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Abstract. We propose a generic feature compression method for Ap-
proximate Nearest Neighbor Search (ANNS) problems, which speeds up
existing ANNS methods in a plug-and-play manner. Specifically, based
on transformer, we propose a new network structure to compress the
feature into a low dimensional space, and an inhomogeneous neighbor-
hood relationship preserving (INRP) loss that aims to maintain high
search accuracy. Specifically, we use multiple compression projections to
cast the feature into many low dimensional spaces, and then use trans-
former to globally optimize these projections such that the features are
well compressed following the guidance from our loss function. The loss
function is designed to assign high weights on point pairs that are close
in original feature space, and keep their distances in projected space.
Keeping these distances helps maintain the eventual top-k retrieval ac-
curacy, and down weighting others creates room for feature compression.
In experiments, we run our compression method on public datasets, and
use the compressed features in graph based, product quantization and
scalar quantization based ANNS solutions. Experimental results show
that our compression method can significantly improve the efficiency of
these methods while preserves or even improves search accuracy, suggest-
ing its broad potential impact on real world applications. Source code is
available at https://github.com/hkzhang91/CCST

Keywords: Approximate nearest neighbor search; transformer; neigh-
borhood relationship preserving; compression projections; retrieval

1 Introduction

Approximate nearest neighbor search (ANNS) methods focus on searching for
k approximate nearest neighbors from a given database to a given query node
q. It is a fundamental technology in information retrieval and is widely used in
applications such as search engines and recommendation systems. The common
goal of ANNS approaches is to minimize the search latency while maintain a low
search accuracy loss on a fixed hardware constraint.
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As stated in [1], currently, the two most popular ANNS methods are graph
based approaches and quantization based approaches. Many of these methods,
such as product quantization (PQ) [2], HNSW [3] and NSG [4] are widely used
in real-world applications. Although popular, there are rooms to further improve
them. In PQ, the sub vectors are quantized into codewords using a clustering
objective, which is a poor proxy to search accuracy. In graph based methods,
there are a large number of distance computations in index building time (for

instance, indexing complexity NSG graph is O(kn
1+d
d log n

1
d +n log n) [4], where

d is data dimension), which in real world applications can last weeks on billion
scale datasets. For PQ related methods, introducing the feature compression as
an intermediate step avoids direct feature quantization from high dimensional
space. Such a two stage quantization strategy usually results in higher accuracy.
For graph based methods, computing distance in low dimensional space reduces
computational cost linearly, which significantly speeds up indexing.

Existing feature compression methods such as principal components analysis
(PCA) [5], Variational Auto-Encoders(VAE) [6] focus on keeping the information
in the input features instead of their neighborhood relations, but in ANNS appli-
cations the neighborhood structure affects the eventual accuracy more than the
locations of the individual data points themselves. As is shown in experiments,
directly applying these methods lead to significantly reduced search accuracy,
which is not suitable for applications requiring both high speed and high recall.

In this paper, we propose a feature compression method for the approximate
nearest neighbor search problem, which aims to retain the local neighborhood
relations instead of the fidelity of the reconstructed features. Our method is com-
posed of a compression network which connect compression spaces with trans-
former (CCST), and an inhomogeneous neighborhood relationship preserving
(INRP) loss.

Our CCST is a combination of projection units that projects original features
to low dimensions, and transformer units that compose these projections to gen-
erate the output feature. The projection unit is initialized as sparse random
projection (SRP) [7], which is proved by JL (Johnson–Lindenstrauss) lemma
that this projection reserves distances of an increasing number of data points
with decreasing dimension reduction ratios. We design our network with multi-
ple projections units, so that each can be used to compress a local neighborhood,
and the entire space can be covered in a piece-wise manner by the ensemble of
these units. We then use transformers to adaptively combine the output of these
random projection units, because the transformer unit has the well known prop-
erty of globally attending its inputs, which could lead to better global alignment
of these projections. In other words, multiple compression spaces are connected
to one via transformer. Different from standard transformer based networks, we
design an input dependent, non-trivial output token named compression token,
which is itself a compressed feature derived from the input feature, and is up-
dated by the transformer layers with skip connections. The compression token is
designed to provide an anchor vector to the multi-head attention units so that
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transformers properly mix the output of random projection units to generate
the output compressed feature.

Our training loss is designed for the purpose of preserving local neighbor-
hood structures. In most ANNS applications, user is mostly interested in the
accuracy of the top few nearest neighbors. So, changes in the distances between
a query and its far away points will not affect the search result, as long as their
distances are still large. Inspired by this property in ANNS problems, we de-
sign the INRP loss, which assigns high losses on point pairs whose distances are
within a threshold. This loss design allows certain information of the original
feature to be discarded while still maintaining high retrieval accuracy.

Our experiments show that our feature compression model can be seam-
lessly used with popular ANNS methods. While saving 1/2 to 3/4 indexing
time, graphs built using our compressed features can improve the recall slightly
for HNSW and NSG methods. It also significantly improves recalls of 1@1 and
recalls of 1@5 metrics by more than 10.0 percentage points for PQ based meth-
ods, and about 1.0 or 2.0 percentage points for a quantization methods tailored
to HNSW methods [8].

Our main contributions are summarized as follows.

1. We propose a novel feature vector compression model CCST for ANNS prob-
lem. In CCST, traditional projection based compression units and emerging
transformer units are jointly used to compress features for ANNS problems.
To our knowledge, this is the first attempt to apply transformer to ANNS.

2. We propose an INRP loss that mainly keeps the distances of a point and
its close local neighbors. This maintains top k retrieval accuracy and creates
space for lossy feature compression.

3. The experiment results show that our proposed method can be used in most
ANNS methods to improve efficiency. It speeds up indexing speed to 2×
to 4× for graph based methods and it improves recalls significantly for PQ
related methods.

2 Related Work

2.1 ANNS methods

Existing ANNS approaches can be divided into four main types: 1) tree-structure
based strategies [9], which partitions indexed datapoints into different subspaces
based on specific conditions; 2) Locality sensitive hashing (LSH) related meth-
ods, which map similar items to the same symbol with a high probability [10];
3) product quantization (PQ) related approaches decompose the space into a
Cartesian product of low dimensional subspaces and quantize each subspace sep-
arately [2]; 4) graph based frameworks search on pre-built relative neighborhood
graphs (RNG) to find the closest data points to query [3]. Compared with PQ
and graph based methods, tree based and LSH based methods need ensembles
of trees or hash tables to achieve similar accuracy, which consume considerably
more memory and are less frequently used in large scale ANNS problems.
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Product quantization based approach reduces the index memory cost by hold-
ing quantized codes and speeds up distance computation using online or offline
computed distance look up tables. When combined with inverted index to fur-
ther reduce the number of distance computations, PQ becomes a strong base-
line for modern ANNS systems. Compared with quantization based approach,
which partitions original feature space to generate shorter features, our method
directly maps the original features into a new space. These two method are or-
thogonal. As is shown in experiments, the new space can be further quantized
by PQ, which generates even better speed and accuracy trade-offs than using
PQ method alone.

Graph based algorithms usually construct a navigable graph over database,
and searches along the edges of this built graph to find the closest points to
query. The most recent works in this category are NSG [4], HNSW [3], Disk-
ANN [1] and HM-ANN [11]. NSG builds a relatively sparse indexing graph to
reduce memory usage and improve search speed. HNSW employs hierarchical
graph structure to reduce query latency. Disk-ANN and HM-ANN focus on re-
ducing memory overhead via adopting quantization and heterogeneous memory.
Besides, Douze et al. proposed Link and Code (L&C), which takes HNSW as
basic ANNS framework and replaces full precision vectors with refined quan-
tiztion codes [8]. Compared with brute force, these graph based methods visit
1/1000 or even less of the indexed points in each search, significantly reduce
the number of needed distance computations. However, most of these methods
suffer from the problem of high indexing time, as constructing a navigable graph
over database has high time complexity. For instance, O(n log n) for HNSW and

O(kn
1+d
d log n

1
d +n log n) for NSG. In real world application, building a naviga-

ble graph over a billion-scale database with 30+ threads costs several days or
even weeks.

2.2 Dimension reduction / compression

In early stage, almost all dimension reduction methods are based on mathe-
matical theory. PCA [5] and independent components analysis (ICA) [12] are
proposed to transform vectors into lower dimensional space, where the most
information of high dimension vectors are retained. Random projection [13][7]
project data into low dimensional space, while approximately preserving struc-
ture information in original feature space. The efficiency of random projection
methods is guaranteed by Johnson-Lindenstrauss (JL) lemma [14]. This lemma
states that data points in sufficiently high dimensional space may be projected
into suitable low dimensional space while approximately preserving the distances
between the points in original space.

In 2006, Hinton and Salakhutdiov proposed to compress high dimensional
data via neural network [15], and several recent works on dimension reduction
have shifted their methods to neural networks. For example, VAE maps data to
low dimensional space and forces the encoded features to follow a multivariate
Gaussian distribution [6].
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Fig. 1. Overview of the CCST model. The proposed model consists of three major
parts, including compression part, projection part and global optimization part. The
projection part projects input vectors into multiple subspaces and outputs a sequence
of sub vectors. Global optimization part optimizes the sequence of sub vectors from
global perspective and summarizes all optimized information into compression token.
Compression part provides initial the compression token, and interacts with global
optimization part to generate the final compression result.

Very recently, Sablayrolles et al. [16] proposed an end-to-end quantization
model for similarity search, where a compression network named catalyst is
designed and trained to compress vectors from din-dimensional input space to the
hypersphere of a dout-dimensional space, where din > dout. Our proposed CCST
is close to this work, as it involves an ANNS oriented loss and a learnable network
to compress feature vectors. Compared with catalyst, our training objective is
easier to implement as it does not involve offline exhaustive search for positive
and negative pairs. Also, we design a deep compression model for the ANNS
problem, where [16] uses multi-layer perceptrons to demonstrate their entropy
maximization idea.

2.3 Transformer

Vaswani et al. first proposed the transformer architecture for the task of lan-
guage modelling in [17]. Inspired by the promising performance of transformer,
several works started to introduce transformer into vision tasks and proposed a
new type of models. Dosovitskiy et.al proposed ViT, in which the input image
is cropped into a sequence of patches to meet the input format requirement of
transformer [18]. Later, Touvron et al. proposed to use knowledge distillation
to overcome the difficulties of training ViT models [19]. Liu et al proposed a
hierarchical transformer, where representation is computed within shifted win-
dows [20] to reduce computation cost. Very recently, Graham et al. mixed CNN
and transformer in their LeVit model, which significantly outperforms previous
CNNs and ViT models with respect to the speed/accuracy tradeoff [21].

The transformer part of our CCST model is inspired by the works above. We
have made several modifications to better fit transformer with our applications,
which are detailed in section global optimization part.
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3 The Proposed Approach

In this section, we present our proposed method in detail. We first introduce the
architecture of CCST. Then we elaborate on our INRP loss function.

3.1 CCST

As illustrated in Fig. 1, the proposed CCST consists of three major parts, in-
cluding projection part, global optimization part and compression part.

The projection part casts the input feature vector x ∈ Rdin to n different
low dimensional spaces. The output of this part is a sequence of low dimen-
sional vectors

[
p1(x), p2(x), · · · pn(x)

]
, where pi(x) ∈ Rdout , i = 1, · · · , n. din and

dout denote feature dimensions before and after compression, respectively. In
addition, note that [p1(x), p2(x), · · · , pn(x)] constructs a n by dout matrix in-
stead of a n · dout dimensional vector. It is a sequence of tokens as the input to
transformers instead of a concatenated vector. pi() is a compression projection
function. pi(x) = W ix, where W i ∈ Rdin×dout . The global optimization part
takes

[
cp(x), p1(x), p2(x), · · · pn(x)

]
as input and globally optimizes all sub vec-

tors step by step. The global optimization part then summarizes all optimized
sub vectors into a compression token cp(x). The compression part is responsi-
ble for initializing the compression token, interacting with global optimization
part in each step and further processes the information in compression token to
generate the final compression result f(x) ∈ Rdout .

Projection part Our goal is compressing feature vectors into a low dimen-
sional space, where the data neighborhood relation in original space is pre-
served. It seems that random projections satisfy our requirement and there are
already some classical random projection methods. Unfortunately, according to
JL lemma [14], the projection error of using single random projection function
satisfies:

(1− ϵ)||xi − xj ||22 ≤ ||p(xi)− p(xj)||22 ≤ (1 + ϵ)||xi − xj ||22 (1)

where xi and xj represent two data points in high dimensional space and p(xi)
and p(xj) are corresponding projection data points in low dimensional space.

p() is the projection function. ϵ satisfies equation dout > 4 ln(m)
ϵ2/2−ϵ3/3 , where 0 <

ϵ < 1 and m represents data size. Random projections are inapplicable in our
case. For example, if compressing 960 dimensional vectors in GIST1M dataset
to 480 dimensions, we have 0.63 < ϵ < 1. In GIST1M, the distance of a query
to its nearest neighbor and to its hundredth neighbor are probably 1.177 and
1.5615, respectively. After projection, with the minimum ϵ, the distance of a
query to its nearest neighbor and to its hundredth neighbor fall into the scope of
[0.7160, 1.5027] and the scope of [0.9498, 1.9936], respectively. These two scopes
have a considerable overlap, which may disturb neighborhood relationship and
lead to a lower search accuracy. We can draw a consistent conclusion from our
experimental results.
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Fig. 2. Different modules. (a) Transformer module of ViT [18]. (b) Transformer module
proposed in this paper. By adopting lightweight designs, transformer module in (b) has
fewer parameters than that in (a).

Existing random projection methods do not address our problem directly, but
they give us some inspirations. Here, we propose to use n different projections to
boost compression accuracy. Specifically, we initialize the n projection matrices
in pi(x) = Wix (i = 1, 2, · · · , n) on input x ∈ Rdin to generate a sequence of
features

[
p1(x), p2(x), · · · pn(x)

]
. Following [7], the elements in Wi are randomly

drawn from: 
−
√

s
dout

with probability 1/2s,

0 with probability 1− 1/s√
s

dout
with probability 1/2s

(2)

where s =
√
din. Different from traditional random projections, projection ma-

trices used in here will be further optimized by our INRP loss.

Global optimization part The projection part outputs a sequence of low
dimensional vectors, which brings in the core problem of this global optimization
part, that is how to generate the result compressed feature using these features
from different sub spaces.

Here, as the problem that we need to solve is exactly what transformer model
is good at, we tailor a transformer model to overcome the core problem. One
biggest advantage of transformer is it good at capturing and taking use of rela-
tionships between different tokens to get a global optimization result. When we
treat features from different sub spaces as different tokens, our core problem be-
comes optimizing a sequence of tokens from the global perspective. So, based on
ViT [18] structure, we propose a new transformer model for feature compression.

Based on the characteristics of our compression problem, we have made four
major modifications to the original ViT structure, including two structural mod-
ifications and two lightweight designs.
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Structural modifications ensure the new proposed transformer structure is
aligned with our problem. These two modifications are:

1. Discard position embedding. In transformer models for processing sentences
or images, position embedding and relative position embedding are widely
used, as the order of words and the positions or relative positions of images
patches contain important information. However, in our case, the order of
random projections is fixed. Naturally, position embedding is discarded in
our transformer model. Interestingly, when we add position embedding into
our transformer, the search accuracy drops. We conjecture this is because
randomly initialized position coding disturbs our model.

2. Add compression token. In our transformer model, an extra token named
compression token is used. Structurally, this design is similar to the trans-
former model in ViT, where an extra token named classification token is also
employed. Compression token and classification token are added for different
purposes and they have different functions. Compression token provides a
base reference for optimizing and summarizing information from different
projection spaces and it also works as a bridge between compression part
and global optimization part. Classification token is used as a placeholder to
perform classification. Different from classification token, which is a learned
constant, our compression token is derived from input feature vector. Initial-
izing compression token with random numbers is not in accordance with its
role of working as base reference.

Lightweight designs are adopted to reduce the number of learnable parame-
ters. Fig. 2 shows lightweight designs for MLP and attention parts are:

1. In MLP part, we decrease the expansion ratio (changes among widths of the
adjacent linear mapping layers) from 4 to 2 to reduce the number of parame-
ters by half, as shown in the bottom half of Fig. 2 (b). In addition, the basic
computing unit in our model is Linear ABN, which, in data processing order,
consists of a linear mapping layer, activation function and batch normaliza-
tion. As pointed out in [22], placing batch normalization layer before ReLU
leads to the conv layer updated in a suboptimal way due to the nonnegative
responses of activation function. So we design our unit following the order
of conv→activation→bn. This order is also recommended in [23].

2. Attention part has three intermediate variables, which are represented as
Value (V ), Query (Q) and Key (K). The output of head i is calculated as:

headi(Q,K, V ) = softmax(
QWQ

i ·KWK
i

T

√
d

)VWV
i (3)

where WQ
i , WK

i and WV
i are three projection matrices. As in Eqn. 3, V

stores main information, Q and K are used to generate attention weights. In
ViT, Q, K and V are all the same in each head. Inspired by [17], we decrease
the dimension of Q and K for reducing parameters of WK

i and WV
i .
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Fig. 3. The weight curve of INRP loss. dij is Euclidean distance between xi and xj .

Structurally, as shown in the middle part of Fig. 1, global optimization part
consists of s stages, each of which has Ni transformer encoders. From stage 1 to
s− 1, projected vector from compression part is added to compression token at
the end of each stage. Finally, cp(x) is from the output of last stage is fed back
to compression part to generate the final compression result.

Compression part The compression part is responsible for providing initial
compression token, interacting with global optimization part in each step and
generating the final compression result. Corresponding to three responsibilities
three learnable modules are constructed. As shown in the top part of Fig. 1,
three modules are a compression module and two linear projection modules.

The compression module is made up of a single Linear ABN module. Each
linear projection module has a linear mapping function. Compression module
takes x ∈ Rdin as input and outputs cp(x) ∈ Rdout . Linear projection A maps
input x ∈ Rdin to dout-dimensional vector, which is added to compression to-
kens of global optimization part. Linear projection B takes compression token
from the last stage of global optimization part as input and output the final
compression result.

3.2 INRP loss

To preserve neighborhood structures, a straightforward way is training the net-
work to keep distances between all possible point pairs. However, the goal of
ANNS is searching for top k approximate nearest neighbors to a query point,
which generally are points that are close to query point in the original space. In
other words, focusing on keeping distances between close pairs is more impor-
tant, as these pairs affect search result the most. In [24], Guo et al. presented a
similar idea, which is proposed for quantization instead of compression. Inspired
by this, we design our INRP loss, the formula of which is:

loss =
1

m2

m∑
i=1

m∑
j=1

wij · ∥∥f(xi)− f(xj)∥2 − ∥xi − xj∥2∥2 (4)
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where xi and xj are a pair of any two nodes from original space. m denotes
data size. f(xi) and f(xj) are compression results. wij is weight for this pair
and it is calculated as:

wij = min(α,max(β,− ln(
dij

boundary
))) (5)

where dij = ||xi − xj ||2. α and β are two hyper-parameters, which are set to 2.0
and 0.01 respectively. boundary denotes the average distance between any two
nodes in original space. The curve is shown in Fig. 3. In implementation, we use
all pairs inside a mini-batch to approximate Eqn.4, which significantly simplifies
computation.

4 Experiments

4.1 Datasets and implementation details

Datasest We carry out experiments on two million-scale benchmark datasets
GIST1M and Deep1M 3. GIST1M consists of 1 million of 960-dimensional hand-
crafted feature vectors, which are extracted from images with GIST descrip-
tors [25]. Deep1M contains 1 million of 256-dimensional deep feature vectors,
which are extracted by using GoogleNet [26].
Training setting Following [27][28], we take database as training set. We train
our model for 2400 epochs with the Adamw optimzier [29], where the initial
learning rate and batch size are set to 1e-4 and 1024 respectively. We use poly
learning rate policy with power of 0.9 to adjust the learning rate for every epoch.
Just like other deep learning models, training CCST is time consuming. With
a single RTX2080Ti GPU, training costs about half a day. However in practice,
the trained model will be used to process huge amount of data. In Bigann-1B,
indexing the 1 billion data saves 54 hours, which already pays off.
Platforms We implement our CSST using Pytorch and conduct ANNS experi-
ments based on Faiss4.

4.2 Speeding up indexing for graph-based methods

Here, we focus on using our proposed CSST to speed up indexing of graph-based
methods. Two most popular graph-based methods HNSW [3] and NSG [4] are
employed as baselines. We construct all HNSW indices with M=48, efConstruc-
tion=512, and perform search with efSearch=100 on GIST1M and efSearch=200
on Deep1M. Following [4][1], we build all NSG indices using R=60, L=70 and
C=500 and initialize K-NN graphs with NN-descent. On GIST1M, we initialize
K-NN graph using GK=400, L=400, iter=12, S=15 and R=100. On Deep1M,
we initialize K-NN graph using GK=200, L=200, iter=10, S=12 and R=100.

3 Downloaded from https://www.cse.cuhk.edu.hk/systems/hash/gqr/datasets.html
4 https://github.com/facebookresearch/faiss/releases/tag/v1.7.1
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Table 1. Experiments of speeding up indexing for graph based methods. C F represents
the feature compression factor. IND and SS denote indexing time and search speed. q/s
is query per second. Experiments are performed on a server with two Xeon Gold 5218
CPUs. We build indices with 32 threads and perform search with a single thread. All
the speed numbers are averaged from 20 cold runs to rule out random factors. Comp t
is encoding time. Here, a single RTX2080Ti GPU is used for accelerating compressing
process and the GPU memory usage is restricted to about 1GB.

C F

Methods
HNSW NSG Comp tGPU

IND SS Recall IND SS Recall (s) (G)
(s) (q/s) 1@1 1@10 100@100 (s) (q/s) 1@1 1@10 100@100

GIST1M

1 733 182 97.40 100.00 94.39 1118 179 97.40 100.00 93.97 - -
2 454 184 97.70 100.00 94.55 778 180 98.00 99.90 94.16 21.43 1.19
4 245 186 98.00100.00 95.27 645 182 98.30100.00 94.85 10.00 1.17

Deep1M

1 300 861 99.50 100.00 95.23 505 820 99.7 100.00 94.53 - -
2 144 870 99.50 100.00 95.46 246 822 99.6 100.00 94.69 5.15 1.09
4 100 874 99.80100.00 95.60 209 842 99.6 100.00 94.92 4.64 1.06

Table 2. Experiments of speeding up indexing for real world database and billion-scale
database. Deepfeat25M is a subset of our internal 1 billion 512-d dataset.

Datasets C factor
indexing Recall Compressing GPU
time(h) 1@1 time (h) usage(G)

Deepfeat25M
1 15.1 95.4 - -
2 9.5 95.1 0.18 1.32

Bigann-1B
1 106 92.6 - -
2 51 92.8 1.01 1.24

We conduct three groups of experiments with different compression ratios. In
all three groups, full-dimensional vectors are used to search nearest neighbors.
Full-dimensional vectors, feature vectors compressed with a factor of 2 and 4
are respectively used in indexing. Experiment results listed in Table 1 show
that using compressed features triples indexing speed for HNSW and doubles
indexing speed for NSG. Taking experiments based on HNSW as an example,
using compressed features reduce indexing time from 733 seconds to 454 seconds
and 245 seconds for GIST1M dataset and decreases indexing time from 300
seconds to 144 and 100 seconds for Deep1M. Results on NSG show similar trends.

Interestingly, using compression feature vectors slightly improves search ac-
curacy. For instance, on GIST1M, using 4×-compressed vectors improves recall
of 1@1 to 98.00% and improves recall of 100@100 to 95.60, 0.5 and 0.37 percent-
age points higher that that of baseline respectively. We conjecture this is due to
that using compressed feature vectors to build index introduces some extra links
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Table 3. Fusion experiments. Bytes denotes the size of quantized feacture vectors.
Comp. and Quant. represent compression and quantization methods, respectively. Fol-
lowing default settings in their source code, we conduct experiments on L&C [8], except
that the M of coder is set to 8 (This gets highest accuracy.). For PQ experiments, we
adopt IVFADC (nlist=8) to avoid exhaustive search.

Datasets Bytes Comp. ANNS
Speed Recall
(q/s) 1@1 1@5 1@50

GIST1M

60 - PQ 115 23.0 45.2 79.7
60 CSST PQ 117 39.5(16.5↑) 72.8(27.6↑) 97.3(17.6↑)
60 - L&C 1536 31.4 48.9 54.2
60 CSST L&C 1527 30.7(0.7↓) 50.2(1.3↑) 55.1(0.9↑)
30 - PQ 246 15.2 31.0 62.4
30 CSST PQ 251 20.9(5.7↑) 43.4(12.4↑) 79.7(17.3↑)
30 - L&C 2000 23.6 43.0 53.9
30 CSST L&C 1992 23.9(0.3↑) 43.9(0.9↑) 54.3(0.4↑)

Deep1M

32 - PQ 236 32.3 67.5 95.9
32 CSST PQ 240 53.3(21.0↑) 88.5(21.0↑) 100.0(4.1↑)
32 - L&C 2000 47.9 72.3 76.4
32 CSST L&C 2020 48.7(0.9↑) 74.1(1.8↑) 78.3(1.9↑)
16 - PQ 520 16.8 38.6 73.6
16 Catalyst PQ 545 19.8(3.0↑) 47.9(9.3↑) 82.5(8.9↑)
16 CSST PQ 537 32.5(15.7↑) 65.6(27.0↑) 94.4(20.8↑)
16 - L&C 2677 28.8 55.6 71.6
16 CSST L&C 2676 29.2(0.4↑) 56.9(1.3↑) 73.7(2.1↑)

and these links improves search accuracy, just like extra links selected by select
neighbors heuristic improves the accuracy of HNSW [3].

Note that the speedup is scalable to larger datasets. As shown in Table 2, for
Bigann-1B5 (1 billion 128-d hand drafted features), using our features reduces
indexing time from 106 hours to 51 hours; On our internal dataset Deepfeat25M,
comparison results shows similar trend.

4.3 Improving accuracy and speed for PQ related methods

Besides graph-based methods, PQ related methods are also very popular in real
world applications. As quantization and dimension compression are orthogonal
at the method level, we conjecture that our proposed CSST can be applied on
PQ related methods to achieve higher accuracy. In this section, we conduct fu-
sion experiments to verify this point. Specifically, we fuse our proposed CSST
with the classical PQ [2] and most recent proposed L&C [8]. In addition, as the
inspirational method catalyst [16] is close to our method in training networks to
compress feature dimension, we compare our proposed model with catalyst on
Deep1M, the dataset which is used in both this paper and their paper. Experi-
ment results are listed in Table 3.

5 https://dl.fbaipublicfiles.com/billion-scale-ann-benchmarks/bigann/base.1B.u8bin
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Table 4. Ablation study on lightweight designs on GIST1M (din=960). C F, k/s and
GPU denote compression factor, thousand feature vectors per second and the peak
GPU memory usage during encoding. Queries are batch-processed, where batch size is
set to 512 or 1024 according to GPU GPU memory usage. # param. is the number of
learnable parameters in model. GPU adopted here is RTX2080Ti.

C F dout
Light # param. HNSW encoding info

designs (M) R1@1 R100@100 time (s) speed (k/s) GPU(G)

2 480 Y 10.4 97.70 94.55 21.43 46.66 1.19

2 480 N 15.9 97.70 94.57 35.21 28.40 1.37

4 240 Y 4.7 98.00 95.27 10.00 100.00 1.17

4 240 N 6.1 97.98 95.27 14.12 70.82 1.28

Table 5. Ablation study on random projection initialization (RP init) and the proposed
INPR loss, using GIST1M dataset.

Settings None RP init INPR loss RP init and INPR loss

Recall
1@1 76.1 77.9 78.5 80.1

1@5 94.3 96.1 97.2 98.4

Experiment results show that using compressed feature learned by our pro-
posed CSST improves both search accuracy and speed for PQ related methods.
On Deep1M, in experiments of quantizing feature vectors to 32 bytes, combin-
ing CSST with PQ improves recalls 1@1, 1@5 and 1@50 by 21.0, 21.0 and 4.1
percentage points respectively. Our proposed CSST also brings more improve-
ment than Catalyst. In experiments of coding input vectors with 16 bytes, using
Catalyst improves recalls 1@1 and 1@5 by 3.0 and 9.3 percentage points and our
proposed CSST improves recalls by 11.7 and 27 percentage points.

Using CSST also improves search accuracy for L&C, but the improvements
CSST brings in here are less than that in PQ. This may result from that 2-level
residual codec already optimized PQ quantized codes once and there is less room
for improvement. Overall, CSST still improves search accuracy for L&C, while
keeping high search speed.

4.4 Ablation study

In this section, we conduct ablation study experiments on lightweight designs,
random projection initialization and the proposed INPR loss. Experimental re-
sults are listed in Tables 4 and 5 . From results in Table 4, we can see that
lightweight designs improve encoding speed and save GPU usage without sacri-
ficing accuracy. Results in Table 5 show that using random projection units to
initialize projection matrices and adopting the proposed INPR loss are beneficial
for final accuracy. The best accuracy is achieved by employing both.
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Table 6. Comparison experiments. Compression factor = 4.

GIST1M Deep1M
Methods HNSW Brute force HNSW Brute force

1@1 1@5 1@10 1@1 1@5 1@10 1@1 1@5 1@10 1@1 1@5 1@10

SRP 24.9 49.4 60.7 24.8 49.7 60.9 17.3 35.6 44.4 17.3 35.6 44.4
MLP 47.9 73.8 84.2 47.9 73.8 84.1 48.3 77.6 89.1 48.4 77.6 88.9
VAE 49.2 77.0 86.0 49.3 76.8 85.8 50.0 81.9 90.2 50.0 81.9 90.2

Catalyst - - - - - 57.9 89.6 92.1 57.9 89.6 92.1
CSST 80.1 98.4 99.8 80.9 98.3 99.7 67.3 94.9 98.9 67.3 94.9 98.9

4.5 Comparison with other compression methods

Previous experiments have shown that using compression feature vectors learned
by our proposed CSST speeds up indexing without sacrificing accuracy. Besides
our CSST, there are other compression methods. In this section, we compare the
proposed models with other methods to evaluate its efficiency.

Here, we employed five comparison methods, including one traditional meth-
ods and four network based learning methods. Table 6 presents comparison
results. Compared with other four compression methods, our proposed CSST
achieves the highest accuracy. For GIST1M, using CSST and HNSW achieves
80.1% recall 1@1, 30.9 percentage points higher that that of VAE. As is anal-
ysed in the section the proposed method, using single sparse random projection
harms search accuracy seriously. Both VAE is classical and powerful compres-
sion method, but it focus on keeping information of the input feature instead
of keeping the neighborhood structure, which is not aligned with the require-
ment of ANNS. They are outperformed by our proposed CSST. On Deep1M,
the proposed CSST also achieves better performance, even compared with the
most recent proposed method Catalyst.

5 Discussion

In this work, we have proposed a generic feature compression method for ANNS
problem. The proposed method consists of a compression network (CSST) which
combines traditional projection function and transformer model, and an inho-
mogeneous neighborhood relationship preserving (INRP) loss which is aligned
with the characteristic of ANNS. The proposed method can be generalized to
most ANNS methods. It speeds up indexing speed to 2× to 4 × its original
speed without hurting accuracy for graph based methods. It improves recalls by
several or even a dozen percentage points for PQ related methods.
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