Р	rediction via Uncertainty Learning for Pers	on
-	Image Detriorel	011
	image Retrieval	
	Zhaopeng Dou ¹ , Zhongdao Wang ¹ , Weihua Chen ² , Yali Li ¹ and Sheng Wang ^{1\boxtimes}	jin
1	Department of Electronic Engineering and BNRist, Tsinghua University, Cl ² Machine Intelligence Technonlogy Lab, Alibaba Group dcp19@mails.tsinghua.edu.cn.wgsgi@tsinghua.edu.cn	iina
C	oncents	
L	Quality-Degrading Transformations	
2	Extensive Results on Multi-Query Settings	4
	2.1 Multi-Query Settings on Noisy Samples	2
	2.2 Multi-Query Settings on Partial Samples	ļ
	2.3 Multi-Query Settings on Motion-Blurred Samples	(
	2.4 Multi-Query Settings on Samples with Fog	
	2.5 Ablation Study of τ_{\min} and τ_{\max}	
3	Visualization	8
	3.1 Visualization of the Quality-Degraded Images and Uncertainty	7
	3.2 Visualization of Retrieval Results	10
1	Architectures of Modules ϕ , φ_{μ} and φ_{σ}	12
5	Derivation Details of Data Uncertainty Loss $(Eq.(5))$	12
3	Derivation of the Bayesian Framework	1_{4}

1 Quality-Degrading Transformations

As described in Section 4.3 in the main text, to simulate the complex scenes, we transform the query images via different quality-degrading transformations, including: (1) adding Gaussian noise to mimic camera quality differences; (2) cropping the image to simulate pedestrians are partially out of the camera's field of view; (3) adding motion blur to mimic fast-moving pedestrians; (4) adding fog to imitate complex weather. Here, we detail these transformations.

Adding Gaussian noise. For an image tensor, *i.e.*, \boldsymbol{x} , we generate a noise tensor $\boldsymbol{\epsilon}$ that is sampled from Gaussian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$, *i.e.*, $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Then, we pollute a query sample by $\boldsymbol{x} \leftarrow \boldsymbol{x} + \eta \boldsymbol{\epsilon}$ with a probability of p. In the experiments in the main text, we set p = 0.5 and $\eta = 1.0$. Fig. 1 shows some images with Gaussian noise added. It can be seen that with the increase of noise strength η , the quality of the image decreases.

Fig. 1: Images with Gaussian noise added. When we increase the noise strength η , the quality of the image decreases.

Cropping image. For an image tensor \boldsymbol{x} , suppose the spatial size of it is (h, w), where h and w are the height and width, respectively. Then, with a probability of p, we crop \boldsymbol{x} along the height (from top to bottom) to generate the new image tensor \boldsymbol{x}' whose size is $(\xi * h, w)$, where $\xi \in [0, 1]$. Finally, \boldsymbol{x}' will be resized to (h, w). In the experiments of the main text, we set p = 0.8 and $\xi = 0.5$. Fig. 2 shows some cropped images. It can be seen that with the decrease of the crop ration ξ , the discriminative information contained by the image decreases.

Fig. 2: Cropped images. With the decrease of the crop ratio ξ , the discriminative information contained by the image decreases.

Adding motion blur. We generate the kernel matrix of the motion blur to pollute the image with a probability of p. In the experiments of the main

text, we set p = 0.5. The corresponding python code is shown in Listing 1.1. There are two main parameters when adding motion blur to the image, *i.e.*, "degree" and "angle". The "degree" and "angle" control the strength and the direction of the motion, respectively. In the experiments of the main text. we set them as 30 and 10, respectively. Fig. 3 shows some motion-blurred images when varying the parameter "degree". It can be seen that with the in-crease of the strength of the motion blur, the quality of the image decreases.

Listing 1.1: The python code of adding motion blur

```
import numpy as np
099
       import cv2
100
       from PIL import Image
101
       def Addmotionblur(image, degree=30, angle=10):
102
           image: PTL image
103
           degree: the strength of the motion blur
104
           angle: the angle of the motion blur
105
           image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
106
           image = np.arrav(image)
           M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1)
108
           motion_blur_kernel = np.diag(np.ones(degree))
109
           motion blur kernel = cv2.warpAffine(motion blur kernel.M.(degree. degree))
110
           motion blur kernel = motion blur kernel / degree
           blurred = cv2.filter2D(image, -1, motion_blur_kernel)
           cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
113
           blurred = np.array(blurred, dtype=np.uint8)
           blurred = Image.fromarray(cv2.cvtColor(blurred, cv2.COLOR_BGR2RGB))
114
           return blurred
115
```


Original image

degree=10 degree=5

degree=15 degree=20 degree=25

degree=30

Fig. 3: Motion-blurred images when varying the strength of the motion blur, *i.e.*, "degree". The parameter "angle" is fixed to 10. Note that with the increase of the strength of the motion blur, the quality of the images decreases.

Adding fog. The corresponding python code of adding fog is shown in List-ing 1.2. There are two main parameters when adding fog to the image, *i.e.*, "beta" and "fog_size". The "beta" controls the concentration of the fog. The "fog_size" controls the scope of the fog. In the experiments of the main text, they are set as 0.3 and 10, respectively. An image will be added fog with a probability of p. We set p = 0.5 in the experiments of the main pa-per. Fig. 4 shows some images with fog added when vary the parameter "beta" and fix the parameter "fog_size". It can be seen that with the increase of the concentration of the fog, the image contains more ambiguous information.

```
Listing 1.2: The python code of adding fog
135
                                                                                                 135
136
                                                                                                 136
       import numpy as np
       import cv2
137
                                                                                                 137
       from PIL import Image
138
                                                                                                 138
       def Addfog(img, beta=0.1. fog size=8):
139
                                                                                                 130
           input: PIL image, the size will be resized as (128, 256)
140
                                                                                                 140
           beta: the concentration of the fog
141
                                                                                                  141
           fog_size: the scope of the fog
142
                                                                                                 1/2
           img = img.resize((128, 256))
                                                                                                 143
143
           img = cv2.cvtColor(np.arrav(img), cv2.COLOR RGB2BGR)
144
                                                                                                 144
           img = np.arrav(img)
                                                                                                 145
145
            img f = img / 255.0
146
            (row, col, chs) = img.shape
                                                                                                 146
147
                                                                                                 147
           A = 1.0
           center = (row // 40, col // 2)
148
                                                                                                 148
           for j in range(row):
140
                                                                                                 140
                for 1 in range(col):
                    d=-0.04*math.sqrt((j-center[0])**2 + (l-center[1])**2) + fog_size
150
                                                                                                 150
                    d = d if d > 0 else 0
                                                                                                 151
                    td = math.exp(-beta * d)
                    img_f[i][1][:] = img_f[i][1][:] * td + A * (1 - td)
152
                                                                                                 152
153
            img f = np.arrav(img f * 255, dtvpe=np.uint8)
                                                                                                 153
            img_f = Image.fromarray(cv2.cvtColor(img_f, cv2.COLOR_BGR2RGB))
154
                                                                                                 154
           return img f
                                                                                                 155
156
                                                                                                 156
                                                                                                 157
158
                                                                                                 158
150
                                                                                                 150
160
                                                                                                 160
                                                                                                 161
161
        Original image
                         beta=0.1
                                     beta=0.15
                                                beta=0.2
                                                           beta=0.25
                                                                       beta=0.3
                                                                                  beta=0.4
162
                                                                                                 162
                                                                                                  163
163
```

Fig. 4: Images with fog added. We vary the parameter "beta" that controls concentration of the fog. The parameter "fog_size" that controls the scope of the fog is fixed as 10. Note that with the increase of the concentration of the fog, the image contains more ambiguous information.

2 Extensive Results on Multi-Query Settings

2.1 Multi-Query Settings on Noisy Samples

As described in Section 4.3 in the main paper, we reconstruct the test set of Market-1501 [3] to validate the effectiveness of our method on multi-query set-tings. We collect the images belonging to the same personal identity and same camera identity from the query set and gallery set. Then, we randomly select half of these images to be allocated to the reorganized query set and the other half to the reorganized gallery set. Simultaneously, to simulate the complex scenes

in reality, we add Gaussian noise to images in the query set. Specifically, for an image tensor, *i.e.*, \boldsymbol{x} , we generate a noise tensor $\boldsymbol{\epsilon}$ that is sampled from Gaussian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. Then we pollute a query sample by $\mathbf{x} \leftarrow \mathbf{x} + n\boldsymbol{\epsilon}$ with a prob-ability of 0.5. Here, we vary the noise strength n to observe how the performance of our method changes.

As described in Section 4.3 in the main paper, the reliability score of the *i*-th query is calculated by $w_i = \frac{m_i d_i}{\sum_{j=1}^n m_j d_j}$. When we only use the data uncertainty to calculate the reliability score, the m_* is set to 1. When we only use the model uncertainty to calculate the reliability score, the d_* is set to 1.

Table 1: Results of the multi-query settings on noisy samples when varying the noise strength n. "w/R" ("w/oR") means we use (don't use) the reliability score to adjust the weights for different queries.

	Unco	rtointy	Noise strength η										
Mothod	Unce	anny	$\eta = 0.3$		$\eta = 0.5$		$\eta =$	0.7	$\eta = 1.0$				
method	Data	Model	Ma	rket	Ma	Market		rket	Market				
	Data	model	R1	mAP	R1	mAP	R1	mAP	R1	mAP			
Ours $(w/o R)$	×	×	94.1	87.1	81.3	73.3	67.2	61.4	55.0	33.1			
	\checkmark	×	94.3	87.4	83.1	76.5	75.3	69.6	71.4	66.7			
Ours (w/R)	×	\checkmark	94.1	87.3	82.9	76.4	75.3	69.6	70.7	66.5			
	\checkmark	\checkmark	94.3	87.4	83.9	77.5	77.7	72.1	76.7	71.4			

Results are shown in Table 1. From the results, we can make several observa-tions. First, when varying the noise strength η , our method "Ours (w/R)" sta-bly outperforms the vanilla method "Ours (w/o R)", which shows the proposed reliability assessment is credible and our method is effective for the multi-query settings. Second, when combing the data uncertainty and model uncertainty, the performance is higher than using data uncertainty alone or model uncertainty alone. This shows these two types of uncertainty can provide complementary information to suppress the negative influence of unreliable predictions. Third, with the increase of η , the margin between our method and the vanilla method grows. This shows that our method has greater advantages in complex scenes.

2.2**Multi-Query Settings on Partial Samples**

We also verify our method on the partial samples. As described in Sec. 1, we generate the partial images through cropping the original images. We vary the crop ration \mathcal{E} to observe how the performance of our changes. Results are shown in Table 2. From the results, we can draw similar conclusions to the experiments on noisy samples. Especially, with the decrease of the crop ratio ξ , the discriminative information contained by the image decreases, and the margin between our method "Ours (w/R)" and the vanilla method "Ours (w/oR)" grows. This

further shows the proposed reliability assessment is credible and our method is more effective in more complex scenes.

Table 2: Results of the multi-query settings on partial samples when varying the crop ratio ξ . "w/R" ("w/oR") means we use (don't use) the reliability score to adjust the weights for different queries.

	Unco	rtointy	Crop ratio ξ										
Mothod	Oncertainty		$\xi = 0.9$		$\xi = 0.7$		$\xi = 0.5$		$\xi = 0.3$				
Method	Data	Model	Ma	rket	Ma	rket	Ma	rket	Market				
	Data	model	R1	mAP	R1	mAP	R1	mAP	R1	mAP			
Ours $(w/o R)$	Х	×	96.7	90.9	86.0	76.8	37.2	35.7	25.6	23.7			
	\checkmark	×	96.8	90.9	86.6	77.4	43.0	41.0	35.0	31.9			
Ours (w/R)	×	\checkmark	96.8	90.8	86.2	77.3	44.1	42.1	37.3	33.6			
	✓	\checkmark	96.9	91.0	87.0	77.9	46.3	44.4	41.4	37.8			

2.3 Multi-Query Settings on Motion-Blurred Samples

We further verify our method on the motion-blurred samples. The details of gen-erating the motion-blurred images are described in Sec. 1. We vary the strength of the motion blur ("degree") to observe how the performance of our changes. Results are shown in Table 3. From the results, we can draw similar conclusions to the experiments on noisy samples. Especially, with the increase of the strength of motion blur, the quality of the image decreases, and the margin between our method "Ours (w/R)" and the vanilla method "Ours (w/oR)" grows. This further shows the proposed reliability assessment is credible and our method is more effective in more complex scenes.

Table 3: Results of the multi-query settings on motion-blurred samples when varying the strength of the motion blur. "w/R" ("w/oR") means we use (don't use) the reliability score to adjust the weights for different queries.

	Uncertainty		strength of motion blur: "degree"										
Method	Unce	lianity	"degree" $= 20$		"degr	"degree" $= 30$		ee'' = 40	"degr	"degree" $= 5$			
	Data	Model	Ma	arket	Ma	Market		Market		Market			
	Data	model	R1	mAP	R1	mAP	R1	mAP	R1	mAF			
Ours $(w/o R)$	Х	×	74.9	68.1	69.7	63.4	67.9	61.2	66.1	60.0			
	\checkmark	×	75.5	69.7	73.2	67.2	71.5	66.2	70.8	65.6			
Ours (w/R)	×	\checkmark	79.1	73.1	76.8	70.6	75.4	69.6	75.2	69.2			
	\checkmark	\checkmark	79.0	73.3	77.4	71.4	76.4	70.8	76.1	70.6			

270 2.4 Multi-Query Settings on Samples with Fog

Finally, we verify our method on the samples with fog. The details of adding fog to the images are described in Sec. 1. We vary the strength of the concerntration of the fog ("beta") to observe how the performance of our changes. Results are shown in Table 4. From the results, we can draw similar conclusions to the experiments on noisy samples. Especially, with the increase of the concentration of the fog, the quality of the image decreases, and the margin between our method "Ours (w/R)" and the vanilla method "Ours (w/oR)" grows. This further shows the proposed reliability assessment is credible and our method is more effective in more complex scenes.

Last but not least, the experiments on noisy samples, partial samples, motionblurred samples, and fogged samples all reflect the effectiveness of our method. This shows the robustness of our method in the complex scenes.

Table 4: Results of the multi-query settings on images with fog when varying the concentration of the fog. "w/R" ("w/oR") means we use (don't use) the reliability score to adjust the weights for different queries.

	Unco	rtointy	Concentration of the fog: "beta"									
Mothod	Uncertainty		"beta" = 0.1		"beta" $= 0.2$		"beta	n = 0.3	"beta" = 0.4			
Method	Data	Model	Ma	\mathbf{rket}	Market		Ma	\mathbf{rket}	Market			
	Data	Model	R1	mAP	R1	mAP	R1	mAP	R1	mAP		
Ours $(w/o R)$	×	×	78.9	72.2	69.4	63.7	65.1	60.3	61.9	58.2		
	\checkmark	×	79.5	72.9	74.9	69.4	75.1	69.4	74.4	68.9		
Ours (w/R)	×	\checkmark	79.0	73.1	74.1	68.9	74.8	69.1	74.2	68.7		
	\checkmark	\checkmark	79.7	73.5	75.8	71.0	77.1	71.9	77.0	71.8		

2.5 Ablation Study of au_{\min} and au_{\max}

As described in the Section 3.4 in the main paper, when applying the proposed reliability assessment to the multi-query settings, to combine the data uncer-tainty and model uncertainty without being affected by their numerical scale, we project the data (model) uncertainty into the interval $[\tau_{\min}, \tau_{\max}]$. The final similarity between multiple query images $\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n\}$ and the gallery image \boldsymbol{y} is calculated by $s = \sum_{i=1}^n w_i s_i$, where $w_i = \frac{m_i d_i}{\sum_{j=1}^n m_j d_j}$, $d_i \in [\tau_{\min}, \tau_{\max}]$ $(m_i \in [\tau_{\min}, \tau_{\max}])$ is the mapped data (model) uncertainty of x_i and s_i is the similarity between x_i and y. As the reliability score of each query image, *i.e.*, w_i , is normalized, the final similarity is related to the *relative size* of τ_{\min} and $\tau_{\rm max}$. Here, we fixed the $\tau_{\rm max}$ at 1.0 and varying the value of $\tau_{\rm min}$ from 0.1 to 0.9 to see the performance of our method on the synthetic partial dataset (cropped Market-1501 [3], described in Sec. 1). Results are shown in Table 5. From the results, we can see that, for small ξ (e.g., 0.3, 0.4, 0.5), our method shows higher performance when adopting small τ_{\min} (e.g., 0.1). For large ξ (eg, 1.0, 0.9, 0.8), our method shows higher performance when adopting large τ_{\min} (e.g., 0.9, 0.7,

Table 5: Ablation study of τ_{\min} under the multi-query settings. τ_{\max} is fixed at 1.0. Results are conducted on cropped Market-1501 [3] (partial dataset). "w/R" ("w/oR") means we use (don't use) the reliability score to adjust the weights for different queries.

			Crop Ratio ξ														
Method	$\tau_{\rm min}$	$\xi =$: 1.0	ξ =	- 0.9	ξ =	- 0.8	ξ=	0.7	ξ =	= 0.6	ξ=	- 0.5	ξ=	- 0.4	$\xi =$	- 0.3
		R1	mAP	R1	mAP	R1	mAP	R1	mAP	R1	mAP	R1	mAP	R1	mAP	R1	mAF
Ours $(w/o R)$	-	97.0	92.2	96.7	91.0	93.8	86.8	86.0	76.8	63.0	56.4	37.2	35.7	29.3	27.6	25.6	23.7
	0.1	96.0	90.3	95.4	89.0	93.0	85.2	84.5	75.8	64.6	59.5	47.5	46.1	45.6	42.6	44.3	40.9
	0.3	96.5	91.5	96.3	90.3	93.7	86.3	85.8	76.9	65.0	59.8	47.1	45.6	44.8	41.8	43.0	39.9
Ours(w/R)	0.5	97.2	92.1	96.9	91.0	94.0	87.0	86.7	77.5	65.5	59.6	46.3	44.4	43.1	40.0	41.4	37.8
	0.7	97.0	92.2	96.8	91.0	94.0	87.2	86.3	77.6	65.2	59.0	43.9	41.9	39.2	36.3	36.8	33.4
	0.9	97.1	92.3	96.5	91.0	94.1	87.2	86.4	77.2	63.9	57.5	40.0	38.1	32.6	30.7	29.1	27.0

0.5). This is because that, when ξ is small, a certain percentage of query images are severely cropped and they may provide ambiguous information to degrade the final ranking. Our method will generate large data uncertainty and model un-certainty to these severely cropped images. At this time, a small τ_{\min} means that these severely cropped images are assigned small weights, which effectively suppresses the impact of them and make the final similarity more dependent on the relatively complete query images, thus shows better performance. However, when ξ is large, a certain percentage of query images are slightly cropped and they can also provide discriminative information for ranking. If we adopt a too small τ_{\min} , these images will be assigned small weights, which may waste the useful in-formation provided by them and obtain fallen performance. At this time, a large $\tau_{\rm min}$ can maintain the discriminative information from these slightly cropped images and results in better performance. In conclusion, for unconstrained com-plex where the query images have large quality and visibility variation, a small τ_{\min} is more suitable. For constrained simple scenes where the query samples have small quality and visibility variation, a large τ_{\min} is more appropriate.

3 Visualization

3.1 Visualization of the Quality-Degraded Images and Uncertainty

Here, we visualize the quality-degraded images and their corresponding data uncertainty and model uncertainty. Results are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8. We can see that, for different quality-degrading transformations, with the quality of the images degrades, the corresponding data uncertainty and model uncertainty grow. That is, when the discriminative information provided by an image decreases, our method will assign a lower reliability score to the prediction of this sample.

Noise strength	$\eta = 0.0$	$\eta = 0.3$	$\eta = 0.5$	$\eta = 0.7$	$\eta = 1.0$
Images		X	X		
Model uncertainty ($\times 10^{-6}$)	3.3890	4.0746	5.1533	6.9717	9.2480
Data uncertainty	0.8100	0.8131	0.8290	0.8573	0.8693
Fig. 5: Visualization of intrength η , as well as co	nages po prrespon	olluted by G ding model	Gaussian n l uncertain	bise when v ty and data	arying the nois a uncertainty.
Crop ratio	$\xi = 1.0$	$\xi = 0.9$	$\xi = 0.7$	$\xi = 0.5$	$\xi = 0.4$
Images					
Model uncertainty ($\times 10^{-6}$)	3.3890	3.6961	5.2148	5.6303	6.1325
Data uncertainty	0.8100	0.8120	0.8209	0.8214	0.8216
Fig. 6: Visualization of a corresponding model	cropped uncerta	images wh inty and da	en varying ata uncerta	; the crop n ainty.	ration ξ , as we
Fig. 6: Visualization of o as corresponding model "degree" of motion blur Images	cropped uncerta	images wh inty and da degree = 10	den varying ata uncerta degree = 15	degree = 20	ration ξ , as we $ \frac{\text{degree} = 25}{\text{log}} $
Fig. 6: Visualization of o as corresponding model "degree" of motion blur d Images Model uncertainty (× 10 ⁻⁶)	cropped uncerta	images which inty and data degree = 10	degree = 15 degree = 15 8.2438	degree = 20 9.6785	ration ξ , as we degree = 25 $location = 10$ $location = 10$
Fig. 6: Visualization of o to corresponding model "degree" of motion blur Images Model uncertainty (× 10 ⁻⁶) Data uncertainty	eropped uncerta legree = 0 .3.3890 0.8100	images wh inty and da degree = 10 5.7457 0.8153	degree = 15 degree = 15 8.2438 0.8239	degree = 20	ration ξ , as we degree = 25 10.2341 0.8322
Fig. 6: Visualization of o as corresponding model "degree" of motion blur Images Model uncertainty (× 10 ⁻⁶) Data uncertainty Fig. 7: Visualization of gree" of the motion blu uncertainty.	cropped uncerta legree = 0 J.3890 0.8100 cropped r, as we	images wh inty and da degree = 10 5.7457 0.8153 . motion-bl ll as corres	degree = 15 degree = 15 8.2438 0.8239 urred imag ponding m	degree = 20 degree = 20 9.6785 0.8285 ges when v odel uncer	ration ξ , as we $ \frac{\text{degree} = 25}{10.2341} $ 10.2341 0.8322 rarying the "definition the tainty and dat
Fig. 6: Visualization of o s corresponding model "degree" of motion blur d Images Model uncertainty (× 10 ⁻⁶) Data uncertainty Fig. 7: Visualization of gree" of the motion blu uncertainty.	cropped uncerta legree = 0 3.3890 0.8100 cropped r, as we beta = 0	images which inty and data degree = 10 degree = 10 5.7457 0.8153 motion-bl ll as corres beta = 0.1	degree = 15 degree = 15 8.2438 0.8239 urred imag ponding m	degree = 20 degree = 20 9.6785 0.8285 ges when v odel uncer beta = 0.3	ration ξ , as we degree = 25 10.2341 0.8322 rarying the "detainty and dat beta = 0.4
Fig. 6: Visualization of o as corresponding model "degree" of motion blur d Images Model uncertainty (× 10 ⁻⁶) Data uncertainty Fig. 7: Visualization of gree" of the motion blur uncertainty. "beta" of fog Images	cropped uncerta legree = 0 3.3890 0.8100 cropped r, as we beta = 0	images which inty and data degree = 10 degree = 10 5.7457 0.8153 . motion-bl ll as corres beta = 0.1	degree = 15 degree = 15	the crop mainty. degree = 20 9.6785 0.8285 $ges when v$ $del uncer$ $beta = 0.3$ $beta = 0.3$	ration ξ , as we $ \frac{degree = 25}{10.2341} $ 10.2341 0.8322 rarying the "detainty and dat $ \frac{beta = 0.4}{100} $
Fig. 6: Visualization of o scorresponding model "degree" of motion blur of Images Model uncertainty (× 10 ⁻⁶) Data uncertainty Fig. 7: Visualization of gree" of the motion blu uncertainty. "beta" of fog Images Model uncertainty (× 10 ⁻⁶)	cropped uncerta legree = 0 3.3890 0.8100 cropped r, as we beta = 0 beta = 0 3.3890	images which inty and define the second sec	hen varying ata uncerta degree = 15 intermatrix interm	the crop mainty. degree = 20 $egree = 20$ $geree = 20$	ration ξ , as we $ \frac{degree = 25}{10.2341} $ $ \frac{10.2341}{0.8322} $ rarying the "detainty and dat $ \frac{beta = 0.4}{1000} $

Fig. 8: Visualization of samples with fog when varying the concentration of the
 fog ("beta"), as well as corresponding model uncertainty and data uncertainty.

403

3.2 Visualization of Retrieval Results

In this part, we visualize some retrieval results under the multi-query settings. Results are shown in Fig. 9, Fig. 10, Fig. 11 and Fig. 12. In Fig. 9, some query samples are polluted by the Gaussian noise. In Fig. 10, some query images are cropped to imitate the partial ReID scenarios. In Fig. 11, some query samples are motion-blurred. In Fig. 12, some query samples are added with fog. Each query set contains the images from the same personal identity and same camera identity. We display the top-8 ranking results. We report the results of "Ours (w/ R)" against the vanilla method "Ours (w/o R)". We can see that "Ours (w/ R)" shows better performance, which stems from the effective reliability assessment. Specifically, our method suppresses the negative impact of noisy query images, severely partial query images, motion-blurred images and fogged images by assigning them large data uncertainty and model uncertainty (low reliability score), and simultaneously emphasizes the influence of high-quality and relatively complete query images.

Multi-query settings on noisy samples

Fig. 9: Visualization of the retrieved results under the multi-query settings. Some query images are polluted by **Gaussian noise**. Comparing "Ours (w/o R)" and "Ours (w/R)", it can be seen that when we use the reliability to adjust the weights of different queries, the results are more accurate and reliable.

Fig. 11: Visualization of retrieval results under the multi-query settings. Some query images are **motion-blurred**. Comparing "Ours (w/o R)" and "Ours (w/ R)", it can be seen that when we use the reliability to adjust the weights of different queries, the results are more accurate and reliable.

491

492

493 494

Multi-query settings on samples with fog

Fig. 12: Visualization of retrieval results under the multi-query settings. Some query images are added **fog**. Comparing "Ours (w/o R)" and "Ours (w/R)", it can be seen that when we use the reliability to adjust the weights of different queries, the results are more accurate and reliable.

4 Architectures of Modules ϕ , φ_{μ} and φ_{σ}

As described in the Section 3.3 in the main paper, modules ϕ , φ_{μ} and φ_{σ} are all light weighted. Here, we show their architecture in Tabel 6. "Conv(1 × 1, 2048, 1024)" represents a convolutional layer whose kernel size is 1 × 1, input channel is 2048 and output channel is 1024. "BN" represents the batch normalization layer. "ReLU" represents the rectified linear unit function. "Bayesian Conv" means that the parameters of the convolutional layer follow a Bernoulli distribution, *i.e.*, $\theta_{ij} = \pi_{ij} * \mathbf{z}_{ij}$, where $\mathbf{z}_{ij} \sim \text{Bernoulli}(\rho)$. In our experiments, we empirically set ρ as 0.7.

5 Derivation Details of Data Uncertainty Loss (Eq.(5))

In this part, we show the derivation details of Equation (5) in the main paper. For a sample \boldsymbol{x} , we project it into a Gaussian distribution $\mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ in the latent space. Assuming a sample \boldsymbol{x} is from the *i*-th class, the posterior of \boldsymbol{x} belonging to *i*-th class is formulated by,

$$p(\boldsymbol{x}|y=i) \propto \frac{1}{(2\pi\sigma^2)^{\frac{d}{2}}} \exp\left(-\frac{\|\boldsymbol{\mu}-\boldsymbol{w}_i\|^2}{2\sigma^2}\right)$$
 (1)

Table 6: Architectures of ϕ , φ_{μ} and φ_{σ} on different backbones. Conv: convolu-tional layer, BN: batch normalization layer, ReLU: rectified linear unit function. Bayesian Conv: convolutional layer whose the parameters follow Bernoulli dis-tribution.

545	Backbone	Module	Architecture	Backbone	Module	Architecture
545		Bayesian Conv $(1 \times 1, 2048, 1024)$		Bayesian $Conv(1 \times 1, 1024, 512)$		
546			$\rightarrow BN() \rightarrow ReLU()$			\rightarrow BN() \rightarrow ReLU()
547		ϕ	\rightarrow Bayesian Conv $(1 \times 1, 1024, 512)$		ϕ	\rightarrow Bayesian Conv $(1 \times 1, 512, 512)$
347			$\rightarrow BN() \rightarrow ReLU()$			\rightarrow BN() \rightarrow ReLU()
548			\rightarrow Bayesian Conv $(1 \times 1, 512, 2048)$			\rightarrow Bayesian Conv $(1 \times 1, 512, 1024)$
F 40			$Conv(1 \times 1, 2048, 1024)$]		$Conv(1 \times 1, 1024, 512)$
549	ResNet50 [1]		$\rightarrow BN() \rightarrow ReLU()$	HRNet-W32 [2]		\rightarrow BN() \rightarrow ReLU()
550		φ_{μ}	\rightarrow Conv(1 × 1, 1024, 512)		φ_{μ}	\rightarrow Conv(1 × 1, 512, 512)
			$\rightarrow BN() \rightarrow ReLU()$			\rightarrow BN() \rightarrow ReLU()
551			\rightarrow Conv(1 × 1, 512, 2048)			\rightarrow Conv(1 × 1, 512, 1024)
552			$Conv(1 \times 1, 2048, 1024)$]		$Conv(1 \times 1, 1024, 256)$
		φ_{σ}	\rightarrow BN() \rightarrow ReLU()		φ_{σ}	$\rightarrow BN() \rightarrow ReLU()$
553			\rightarrow Conv $(1 \times 1, 1024, 2048)$			\rightarrow Conv(1 × 1, 256, 1024)

where \boldsymbol{w}_i is the weight vector of *i*-th class in the classifier and *d* is the feature dimension. Assuming each class has the equal prior probability, the posterior of \boldsymbol{x} belonging to the class i is,

$$-i|\mathbf{r}\rangle - \frac{\exp\left(-\frac{\|\boldsymbol{\mu}-\boldsymbol{w}_i\|^2}{2\sigma^2}\right)}{2\sigma^2} - \frac{\exp\left(\frac{1}{\sigma^2}\boldsymbol{w}_i^T\boldsymbol{\mu}\right)}{2\sigma^2}$$
(2)

$$p(y=i|\boldsymbol{x}) = \frac{\exp\left(-\frac{2\sigma^2}{2\sigma^2}\right)}{\sum_j \exp\left(-\frac{\|\boldsymbol{\mu}-\boldsymbol{w}_j\|^2}{2\sigma^2}\right)} = \frac{\exp\left(-\frac{\sigma^2}{\sigma^2}\boldsymbol{w}_j^T\boldsymbol{\mu}\right)}{\sum_j \exp\left(\frac{1}{\sigma^2}\boldsymbol{w}_j^T\boldsymbol{\mu}\right)}$$
(2)

Where μ and w_* are l₂-normalized. p(y|x) can be regarded as a Boltzmann distribution. The magnitude of σ^2 controls the entropy of this distribution. The larger the σ^2 , the larger the entropy. Thus σ^2 can be regarded as the data uncertainty of sample \boldsymbol{x} . Assuming the class label of the sample \boldsymbol{x} is *i*, the loss function is formulated by,

$$\mathcal{L}_d(oldsymbol{\mu},\sigma^2) = -\log p(y=i|oldsymbol{x})$$

$$= -\frac{1}{\sigma^2} \boldsymbol{w}_i^\top \boldsymbol{\mu} + \log \sum_j \exp(\frac{1}{\sigma^2} \boldsymbol{w}_j^\top \boldsymbol{\mu})$$

$$= -\frac{1}{\sigma^2} \boldsymbol{w}_i^{\mathsf{T}} \boldsymbol{\mu} + \frac{1}{\sigma^2} \log \sum_j \exp\left(\boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{\mu}\right)$$

$$\frac{1}{\sigma^2} \sum_{j=1}^{\infty} \exp\left(\boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{\mu}\right)$$

$$-\frac{1}{\sigma^2} \log \sum_j \exp\left(\boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{\mu}\right) + \log \sum_j \exp\left(\frac{1}{\sigma^2} \boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{\mu}\right)$$
(3)

579
580
$$\approx \frac{1}{2}\mathcal{L}(\boldsymbol{\mu}) + \log \sigma^2$$
580

$$\approx \frac{1}{\sigma^2} \mathcal{L}(\boldsymbol{\mu}) + \log \sigma^2$$
581

where $\mathcal{L}(\boldsymbol{\mu}) = -\log \frac{\exp(\boldsymbol{w}_i^\top \boldsymbol{\mu})}{\sum_j \exp(\boldsymbol{w}_j^\top \boldsymbol{\mu})}$ is the cross entropy loss. In the approximation,

we assume that
$$\sigma^2 \to 1$$
, then $\sum_j \exp\left(\frac{1}{\sigma^2} \boldsymbol{w}_j^\top \boldsymbol{\mu}\right) \approx \sigma^2 \left(\sum_j \exp\left(\boldsymbol{w}_j^\top \boldsymbol{\mu}\right)\right)^{\frac{1}{\sigma^2}}$. Note 584

that this assumption is reasonable as it prevents the model from predicting too small data uncertainty. 586

6 Derivation of the Bayesian Framework

⁵⁹⁰ In the Bayesian framework, as the true posterior $p(\theta|D)$ is typically intractable, an approximate distribution $q_{\pi}(\theta)$ parameterized by π is defined. $q_{\pi}(\theta)$ is aimed to be as similar as possible to $p(\theta|D)$, which is measured by the Kullback-Leibler divergence. The optimal parameters π^* is defined as,

$$\boldsymbol{\pi}^* = \operatorname*{arg\,min}_{\boldsymbol{\pi}} \operatorname{KL}[q_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \| p(\boldsymbol{\theta} | \mathcal{D})] \tag{4}$$

According the Bayesian theorem: $p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$. Then $\mathrm{KL}[q_{\boldsymbol{\pi}}(\boldsymbol{\theta})\|p(\boldsymbol{\theta}|\mathcal{D})]$ can be rewritten as:

$$\mathrm{KL}[\mathbf{q}_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \| \mathbf{p}(\boldsymbol{\theta} | \mathcal{D})] = \int q_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \log \frac{q_{\boldsymbol{\pi}}(\boldsymbol{\theta})}{p(\boldsymbol{\theta} | \mathcal{D})} d\boldsymbol{\theta}$$
⁶⁰⁰
⁶⁰¹
⁶⁰²
⁶⁰³
⁶⁰⁴
⁶⁰⁴
⁶⁰⁴
⁶⁰⁴
⁶⁰⁵
⁶⁰⁶

$$= \int q_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \log \frac{q_{\boldsymbol{\pi}}(\boldsymbol{\theta}) p(\mathcal{D})}{p(\boldsymbol{\theta}) p(\mathcal{D}|\boldsymbol{\theta})} d\boldsymbol{\theta}$$

$$= \int q_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \log \frac{q_{\boldsymbol{\pi}}(\boldsymbol{\theta})}{p(\boldsymbol{\theta})} d\boldsymbol{\theta} - \int q_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \log p(\mathcal{D}|\boldsymbol{\theta}) d\boldsymbol{\theta}$$
⁽⁵⁾

$$+\int q_{oldsymbol{\pi}}(oldsymbol{ heta})\log p(\mathcal{D})doldsymbol{ heta}$$

$$= \mathrm{KL}[\mathrm{q}_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \| \mathrm{p}(\boldsymbol{\theta})] - \mathbb{E}_{q_{\boldsymbol{\pi}}(\boldsymbol{\theta})}[\log p(\mathcal{D}|\boldsymbol{\theta})] + \log p(\mathcal{D})$$

⁶¹¹ Thus, Eq. 4 can be transferred as:

$$\boldsymbol{\pi}^* = \operatorname*{arg\,min}_{\boldsymbol{\pi}} \operatorname{KL}[q_{\boldsymbol{\pi}}(\boldsymbol{\theta}) \| p(\boldsymbol{\theta})] - \mathbb{E}_{q_{\boldsymbol{\pi}}(\boldsymbol{\theta})}[\log p(\mathcal{D}|\boldsymbol{\theta})] \tag{6}$$

where $\log p(\mathcal{D})$ is dropped because it is independent of the parameters π .

630	References	630
631		631
632	1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.	632
633	In: CVPR. pp. 770–778 (2016)	633
634	2. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning	634
635	for human pose estimation. In: CVPR. pp. 5693–5703 (2019)	635
636	3. Zheng, L., Shen, L., Han, L., Wang, S., Wang, J., Han, Q.: Scalable person re- identification: A bonchmark In: ICCV pp. 1116–1124 (2015)	636
637	1000000000000000000000000000000000000	637
638		638
639		639
640		640
641		641
642		642
643		643
644		644
645		645
646		646
647		647
648		648
649		649
650		650
651		651
652		652
653		653
654		654
655		655
656		656
657		657
658		658
659		659
660		660
661		661
662		662
664		664
665		665
666		666
667		667
668		668
669		669
670		670
671		671
672		672
673		673
674		674