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6 Appendix

6.1 Architecture of RefineNet

Following the previous work [41], we design a RefineNet with an encoder-decoder
architecture similar to U-Net and a context extractor. The context extractor and
encoder part have similar architectures, consisting of four convolutional blocks,
and each of them is composed of two 3×3 convolutional layers, respectively. The
decoder part in the FusionNet has four transpose convolution layers.

Fig. 10: Visualization of the effect of RefineNet on M.B. [2] benchmark.

Specifically, the context extractor first extracts the pyramid contextual fea-
tures from input frames separately. We denote the pyramid contextual feature
as C0: {C0
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1}. We then perform backward

warping on these features using estimated intermediate flows to produce aligned
pyramid features, Ct←0 and Ct←1. The origin frames I0, I1, warped frames
Ît←0, Ît←1, intermediate flows Ft→0, Ft→1 and fusion mask M are fed into the
encoder. The output of i − th encoder block is concatenated with the Ci

t←0

and Ci
t←1 before being fed into the next block. The decoder parts finally pro-

duce a reconstruction residual ∆. And we will get a refined reconstructed image
clamp(Ît +∆, 0, 1), where Ît is the reconstruct image before the RefineNet. We
show some visualization results in Figure 10. RefineNet seems to make some
uncertain areas more blurred to improve quantitative results.

6.2 Selection of Building Operators

We focus on introducing a simplified VFI pipeline without bells and whistles. So
we choose building operators with intentional restraint. Exploring model com-
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Fig. 11: Visualization of intermediate flow Ft→0 and blend mask M . We
show that stack 3 IFblocks can get finer intermediate flow and blend mask.

pression is orthogonal to our approach. Our pipeline can be further sped up by
manual model design, or Neural Architecture Search (NAS) approaches (left to
future work). Furthermore, plain Conv is highly supported by NPU embedded
in display devices and provides convenience for customized requirements.

6.3 Intermediate Flow Visualization

In Figure 12, we provide visual results of our IFNet and compare them with the
linearly combined bi-directional optical flows [22]. IFNet produces clear motion
boundaries.

6.4 Model Efficiency Comparison

Recall that we aim to explore real-time models instead of refreshing SOTA
with larger models. Our models are suitable for real-time processing scenar-
ios (display devices, live streaming, games) and media post-processing. How-
ever, to the best of our knowledge, currently published papers do not test the



Real-Time Intermediate Flow Estimation for Video Frame Interpolation 21

Inputs (Overlay) Combination IFNet

Fig. 12: Visual comparison between linearly combined bi-directional
flows [22] and the result of IFNet.

speed of each state-of-the-art VFI model on same hardware, and rarely re-
port the complexity of the model. Some previous works [3,45] report runtime
data from the MiddleBury public leaderboard without indicating running de-
vices. These data are reported by the submitters of various methods. A more
verifiable survey comes from EDSC (Table 10) [9]. We collect the models of
each paper and test them on a NVIDIA TITAN X(Pascal) GPU with same
hardware. The code can be found on https://github.com/megvii-research/
ECCV2022-RIFE/blob/main/benchmark/testtime.py. RIFE use 16ms for in-
terpolating a 640× 480 frame, 31ms for 720p frame, 68ms for 1080p frame. The
relationship between runtime and resolution is roughly linear.

Take into account the imprecise comparison issues that TTA may introduce.
We can use other techniques to get large models. We replace TTA with “multiply
the number of hidden filter’s channel by a factor of 1.5”. And we train this new
large model from scratch. The difference between its performance and RIFE-
Large is almost negligible. 2× TTA do not change the performance curve of our
model. Using TTA, we can get a larger model without training.

6.5 Other Details

Training dynamic. We study the dynamic during the RIFE training. As shown
in Figure 13, the privileged distillation scheme helps RIFE converge to better
performance. Furthermore, we try to adjust the weights of losses. We found that
larger scale (10×) of weights will cause the model to not converge and smaller
weights (0.1×) will slightly reduce model performance. We found that the effect

https://github.com/megvii-research/ECCV2022-RIFE/blob/main/benchmark/testtime.py
https://github.com/megvii-research/ECCV2022-RIFE/blob/main/benchmark/testtime.py
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Fig. 13: PSNR on Vimeo90K benchmark during the whole training pro-
cess. The distillation scheme helps RIFE converge to better performance

of our distillation method is similar to regularization techniques, making the
models easier to train.
Supervision of mask. Further experiment show that adding supervision of
fusion mask has no effect. More detailed distillation design may be a future
research direction. When fixing Ît←0 and Ît←1, M can be directly learned from
the ground truth using the reconstruction loss.


