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1 More Experimental Results and Implementation Details

1.1 Comparison of Using Different Image Restoration Methods in Two-stage
strategies

We apply ReID methods (i.e., HRCN [12] and CAL [8]) and combine them with differ-
ent existing dehazing (i.e., CAP [13], DCP [5], DCPDN [11], DehazeNet [2], EPDN [7],
GRID [6], MPR-Net [10], MSBDN [3], and NLI [1]) and image restoration (i.e., URIE [9])
methods for pre-processing. Note that, URIE is a comprehensive image restoration tech-
nique for the down-stream application. Followed by its original setting, we combine this
method before the ReID models and train the combination in an end-to-end fashion. The
evaluation is conducted on the real-world dataset and the results are reported in Table 1.
We can see that the two-stage strategy may not always benefit the performance of the
ReID model under haze scenarios and sometimes the performance may be even worse
than the original model trained on clear images. By contrast, in the proposed method,
the domain transformation and ReID models are trained jointly with three-stage opti-
mization. It can outperform other two-stage strategies.

1.2 Evaluation on Existing Benchmarks

To verify the performance of our method on the existing dataset, we adopt Vehicle
1M [4] which contains both clear and hazy scenarios. We apply the full test set which
consists of 5527 IDs and 5527 images in the query set and 5527 IDs and 85953 images
in the gallery set to compare the performance with other methods. We adopt the training
setting (iv) (i.e., the same training images used in our method including synthetic haze,
real-world clear, and real-world haze datasets) in this experiment. The results are shown
in Table 2. One can see that our method trained without ID labels of real-world data

*Indicates equal contribution.

https://github.com/Cihsaing/rvsl-robust-vehicle-similarity-learning--ECCV22
https://github.com/Cihsaing/rvsl-robust-vehicle-similarity-learning--ECCV22


2 Chen & Chen et al.

Table 1: Comparison of using different dehazing/image restoration methods for
pre-processing in the two-stage strategy on the real-world dataset.

Pre-processing Method ReID Metric
mAP CMC@1 CMC@5 CMC@10

- HRCN 71.77 85.30 95.40 97.50
CAL 75.94 91.70 97.60 98.40

CAP HRCN-dehaze 72.83 85.30 95.30 97.50
CAL-dehaze 77.59 92.90 97.50 98.60

DCP HRCN-dehaze 72.45 85.10 96.00 98.40
CAL-dehaze 76.46 91.70 98.00 98.70

DCPDN HRCN-dehaze 66.22 80.70 94.00 96.90
CAL-dehaze 68.67 87.80 96.50 97.70

DHN HRCN-dehaze 73.07 85.10 96.60 98.40
CAL-dehaze 77.80 92.40 97.60 98.80

EPDN HRCN-dehaze 71.57 82.00 95.10 97.90
CAL-dehaze 75.56 92.10 97.60 98.70

GRID HRCN-dehaze 72.78 84.60 95.60 97.80
CAL-dehaze 76.81 92.30 97.90 98.70

MPR HRCN-dehaze 72.78 84.60 96.10 97.80
CAL-dehaze 77.49 94.00 98.00 98.80

MSBDN HRCN-dehaze 68.55 79.40 92.90 95.40
CAL-dehaze 74.12 89.20 95.10 96.60

NLI HRCN-dehaze 68.41 81.00 94.60 97.00
CAL-dehaze 72.81 89.70 97.60 98.80

URIE HRCN-dehaze 78.13 89.20 96.20 98.10
CAL-dehaze 80.44 95.00 98.50 99.10

- Ours 84.12 95.60 98.60 99.30
- Ours-F 87.72 96.90 98.40 99.60

Table 2: Evaluation results on the Vehicle 1M dataset.

Method Metric
mAP CMC@1 CMC@5 CMC@10

VRCF-all 62.20 87.30 94.90 96.80
VOC-all 75.70 81.50 91.90 94.80
DMT-all 87.80 94.10 98.00 98.70

VehicleX-all 72.75 79.55 92.18 95.01
PVEN-all 87.33 92.79 97.43 98.45
HRCN-all 74.27 80.21 91.39 95.06
CAL-all 86.48 91.75 97.40 98.39

Ours 87.27 92.89 97.52 98.55
Ours-F 89.54 94.37 98.05 98.90

can achieve competitive performance in Vehicle 1M compared with other methods.
Moreover, we can achieve state-of-the-art performance if we adopt the ID labels of
real-world data. Thus, the results prove the robustness of our proposed method.
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Algorithm 1 Training Stage for Synthetic Dataset
Input:
Input synthetic pair image: KS

H , (KS
H)GT

Encoder modules for clear and haze: EC(·), EH(·)
Decoder modules for ’Clear to Haze’ and ’Haze to Clear’: DH(·), DC(·)
Decoder modules for ReID: DReID(·)
iteration number: nmax

Initialization:
Initialize the all module parameters by Kaiming normalization.
while n < nmax do

extract feature: FH = EH(KS
H), FC = EC((KS

H)GT );
rendered images: KH←C = DH(FC), KC←H = DC(FH);
extract ReID features: FReID by DReID(FH) and DReID(FC), respectively;
update EH,EC,DH,DC using LDTs = LC→H

DTs
+ LH→C

DTs
;

update EH,EC,DReID using LReIDs = LTri + LID;
end
Output: Save the all parameters of the trained modules: θstage1.

1.3 Implementation Detail

Our proposed method combines domain transformation and the ReID technique with
the three-stage optimization scheme. To illustrate the training procedure clearly, we
present the three stages in detail: the training stage for synthetic, real clear, and real
haze data, respectively.
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Algorithm 2 Training Stage for Real Clear Dataset
Input:
Input real clear image: KR

C

Encoder modules for clear and haze: EC(·), EH(·)
Decoder modules for ’Clear to Haze’ and ’Haze to Clear’: DH(·), DC(·)
Decoder modules for ReID: DReID(·)
Discriminator modules: ψ(·, Real/Fake)
Iteration number: nmax

Balancing Weights: λrc1 = 10−3, λrc2 = 10
Initialization:
Initialize all module parameters except ψ() by Synthetic stage parameters θstage1.
while n < nmax do

render Hazy forward: FC = EC(KR
C ), KR′

H = DH(FC);
render Clear forward: FH = EC(KR′

H ), KR′′
C = DC(FH);

extract ReID features: FReID by DReID(FH) and DReID(FC), respectively;
discriminator forward: LDis = ψ(KR′

H , Real);
update EC,DH using LCR + λrc1LMIDC + λrc2LDis;
update EH,EC,DH,DC using LRC ;
update EH,EC,DReID using LReIDrc = LEC ;

discriminator forward: LDis = ψ(KR
C , Real) + ψ(KR′′

C , Fake)+ψ(KR′
H , Fake);

update ψ(·) using LDis ;
end
Output: Save the parameters of the trained model except discriminator modules: θstage2.
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Algorithm 3 Training Stage for Real Haze Dataset
Input:
Input real hazy image: KR

H

Encoder modules for clear and haze: EC(·), EH(·)
Decoder modules for ’Clear to Haze’ and ’Haze to Clear’: DH(·), DC(·)
Decoder modules for ReID: DReID(·)
Discriminator modules: ψ(·, Real/Fake)
iteration number: nmax

Balancing Weight: λrh1 = 10
Initialization:
Initialize all module parameters except ψ() by real clear stage parameter θstage2.
while n < nmax do

render Clear forward: FH = EC(KR
H), KR′

C = DC(FH);
render Hazy forward: FC = EC(KR′

C ), KR′′
H = DH(FC);

extract ReID features: FReID by DReID(FH) and DReID(FC), respectively;
discriminator forward: LDis = ψ(KR′

C , Real);
update EH,DC using LCR + LDC + LTV + λrh1LDis;
update EH,EC,DH,DC using LRC ;
update EH,EC,DReID using LReIDrh = LEC ;

discriminator forward: LDis = ψ(KR
H , Real) + ψ(KR′′

H , Fake)+ψ(KR′
C , Fake);

update ψ(·) using LDis;
end
Output: Save the final parameters of the trained model except discriminator modules: θstage3.
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