a), highly overlapped human
crops (column b) and background clutters(column c,d). These qualitative results
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Table 6: Comparison with weakly supervised person search models. * denotes
training R-SiamNet together with both of CUHK-SYSU and PRW.

PRW CUHK-SYSU
Method

mAP top-1 mAP top-1

CGPS [40] 16.2 68.0 80.0 82.3
R-SiamNet [20] 21.4 75.2 86.0 87.1
R-SiamNet* [20] 23.5 76.0 86.2 87.6
DAPS (ours) 34.7 80.6 77.6 79.6

(a) (b) (c) (d) (a) (b) (c) (d)

Fig. 6: Visualization of some hard cases, the green bounding boxes denote the
qualified proposals, while the red ones denote the undetected persons. The crops
of the hybrid hard cases are presented on the right of the images.

demonstrate the diversity of our hybrid hard cases, and validate the rationality
of adding such cases to the memory bank.

5 Conclusions

In this paper, we introduce a novel Domain Adaptive Person Search setting,
where neither bounding boxes nor identity labels for target domain are required.
Based on this new setting, we propose a strong baseline framework by investi-
gating domain alignment and taking advantage of unlabeled target domain data.
Extensive results on two large-scale benchmarks demonstrate the promising per-
formance our framework achieves and the effectiveness of designed modules. We
hope this work will encourage more exploration in this direction.
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