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Abstract In this paper, we propose Suppression-Enhancing Mask based
attention and Interactive Channel transformatiON (SEMICON) to learn
binary hash codes for dealing with large-scale fine-grained image retrieval
tasks. In SEMICON, we first develop a suppression-enhancing mask (SEM)
based attention to dynamically localize discriminative image regions. More
importantly, different from existing attention mechanism simply erasing
previous discriminative regions, our SEM is developed to restrain such
regions and then discover other complementary regions by considering
the relation between activated regions in a stage-by-stage fashion. In each
stage, the interactive channel transformation (ICON) module is afterwards
designed to exploit correlations across channels of attended activation
tensors. Since channels could generally correspond to the parts of fine-
grained objects, the part correlation can be also modeled accordingly,
which further improves fine-grained retrieval accuracy. Moreover, to be
computational economy, ICON is realized by an efficient two-step process.
Finally, the hash learning of our SEMICON consists of both global-
and local-level branches for better representing fine-grained objects and
then generating binary hash codes explicitly corresponding to multiple
levels. Experiments on five benchmark fine-grained datasets show our
superiority over competing methods. Codes are available at https://
github.com/NJUST-VIPGroup/SEMICON.
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1 Introduction

The explosive growth of images on the web makes learning-to-hash methods be-
come a promising solution for large-scale image retrieval tasks [44]. The objective
of image-based hash learning aims to represent the content of an image by gener-
ating a binary code for both efficient storage and accurate retrieval [15]. Most
existing deep hashing methods [23,15,4,17] merely support image retrieval for
generic concepts, e.g., cars or planes, which might fall short of practical demand
with the rapidly growing amount of real applications associated with fine-grained
image retrieval [16,40,28,32]. Thus, recent works on deep hashing [8,47,31,18]
have begun to focus on fine-grained retrieval which is required to retrieve images
accurately belonging to subordinate categories of a meta-category, e.g., different
species of animals or plants [40], rather than a generic (coarse-grained) category.

In the literature, existing generic hashing methods always utilized the outputs
of the last CNN feature layer to generate binary hash codes [15,4]. Then, these
generated hash codes naturally correspond to the holistic representations of the
retrieved visual objects. On the other side, recent fine-grained hashing methods,
some of which had achieved good retrieval accuracy, were proposed to be equipped
with additional modules for locating fine-grained objects’ parts (e.g., birds tails
or dogs heads) by region localization [31,18] or local feature alignment [8]. It is
important to know that these located object parts are crucial for fine-grained
vision tasks [19,42]. Eventually, similar to generic hashing methods, existing
fine-grained hashing still fuses object- and part-level features as a unified feature,
and then generates hash codes based on such unified features.

Therefore we ask: What is the explicit meaning of these hash codes? In
order to make the learnt hash codes explicitly meaningful and interpretable, we
propose Suppression-Enhancing Mask based attention and Interactive Channel
transformatiON (SEMICON), cf. Figure 1. Our SEMICON is designed by having
two branches: The one is a global feature learning branch with a single global
hashing unit for representing the object-level meanings, while the other one is a
local pattern learning branch with multiple local hashing units for representing the
multiple (different) part-level meanings in a stage-by-stage fashion. As presented
in Figure 1, our final generated hash bits consists of a single object-level hash code
and multiple part-level hash codes. Each hash code could explicitly correspond
to its own semantic meaning.

In SEMICON, it has two crucial modules, including the suppression-enhancing
mask based attention (SEM) module and the interactive channel transforma-
tion (ICON) module. More specifically, SEM is applied in each learning stage of
the local pattern learning branch for dynamically localizing discriminative image
regions one-by-one. However, different from other attention-based methods, our
SEM is developed to restrain such regions and then discover other complementary
regions by considering the relation between activated regions. Therefore, the
image regions located in two adjacent stages will be correlated, which will be
beneficial to the fine-grained tailored representations. For ICON, this module is
employed upon each feature tensor (e.g., T̂ in Figure 1) by adopting its channels
as token embeddings to make interactions across different channels, cf. Section 3.3.
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Figure 1. Overall framework of the proposed SEMICON, which consists of two branches,
i.e., the global feature learning branch and the local pattern learning branch. In
SEMICON, the SEM module is designed to generate m attention maps (i.e., Mi)
stage-by-stage and the ICON module takes each channel as token embeddings to make
interactions among different channels. The whole network is end-to-end trainable.

Since channels can generally correspond to visual object parts [6,26,37], ICON can
also model the part correlation accordingly. It could further improve fine-grained
retrieval accuracy by considering the internal semantic interactions/correlations
among discriminative parts [31,2]. However, as directly calculating the correla-
tions across all channels is computationally complex, we implement this module
as a two-step process in order to be efficient and scalable. Extensive experimental
results on five benchmark fine-grained retrieval datasets suggest that our method
achieves the new state-of-the-art performance.

The main contributions of our work are three-fold. (1) We propose a novel
method, i.e., the suppression-enhancing mask based attention and interactive
channel transformation, for dealing with the fine-grained hash learning task. (2)
We design a suppression-enhancing mask based attention operation to maintain
relations between different activated regions and propose a two-step interactive
channel transformation module to build correlations between different channels.
(3) Experimental results on five benchmark datasets show that our SEMICON
achieves significant improvements over competing methods.

2 Related Work

2.1 Fine-Grained Image Retrieval

Fine-grained retrieval is a fundamental topic of fine-grained image analysis [47]
which has gained more and more traction in recent years [34,8,55,46,38]. Compared
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with generic image retrieval, which focuses on retrieving similar images based on
similarities in their content (e.g., texture, color, and shape), fine-grained retrieval
aims to retrieve the images of the same category type (e.g., the same subordinate
species of animals [40]) with only subtle differences (e.g., different beak colors or
claw shapes of birds).

Depending on the types of query images, fine-grained image retrieval tasks can
be separated into two groups, i.e., fine-grained content based image retrieval (FG-
CBIR) and fine-grained sketch-based image retrieval (FG-SBIR). In concretely,
SCDA [45] is one of the earliest work of FG-CBIR that used deep pre-trained
networks without using explicit localization supervisions. Supervised metric
learning based approaches were then proposed to overcome the retrieval accuracy
limitations of unsupervised retrieval [2]. In the other research line, FG-SBIR is
another interesting task related to both fine-grained image retrieval and cross-
modal retrieval of which goal is to match specific photo instances using a free-hand
sketch as the query modality. Existing FG-SBIR approaches generally aim to
train embedding space where sketches and photos can be compared in a nearest
neighbor fashion [49,38].

As all these fine-grained retrieval methods utilize the outputs of the last feature
layer of deep networks to deal with retrieval tasks, they still have limitations
in the face of large-scale data even if they have achieved good results. To be
specific, the searching time for exact nearest neighbor is typically expensive or
even impossible for the given queries in large-scale retrieval tasks. To alleviate
this issue, fine-grained hashing, which aims to generate compact binary codes
to represent fine-grained objects, as a promising direction has attracted the
attention in the fine-grained community very recently [8,18,52,46].

2.2 Learning to Hash

Hashing has been widely-studied to transform the data item to a short code
consisting of a sequence of bits (i.e., hash codes). Compared to data-independent
hashing [9,30,36], data-dependent hashing (aka learning to hash) aims to learn
hash codes that are more compact yet more data-specific. Due to the discrete of
hash codes and non-differentiability of binary hash functions, the optimization of
learning to hash is NP-hard [15].

Specifically, data-independent hashing methods attempted to adjust hash
generating from different perspectives, e.g., the theory or machine learning
views, to name a few: proposing random hash functions satisfying local sensitive
property [9], developing better search schemes [30], providing faster computation
of hash functions [36], etc. In contrast with data-independent hashing methods,
since data-dependent hashing methods learn hash functions from a specific dataset
to achieve similarity preserving, they can generally obtain superior retrieval
accuracy. Especially for capitalizing on advances in deep learning, many well-
performing methods were proposed to integrate feature learning and hash code
learning into an end-to-end framework based on deep networks, e.g., [17,3,51].

Fine-grained hashing, as a more challenging and practical hashing task in the
vision community, has achieved great attention in very recent years [8,18,46,52,29].
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In the literature, ExchNet [8] and DSaH [18] defined the fine-grained hashing
task almost at the same time. While, they added additional modules to ex-
tract local-level features for representing objects’ parts, and then aggregated
both global-level features and local-level features together to generate the uni-
fied binary hash codes. SwinFGHash [29] did not add extra modules but took
transformer-based architecture to model the feature interactions. The learnt
hash bits of these methods seem incomprehensible and lack semantics which
are meaningful to fine-grained objects as we do not know what these hash bits
explicitly indicate. Although A2-Net [46] tried to equip those learnt unified hash
codes with correspondence to object attributes [11], the hash mapping component
still mixes up multiple levels of features together which made the hash codes
ambiguous w.r.t. clear visual semantics. In this paper, we do not aggregate all
the features from different levels together to generate the unified hash codes, but
generate the final hash codes corresponding to the features from different levels
in a stage-by-stage fashion.

2.3 Attention Mechanism

Attention mechanisms are those methods for diverting attention to the most
important regions of an image and disregarding irrelevant regions [13]. In the
past years, attention mechanism has played an increasingly important role and
has provided benefits in many vision tasks, e.g., image classification [48], image
retrieval [33] and object detection [5]. In a vision system and Deep Neural
Networks (DNNs), an attention mechanism can be viewed as a step of dynamically
selecting and adaptively weighting features according to the importance of inputs.

Attention mechanisms can be categorised according to data domain [13].
Besides temporal attention [22] and branch attention [24], most of the existing
attention mechanisms are related to channel information. In DNNs, different chan-
nels in different feature maps usually represent different objects’ parts [6,26,37].
Channel attention adaptively recalibrates the weight of each channel in DNNs
which can be viewed as an object selection process [13]. In fine-grained tasks,
researchers often adopt the erasing operation [53,25] on the most discriminative
regions, which can also be described as the most activated channels, to mine
discerning information from the rest of the channels. However, these erasing
based attention methods seem less informative that the relations across different
regions are completely lost.

Recently, self-attention, which has achieved great success in Natural Language
Processing [41], has also shown the potential to become a dominant tool in vision
tasks [10,27]. Typically, self-attention is used as a spatial attention mechanism to
capture global information. Nowadays, the standard Vision Transformer usually
split input images into equal-sized blocks and utilize these blocks as the token
embeddings [10]. To capture fine-grained parts’ correlations, we propose the
interactive channel transformation (ICON) module in our SEMICON and utilize
different channels as token embeddings. We further implement this module as a
two-step computation process in order to reduce the computational complexity.



6 Y. Shen et al.

3 Methodology

3.1 Overall Framework and Notations

Generally, both object-level (global-level) and part-level (local-level) features
are crucial in fine-grained visual tasks [47]. Therefore, the overall framework of
our SEMICON maintains a global feature learning branch and a local pattern
learning branch, cf. Figure 1. Correspondingly, our hash code learning component
consists of two units, i.e., the global-level hash mapping unit and the local-level
hash mapping unit. In particular, the global-level hash mapping unit is designed
to capture object-level binary codes while the local-level hash mapping unit is
additionally divided into m sub linear encoder paradigms, which is beneficial to
obtaining part-level binary hash codes explicitly in a stage-by-stage fashion. Thus,
the final learnt hash codes contain both object-level and part-level meanings.
Furthermore, our proposed suppression-enhancing mask based attention (SEM)
module and interactive channel transformation (ICON) module are developed
to generate both discriminative global-level features and correlated local-level
features.

In concretely, for each input image I, a backbone CNN model ΦCNN(·) is
used to extract its deep activation tensor T :

T = ΦCNN(I) ∈ RC×H×W . (1)

Then, based on T , a global-level transforming network ϕ(·), which is equipped
with a stack of convolution layers, is performed within the global feature learning
branch as:

T̂ = ϕ(T ; θglobal) ∈ RC′×H′×W ′
, (2)

where θglobal presents the parameters of ϕ(·). The local pattern learning branch
contains an attention guidance P1 ∈ Rc×H×W , which is utilized to generate
the attention map M1 in the first stage, cf. Section 3.2. With the help of the
attention map, we can evaluate the attended deep descriptors in these H ×W
cells by conducting element-wise Hadamard product by:

T ′
1 = M1 ⊙ T . (3)

Then, the proposed SEM module is adopted to generate other attention maps Mi

in the following m−1 stages, as well as the corresponding deep activation tensors
T ′
i . Besides, to obtain semantic-specific representations, a local-level transforming

network ϕ′(·), which has the same structure as ϕ(·), is used to transform T ′
i as

T̂ ′
i = ϕ′(T ′

i ; θlocal) ∈ RC′×H′×W ′
, (4)

where θlocal presents the parameters of ϕ′(·). Then, the proposed ICON module
is conducted over T̂ and T̂ ′

i for making interactions across different channels.
Finally, by performing global average-pooling on T̂ and T̂ ′

i , we can obtain
the object-level feature xglobal and m part-level features xlocal

i . In order to
generate the binary-like codes, a binary-like code mapping module consists of
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m + 1 linear encoder paradigms W = {W global;W local
1 ;W local

2 ; . . . ;W local
m } is

built to project xglobal/xlocal
i as vglobal/vlocal

i . Eventually, the hash code learning
module is performed upon vglobal and vlocal

i to obtain the final binary hash codes
u = [uglobal;ulocal

1 ;ulocal
2 ; . . . ;ulocal

m ].

3.2 Suppression-Enhancing Mask based Attention

Attention in human perception renders that humans selectively focus on several
salient parts of an object, which may help better capture visual structure [20].
Inspired by this, we incorporate the attention mechanism into the local pattern
learning branch to capture the patterns of fine-grained objects’ parts.

In previous fine-grained vision tasks, some works adopt the mask based
attention for erasing the most discriminative regions to mine the rest of the
object-specific regions in different branches [53,25]. However, the simple erasing
of the most discriminative regions seems trivial and will overlook the relations
between the erased regions and other significant regions. To overcome such an
issue, we propose the suppression-enhancing mask based attention (SEM) module
to maintain relations among different activated regions. It is worth mentioning
that the proposed SEM can be realized by convolutional layers sharing parameters,
which could bring computational economy.

In concretely, for the given deep activation tensor T related to the input
image I, m attention maps M = {M1,M2, . . . ,Mm} whose Mi ∈ RH×W will
be extracted. While the m attention guidances Pi which are utilized to calculate
the attention maps can be expressed as:

Pi =

{
ϕatt(T ; θatt), i = 1

fSEM (softmax(Mi−1))⊙ Pi−1, i = {2, 3, . . . ,m} , (5)

where ϕatt is a transformation network which can be optimized in an end-to-end
manner driven by the overall loss function described in Section 3.4 and fSEM is
the suppression-enhancing mask based attention operation which will be described
later in this section.

More specifically, the initial attention map M1 is generated according to the
attention guidance P1 w.r.t. T in the first stage while in the following m − 1
stages, attention maps are generated by the suppression-enhancing mask based
attention operation. To obtain M1, a transformation network ϕatt is primarily
used to obtain what to pay attention to, which can be formulated as:

P1 = ϕatt(T ; θatt) , (6)

where P1 ∈ Rc×H×W presents the attention guidance within the first stage and
θatt presents the parameters of the corresponding network w.r.t. T . Then, a 1× 1
convolution layer φ1 followed by ϕatt is designed to gain M1.

For the remaining attention maps Mi, i = {2, 3, . . . ,m} in the following m−1
stages, we perform the suppression-enhancing mask based attention operation
fSEM which not only helps suppress (rather than simply erasing) the previous
most discriminative region but also enhance the other activated regions.
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In details, we first calculate the weight of each cell in the attention map Mi−1

of the previous stage by conducting a softmax function:

M ′
i−1 = softmax(Mi−1) ∈ RH×W . (7)

Then, we record µstd
i−1 and µmean

i−1 as the standard deviation value and the mean
value of all the elements in M ′

i−1. For each element µk
i−1 ∈ {µ1

i−1, µ
2
i−1, . . . , µ

H×W
i−1 }

in M ′
i−1, the fSEM operation is defined as follows:

µk
i−1 = 1−

µk
i−1 − µmean

i−1

(µstd
i−1)

α
, (8)

where α is a hyper-parameter used to regularize the degree of suppression
ratio of discriminative regions and the enhance ratio of other activated regions.
Additionally, the attention guidance Pi−1 of the previous stage is then changing
to Pi by performing element-wise Hadamard product. The ith attention map
is afterwards generated by the ith 1 × 1 convolution layer φi. Therefore, the
representations of m attention maps Mi can be written as:

Mi = φi(Pi), i = {1, 2, . . . ,m} . (9)

Thus, the final m deep activation tensors T ′
i can be obtained via

T ′
i = Mi ⊙ T , i = {1, 2, . . . ,m} . (10)

By performing this suppression-enhancing mask based attention operation,
the most discriminative region in the attention guidance of the previous stage
will be partially restrained. Meanwhile, those unactivated regions will be further
inhibited while other activated regions will be enhanced with attention. Therefore,
relations between the activated regions of the previous stage and the activated
regions generated afterwards could be maintained.

121-th 222-th 323-th 424-th 525-th 626-th 727-th 828-th

Figure 2. Visualization of channels extracted from DNNs by highlighting their weights.
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Figure 3. The Interactive Channel transformatiON (ICON) module. It utilizes each
channel as token embeddings and makes interactions across different channels.

3.3 Interactive Channel Transformation

In Deep Neural Networks (DNNs), channels are usually exploited as objects’
part detectors [37,6,26]. As can be seen from Figure 2, the activated regions of
the sampled channels (highlighted in warm colors) are semantically meaningful.
Therefore, we incorporate the self-attention mechanism into our model and utilize
each channel as token embeddings to make interactions across different channels
for capturing the correlations of fine-grained “parts”, which has been proved can
be greatly improved the fine-grained recognition accuracy [47,54,50,7].

In Figure 3, an overview of the proposed interactive channel transforma-
tion (ICON) module is depicted. The computational complexity of directly
performing the interactive channel transformation over all channels is consid-
erable. Therefore, for the given deep tensor G ∈ {T̂ , T̂ ′

1, T̂
′
2, . . . , T̂

′
m} of each

input image I, we split it into several portions and design a two-step interactive
channel transformation module (cf. Figure 4) which can be directly adopted in
traditional deep hashing frameworks to reduce the computational consumption.

Specifically, the first step is composed of a stack of N identical parts. For each
given G, we split the deep tensor into N equal length portions [G1;G2;G3; . . . ;GN ],
where Gi ∈ Rd×H′×W ′

and d = C ′/N . (H ′,W ′) is the resolution of each chan-
nel while C ′ is the number of channels. For each Gi, the interactive channel
transform operation is used to generate the transformed portion G′

i in order to
make interactions over different channels within itself. The interactive channel
transform operation during the first step can be described as mapping a unique
query (Qi) and key-value (Ki − Vi) pair to an output (Ĝi), where Qi, Ki, Vi

are generated form Gi via a 1× 1 convolution layer. By following [41], we first
compute the dot products Ĝi of the query Qi with the key Ki and divide by
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Figure 4. Our interactive channel transformation module is implemented by a two-step
process for reducing the computational consumption.

√
d:

Ĝi =
QiK

⊤
i√

d
. (11)

Then, a signed squareroot step and a softmax function is applied to generate
each output G′

i as:

G′
i = softmax

(
sign(Ĝi) ·

√
|Ĝi|+ δ

)
Vi , (12)

where δ is a fixed positive bias.
In order to make interaction among different portions, in the second step,

the tokens at the same position in G′
i are recombined into G′′

i . In simpler
terms, for each portion G′

i = {Gi1;Gi2; . . . ;Gid}, where G′
i ∈ Rd×H′×W ′

and
Gij ∈ RH′×W ′

obtained from the first step, we recombine these portions by
integrating those channels with the same index in preparation for the second
step interactive channel transformation. To be specific, the recombined portion
G′′

i is consisted of N channels from the previous N portions G′
i:

G′′
i = {G1i;G2i; . . . ;GNi}, i = {1, 2, . . . , d} . (13)

The second step ICON is then performed on G′′
i with the same processes as the

first step. Finally, channels which have changed their original index will be reset
after performing the two-step ICON process.

Between these two steps, we employ a batch normalization and a ReLU
activation. A residual connection [14] is adopted after each step. Instead of
performing a single interactive channel transform operation associated with keys,
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values and queries, inspired by [41], we perform the two-step interactive channel
transform operation in parallel. For traditional deep hashing frameworks generally
use CNNs as vanilla backbones, we perform group convolutions as a substitute for
multi-head linear projections. The group number across the first step is N while
it will be reset as d within the second step. This two-step multi-group interactive
channel transformation allows the model to jointly process information within
different indexes over different channels.

3.4 Hash Code Learning

In the following, we conduct the hash code learning based on the obtained
object-level features and part-level features. Assuming that we have q query data
points which are denoted as {qi}qi=1, as well as p database points which are
donated as {pj}pj=1. For each qi and pj , it consists of a global feature vglobal and
m local features vlocal

i . The corresponding hash codes can be carried out by

ui = sign(qi) , zj = sign(pj) , (14)

where ui, zj ∈ {−1,+1}k, and k presents the length of the final binary hash
codes. The goal of hashing is to learn binary hash codes for both query points and
database points and preserving their similarity simultaneously. Following [17],
the formulation of the hash code learning can be written as:

min
W ,Θ

L(I) =
∑
i∈Ω

∑
j∈Γ

[
sign(W · F (Ii;Θ))

⊤
zj − kSij

]2
, zj ∈ {−1,+1}k, (15)

where Γ presents the indices of all the database points while Ω ⊆ Γ presents the
indices of the query set points for we can only gain access to a set of database
points {pj}pj=1 without query points during the training stage. S ∈ {−1,+1}q×p

denotes the pairwise supervised information. W presents the matrix of m+ 1
linear projection and Θ denotes the parameters of DNNs to be learned.

By relaxation, we get the final formulation of SEMICON:

min
W ,Θ

L(I) =β
∑
i∈Ω

∑
j∈Γ

[
tanh(W · F (Ii;Θ))

⊤
zj − kSij

]2
+ γ

∑
i∈Ω

[zi − tanh(W · F (Ii;Θ))]
2
, (16)

where β and γ are hyper-parameters as the trade-off. The proposed SEMICON
is an end-to-end deep hashing method which is able to simultaneously perform
feature learning and hash code learning in such a unified framework.

4 Experiments

4.1 Datasets

By following A2-Net [46] and ExchNet [8], our experiments are conducted on two
widely used fine-grained datasets, i.e., CUB200-2011 [43] and Aircraft [32], as well
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as three popular large-scale fine-grained datasets, i.e., Food101 [1], NABirds [39]
and VegFru [16]. Specifically, CUB200-2011 contains 11,788 bird images from
200 bird species and is officially split into 5,994 images for training and 5,794
images for test. Aircraft contains 10,000 images of 100 aircraft variants, among
which 6,667 images for training and 3,333 images for test. For large-scale datasets,
Food101 contains 101 kinds of foods with 101,000 images, where for each class,
250 test images are checked manually for correctness while 750 training images
still contain a certain amount of noises. NABirds contains 48,562 images of North
American birds with 555 sub-categories, 23,929 images for training while 24,633
images for test. VegFru is another large-scale fine-grained dataset covering 200
kinds of vegetables and 92 kinds of fruits with 29,200 for training, 14,600 for
validation and 116,931 for test.

4.2 Baselines and Implementation Details

Baselines In experiments, we compare our proposed method to the following
competitive generic hashing methods, i.e., ITQ [12], SDH [35], DPSH [23], Hash-
Net [4], and ADSH [17]. Among them, DPSH, HashNet and ADSH are also
deep learning based methods, while ITQ and SDH are not. Furthermore, we
also compare the results of our SEMICON with state-of-the-arts of fine-grained
hashing methods, including ExchNet [8] and A2-Net [46].

Implementation Details For fair comparisons, we follow the training setting
in A2-Net [46] and ExchNet [8]. In concretely, for CUB200-2011, Aircraft and
Food101, we only sample 2,000 images per epoch for training, while 4,000 samples
are randomly selected per epoch for NABirds and VegFru. For the training details,
regarding the backbone model, we can choose any network structures as the base
network for fine-grained representation learning. While, by following ExchNet [8]
and A2-Net [46], ResNet-50 [14] is employed in experiments for fair comparisons.
The attention generation network ϕatt is the fourth stage of ResNet-50 without
downsample convolutions. The global-level transforming network ϕ(·) and the
local-level transforming network ϕ′(·) are independent networks, sharing the same
architecture with the fourth stage of ResNet-50. The total number of training
epochs is 30. The iteration time is 40 for those datasets containing less than
20,000 training images while for other datasets, the iteration time is 50. For all
datasets, we preprocess all images to 224× 224, and the learning rate is set to
2.5× 10−4 for all iterations. SGD with mini-batch set as 16 is used for training.
We set the weight decay as 10−4 and momentum as 0.91. The hyper-parameters,
i.e., α in Eq. (8) and β, γ in Eq. (16), are set as 0.3, 1 and 200, respectively.
By following ADSH [17], we adopt soft-constraints strategy [21] to avoid the
similarity imbalance problem. The number of m is set as 3 which means there
exists 3 attention maps Mi. The length of the final hash code uglobal and ulocal

i

is set as ⌈k
2 ⌉ and ⌊k

6 ⌋. The fixed positive bias δ is set as 10−5. All experiments
are conducted with one GeForce RTX 2080 Ti GPU.
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Table 1. Comparisons of retrieval accuracy (% mAP) on five fine-grained datasets.

Datasets # bits ITQ SDH DPSH HashNet ADSH ExchNet A2-Net Ours

CUB200-2011

12 6.80 10.52 8.68 12.03 20.03 25.14 33.83 37.76
24 9.42 16.95 12.51 17.77 50.33 58.98 61.01 65.41
32 11.19 20.43 12.74 19.93 61.68 67.74 71.61 72.61
48 12.45 22.23 15.58 22.13 65.43 71.05 77.33 79.67

Aircraft

12 4.38 4.89 8.74 14.91 15.54 33.27 42.72 49.87
24 5.28 6.36 10.87 17.75 23.09 45.83 63.66 75.08
32 5.82 6.90 13.54 19.42 30.37 51.83 72.51 80.45
48 6.05 7.65 13.94 20.32 50.65 59.05 81.37 84.23

Food101

12 6.46 10.21 11.82 24.42 35.64 45.63 46.44 50.00
24 8.20 11.44 13.05 34.48 40.93 55.48 66.87 76.57
32 9.70 13.36 16.41 35.90 42.89 56.39 74.27 80.19
48 10.07 15.55 20.06 39.65 48.81 64.19 82.13 82.44

NABirds

12 2.53 3.10 2.17 2.34 2.53 5.22 8.20 8.12
24 4.22 6.72 4.08 3.29 8.23 15.69 19.15 19.44
32 5.38 8.86 3.61 4.52 14.71 21.94 24.41 28.26
48 6.10 10.38 3.20 4.97 25.34 34.81 35.64 41.15

VegFru

12 3.05 5.92 6.33 3.70 8.24 23.55 25.52 30.32
24 5.51 11.55 9.05 6.24 24.90 35.93 44.73 58.45
32 7.48 14.55 10.28 7.83 36.53 48.27 52.75 69.92
48 8.74 16.45 9.11 10.29 55.15 69.30 69.77 79.77

4.3 Main Results

Table 1 presents the mean average precision (mAP) results of fine-grained retrieval
for comparisons with state-of-the-art hashing methods on these five aforemen-
tioned benchmark fine-grained datasets. For each dataset, we report the results
of four lengths of hash bits, i.e., 12, 24, 32, and 48, for evaluations. From table 1,
we can observe that the proposed SEMICON significantly outperforms the other
baseline methods on these datasets.

In particular, compared with the state-of-the-art method A2-Net [46], our
SEMICON achieves 11.42% and 17.17% improvements over A2-Net of 24-bit
and 32-bit experiments on Aircraft and VegFru. Moreover, SEMICON obtains
superior results on both medium-scale fine-grained datasets, e.g., CUB200-2011
and Aircraft, and large-scale fine-grained datasets, e.g., NABirds and VegFru.
These observations validate the effectiveness of the proposed SEMICON, as well
as its promising practicality in real applications of fine-grained retrieval.

4.4 Ablation Studies

We demonstrate the effectiveness of these crucial modules of the proposed SEMI-
CON, i.e., the novel hash learning framework (cf. Section 3.1), the suppression-
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Table 2. Retrieval accuracy (% mAP) with incremental modules of the proposed SEMICON.

Configurations
CUB200-2011 Aircraft Food101

12 24 32 48 12 24 32 48 12 24 32 48

Vanilla backbone 20.03 50.33 61.68 65.43 15.54 23.09 30.37 50.65 35.64 40.93 42.89 48.81
+ SEMICON−∗ 34.93 58.73 64.71 75.66 34.18 70.14 76.50 80.23 40.59 72.75 78.98 80.15

+ SEM 36.58 64.19 71.58 79.17 43.36 73.39 80.64 83.99 44.95 75.44 80.07 82.40
+ ICON 37.76 65.41 72.33 79.62 49.87 75.08 80.45 84.23 50.00 76.57 80.19 82.44

* SEMICON− represents the model generates m attention maps without performing SEM and the
proposed ICON is not performed before obtaining the final hash codes.

enhancing mask based attention (SEM) module (cf. Section 3.2) and the inter-
active channel transformation (ICON) module (cf. Section 3.3). In the ablation
studies, we apply these modules incrementally on a vanilla backbone (i.e., ResNet-
50) as the baseline. As evaluated in Table 2, by stacking these modules one by
one, the retrieval results are steadily improved, which justifies the effectiveness
of our proposals in SEMICON.

5 Conclusion

In this paper, we proposed the Suppression-Enhancing Mask based Attention and
Interactive Channel Transformation (SEMICON) for dealing with the large-scale
fine-grained image retrieval task. In concretely, the SEM module was developed
to restrain (rather than simply erasing) the most discriminative region under the
attention guidance of the previous stage, which benefited maintaining relations
between different activated regions in a stage-by-stage fashion. Moreover, as chan-
nels in DNNs could often correspond to object parts, our ICON module treated
each channel as token embeddings for capturing fine-grained parts’ correlations.
With the hash mapping component containing two units of both global-level
and local-level, the final learnt binary hash codes can be generated from differ-
ent features with different levels (i.e., global-level and local-level) respectively.
Experiments on five fine-grained datasets demonstrated the effectiveness of our
SEMICON, as well as its proposals. In the future, we would like to improve the
robustness of hashing methods and conduct experiments under a more generalized
retrieval setting where training classes and test classes have no overlap.
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