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Abstract. Real-time video frame interpolation (VFI) is very useful in
video processing, media players, and display devices. We propose RIFE,
a Real-time Intermediate Flow Estimation algorithm for VFI. To re-
alize a high-quality flow-based VFI method, RIFE uses a neural net-
work named IFNet that can estimate the intermediate flows end-to-end
with much faster speed. A privileged distillation scheme is designed for
stable IFNet training and improve the overall performance. RIFE does
not rely on pre-trained optical flow models and can support arbitrary-
timestep frame interpolation with the temporal encoding input. Exper-
iments demonstrate that RIFE achieves state-of-the-art performance on
several public benchmarks. Compared with the popular SuperSlomo and
DAIN methods, RIFE is 4–27 times faster and produces better results.
Furthermore, RIFE can be extended to wider applications thanks to
temporal encoding.

1 Introduction

Video Frame Interpolation (VFI) aims to synthesize intermediate frames between
two consecutive video frames. VFI supports various applications like slow-motion
generation, video compression [57], and video frame predition [58]. Moreover,
real-time VFI methods running on high-resolution videos have many potential
applications, such as reducing bandwidth requirements for live video streaming,
providing video editing services for users with limited computing resources, and
video frame rate adaption on display devices.

VFI is challenging due to the complex, non-linear motions and illumina-
tion changes in real-world videos. Recently, flow-based VFI algorithms have
offered a framework to address these challenges and achieved impressive re-
sults [30,22,40,62,3,61,28]. Common approaches for these methods involve two
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steps: 1) warping the input frames according to approximated optical flows and
2) fusing the warped frames using Convolutional Neural Networks (CNNs).

Optical flow models can not be directly used in VFI. Given the input frames
I0, I1, flow-based methods [30,22,3] need to approximate the intermediate flows
Ft→0, Ft→1 from the perspective of the frame It that we are expected to syn-
thesize. There is a “chicken-and-egg” problem between intermediate flows and
frames because It is not available beforehand, and its estimation is a difficult
problem [22,44]. Many practices [22,3,61,28] first compute bi-directional flows
from optical flow models, then reverse and refine them to generate intermediate
flows. However, such flows may have flaws in motion boundaries, as the ob-
ject position changes from frame to frame (“object shift” problem). Appearance
Flow [66], A pioneering work in view synthesis, proposes to estimate flow starting
from the target view using CNNs. DVF [30] extend it to the voxel flow of dy-
namic scenes to jointly model the intermediate flow and blend mask to estimate
them end-to-end. AdaCoF [27] further extends intermediate flows to adaptive
collaborative flows. BMBC [44] designs a bilateral cost volume operator for ob-
taining more accurate intermediate flows (bilateral motion). In this paper, we
aim to build a lightweight pipeline that achieves state-of-the-art (SOTA) perfor-
mance while maintaining the conciseness of direct intermediate flow estimation.
Our pipeline has these main design concepts:

1) Not requiring additional components, like image depth model [3], flow re-
finement model [22] and flow reversal layer [61], which are introduced to
compensate for the defects of intermediate flow estimation. We also want
to eliminate reliance on pre-trained SOTA optical flow models that are not
tailored for VFI tasks.

2) End-to-end learnable motion estimation: we demonstrate experimentally that
instead of introducing some inaccurate motion modeling, it is better to make
the CNN learn the intermediate flow end-to-end. This methodology has been
proposed [30]. However, the follow-up works do not fully inherit this idea.

3) Providing direct supervision for the approximated intermediate flows: most
VFI models are trained with only the final reconstruction loss. Intuitively,
propagating gradients of pixel-wise loss across warping operator is not effi-
cient for flow estimation [11,37,35]. Lacking supervision explicitly designed
for flow estimation degrades the performance of VFI models.

We propose IFNet, which directly estimates intermediate flow from adjacent
frames and a temporal encoding input. IFNet adopts a coarse-to-fine strategy [20]
with progressively increasing resolution: it iteratively updates the intermediate
flows and soft fusion mask via successive IFBlocks. Intuitively, according to
the iteratively updated flow fields, we could move corresponding pixels from
two input frames to the same location in a latent intermediate frame and use
a fusion mask to combine pixels from two input frames. To make our model
efficient, unlike most previous optical flow models [15,20,54,19,56], IFBlocks do
not contain expensive operators like cost volume and only use 3× 3 convolution
and deconvolution as building blocks, which are suitable for resource-constrained
devices. Furthermore, plain Conv is highly supported by NPU embedded in
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Fig. 1: Performance comparison. Results are reported for Vimeo90K [62] and
HD-4× [3] benchmark. More details are in the experimental section

display devices and provides convenience for customized requirements. Thanks
related researchers for the exploration of efficient models [48,36,14].

Employing intermediate supervision is very important. When training the
IFNet end-to-end using the final reconstruction loss, our method produces worse
results than SOTA methods because of the inaccurate optical flow estimation.
The situation dramatically changes after we design a privileged distillation scheme
that employs a teacher model with access to the intermediate frames to guide
the student to learn.

Combining these designs, we propose the Real-time Intermediate Flow Es-
timation (RIFE). RIFE trained from scratch can achieve satisfactory results,
without requiring pre-trained models or datasets with optical flow labels. We
illustrate the RIFE’s performance compared with other methods in Figure 1.

To sum up, our main contributions include:

– We design an effective IFNet to approximate the intermediate flows and
introduce a privileged distillation scheme to improve the performance.

– Our experiments demonstrate that RIFE achieves SOTA performance on
several public benchmarks, especially in the scene of arbitrary-time frame
interpolation.

– We show RIFE can be extended to applications such as depth map interpo-
lation and dynamic scene stitching, thanks to its flexible temporal encoding.

2 Related Works

Optical Flow Estimation. Optical flow estimation is a long-standing vision
task that aims to estimate the per-pixel motion, useful in many downstream
tasks [55,65,33,64]. Since the milestone work of FlowNet [15], flow model archi-
tectures have evolved for several years, yielding more accurate results while being
more efficient, such as FlowNet2.0 [20], PWC-Net [54] and LiteFlowNet [19].
Recently Teed et al. [56] introduce RAFT, which iteratively updates a flow
field through a recurrent unit and achieves a remarkable breakthrough in this
field. Another important research direction is unsupervised optical flow estima-
tion [37,23,35] which tackles the difficulty of labeling.



4 Z. Huang et al.

t, I0, I1

Ft→0 , Ft→1, M
IFNet

IGT
t

Teacher Model

FTea
t→0, FTea

t→1, MTea

Privileged 
Distillation

Reconstruction Loss

Student Model

(Training Phase)
Additional IFBlock

Temporal Encoding

Fig. 2: Overview of RIFE pipeline. Given two input frames I0, I1 and tem-
poral encoding t (timestep encoded as an separate channel [39,18]), we directly
feed them into the IFNet to approximate intermediate flows Ft→0, Ft→1 and the
fusion map M . During the training phase, a privileged teacher refines student’s
results based on ground truth It using a special IFBlock

Video Frame Interpolation. Recently, optical flow has been a prevalent com-
ponent in video interpolation. In addition to the method of directly estimating
the intermediate flow [30,27,44], Jiang et al. [22] propose SuperSlomo using the
linear combination of the two bi-directional flows as an initial approximation
of the intermediate flows and then refining them using U-Net. Reda et al. [50]
and Liu et al. [29] propose to improve intermediate frames using cycle con-
sistency. Bao et al. [3] propose DAIN to estimate the intermediate flow as a
weighted combination of bidirectional flow. Niklaus et al. [41] propose SoftSplat
to forward-warp frames and their feature map using softmax splatting. Xu et
al. [61] propose QVI to exploit four consecutive frames and flow reversal filter
to get the intermediate flows. Liu et al. [28] further extend QVI with rectified
quadratic flow prediction to EQVI.

Along with flow-based methods, flow-free methods have also achieved re-
markable progress. Meyer et al. [38] utilize phase information to learn the motion
relationship for multiple video frame interpolation. Niklaus et al. [43] formulate
VFI as a spatially adaptive convolution whose convolution kernel is generated
using a CNN given the input frames. Cheng et al. propose DSepConv [8] to ex-
tend kernel-based method using deformable separable convolution and. Choi et
al. [10] propose an efficient flow-free method named CAIN, which employs the
PixelShuffle operator and channel attention to capture the motion information
implicitly. Some work further focus on increasing the resolution and frame rate of
the video together and has achieved good visual effect [59,60]. In addition, large-
motion and animation frame interpolation is also fields of great interest [49,52,6].

Knowledge Distillation. Our privileged distillation [31] for intermediate flow
conceptually belongs to the knowledge distillation [17], which originally aims to
transfer knowledge from a large model to a smaller one. In privileged distillation,
the teacher model gets more input than the student model, such as scene depth,
images from other views, and even image annotation. Therefore, the teacher
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Fig. 3: Compare indirect intermediate flow estimation [22,61,3] (left)
with IFNet (right). As the object shifts, flow reversal modules may have
flaws in motion boundaries. Rather than hand-engineering flow reversal layers,
CNNs can learn intermediate flow estimates end-to-end

model can provide more accurate representations to guide the student model to
learn. This idea is applied to some computer vision tasks, such as hand pose
estimation [63], re-identification [46] and video style transfer [7]. Our work is
also related to codistillation [1] where the student and teacher have the same
architecture and different inputs during training.

3 Method

3.1 Pipeline Overview

We illustrate the overall pipeline of RIFE in Figure 2. Given a pair of consecutive
RGB frames, I0, I1 and target timestep t (0 ≤ t ≤ 1), our goal is to synthesize

an intermediate frame Ît. We estimate the intermediate flows Ft→0, Ft→1 and
fusion map M by feeding input frames and t as an additional channel into the
IFNet. We can get reconstructed image Ît using following formulation:

Ît = M ⊙ Ît←0 + (1−M)⊙ Ît←1, (1)

Ît←0 =
←−
W(I0, Ft→0), Ît←1 =

←−
W(I1, Ft→1). (2)

where
←−
W is the image backward warping, ⊙ is an element-wise multiplier, and

M is the fusion map (0 ≤ M ≤ 1). We use another encoder-decoder CNNs
named RefineNet following previous methods [22,41] to refine the high-frequency

area of Ît and reduce artifacts of the student model. Its computational cost is
similar to the IFNet. The RefineNet finally produce a reconstruction residual
∆ (−1 ≤ ∆ ≤ 1). And we will get a refined reconstructed image Ît + ∆. The
detailed architecture of RefineNet is in the Appendix.

3.2 Intermediate Flow Estimation

Some previous VFI methods reverse and refine bi-directional flows [22,61,3,28] as
depicted in Figure 3. The flow reversal process is usually cumbersome due to the
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Fig. 4: Left: The IFNet is composed of several stacked IFBlocks operating at
different resolution. Right: In an IFBlock, we first backward warp the two input
frames based on current approximated flow F i−1. Then the input frames I0, I1,
warped frames Ît←0, Ît←1, the previous results F i−1,M i−1 and timestep t are
fed into the next IFBlock to approximate the residual of flow and mask. The
privileged information IGT

t is only provided for teacher

difficulty of handling the changes of object positions. Intuitively, the previous
flow reversal method hopes to perform spatial interpolation on the optical flow
field, which is not trivial because of the “object shift” problem. The role of our
IFNet is to directly and efficiently predict Ft→0, Ft→1 and fusion mask M given
two consecutive input frames I0, I1 and timestep t. When t = 0 or t = 1, IFNet
is similar to the classical optical flow models.

To handle the large motion encountered in intermediate flow estimation, we
employ a coarse-to-fine strategy with gradually increasing resolution, as illus-
trated in Figure 4. Specifically, we first compute a rough prediction of the flow
on low resolution, which is believed to capture large motions easier, then it-
eratively refine the flow fields with gradually increasing resolution. Following
this design, our IFNet has a stacked hourglass structure, where a flow field is
iteratively refined via successive IFBlocks:[

F i

M i

]
=

[
F i−1

M i−1

]
+ IFBi(

[
F i−1

M i−1

]
, t, Îi−1), (3)

where F i−1 and M i−1 denote the current estimation of the intermediate flows
and fusion map from the (i − 1)th IFBlock, and IFBi represents the ith IF-
Block. We use a total of 3 IFBlocks, and each has a resolution parameter,
(K0,K1,K2) = (4, 2, 1). During inference time, the final estimation is Fn and
Mn(n = 2). Each IFBlock has a feed-forward structure consisting of serveral
convolutional layers and an up-sampling operator. Except for the layer that out-
puts the optical flow residuals and the fusion map, we use PReLU [16] as the
activation function. The cost volume [15] operator is computationally expensive



Real-Time Intermediate Flow Estimation for Video Frame Interpolation 7

Table 1: Average inference time on the 640 × 480 frames. Recent VFI
methods [22,3,41] run the optical flow model twice to obtain bi-directional flows

Method FlowNet2.0 [20] PWC-Net [54] LiteFlownet [19] RAFT [56] IFNet

Runtime 2× 207ms 2× 21ms 2× 73ms 2× 52ms 7ms

Fig. 5: Results of DVF [30] (Vimeo90K). After feeding the edge map of
intermediate frames (privileged information) into the model, the estimated flows
can be significantly improved, resulting in better reconstruction on validation set

and usually ties the starting point of optical flow to the input image. So it is not
directly transferable.

We compare the runtime of the SOTA optical flow models [54,19,56] and
IFNet in Table 1. Current flow-based VFI methods [22,3,41] usually need to
run their flow models twice then process the bi-directional flows. Therefore the
intermediate flow estimation in RIFE runs at a faster speed. Although these
optical models can estimate inter-frame motion accurately, they are not suitable
for direct migration to VFI tasks.

3.3 Priveleged Distillation for Intermediate Flow

We use an experiment to show that directly approximating the intermediate
flows is challenging without access to the intermediate frame. We train DVF [30]
model to estimate intermediate flow on Vimeo90K [62] dataset. As a comparison,
we add an additional input channel to the DVF model, containing the edge
map [12] of intermediate frames (denoted as “Privileged DVF”). Figure 5 shows
that the quantization result of Privileged DVF is surprisingly high, while the
flows estimated by DVF are blurry. Similar conclusions are also demonstrated
in deferred rendering, showing that VFI will be simpler with some intermediate
information [6]. This demonstrates that estimating optical flow between two
images is easier for the model than estimating intermediate flow. This inspire us
to design a privileged model to teach the original model.

We design a privileged distillation loss to IFNet. We stack an additional
IFBlock (teacher model IFBTea, KTea = 1) that refines the results of IFNet
referring to the target frame IGT

t :[
FTea

MTea

]
=

[
Fn

Mn

]
+ IFBTea(

[
Fn

Mn

]
, t, În, IGT

t ). (4)
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With the access of IGT
t as privileged information, the teacher model produces

more accurate flows. We define the distillation loss Ldis as follows:

Ldis =
∑

i∈{0,1}

||Ft→i − FTea
t→i ||2. (5)

We apply the distillation loss over the full sequence of predictions generated
from the iteratively updating process in the student model. The gradient of this
loss will not be backpropagated to the teacher model. The teacher block will
be discarded after the training phase, hence this would incur no extra cost for
inference. It makes more stable training and faster convergence.

3.4 Implementation Details

Supervisions. Our training loss Ltotal is a linear combination of the reconstruc-
tion losses Lrec,L

Tea
rec and privileged distillation loss Ldis:

Ltotal = Lrec + LTea
rec + λdLdis, (6)

where we set λd = 0.01 to balance the scale of losses.

The reconstruction loss Lrec models the reconstruction quality of the inter-
mediate frame. The reconstruction loss has the formulation of:

Lrec = d(Ît, I
GT
t ),LTea

rec = d(ÎTea
t , IGT

t ), (7)

where d is often a pixel-wised loss. Following previous work [40,41], we use L1

loss between two Laplacian pyramid representations of the reconstructed image
and ground truth (denoted as LLap, the pyramidal level is 5).

Training Dataset. We use the Vimeo90K dataset [62] to train RIFE. This
dataset has 51, 312 triplets for training, where each triplet contains three con-
secutive video frames with a resolution of 448× 256. We randomly augment the
training data using horizontal and vertical flipping, temporal order reversing,
and rotating by 90 degrees.

Training Strategy. We train RIFE on the Vimeo90K training set and fix t =
0.5. RIFE is optimized by AdamW [32] with weight decay 10−4 on 224 × 224
patches. Our training uses a batch size of 64. We gradually reduce the learning
rate from 10−4 to 10−5 using cosine annealing during the whole training process.
We train RIFE on 8 TITAN X (Pascal) GPUs for 300 epochs in 10 hours.

We use the Vimeo90K-Septuplet [62] dataset to extend RIFE to support
arbitrary-timestep frame interpolation [9,24]. This dataset has 91, 701 sequence
with a resolution of 448× 256, each of which contains 7 consecutive frames. For
each training sample, we randomly select 3 frames (In0 , In1 , In2) and calculate
the target timestep t = (n1−n0)/(n2−n0), where 0 ≤ n0 < n1 < n2 < 7. So we
can write RIFE’s temporal encoding to extend it. We keep other training setting
unchanged and denote the model trained on Vimeo90K-Septuplet as RIFEm.
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Fig. 6: Interpolating multiple frames using RIFEm. These images are from
HD [3], M.B. [2], Vimeo90K [62] benchmarks, respectively. We attach the results
of CAIN [10] and ABME [45]. RIFEm provides smooth and continuous motions

4 Experiments

We first introduce the benchmarks for evaluation. Then we provide variants of
our models with different computational costs. We compare these models with
representative SOTA methods. In addition, we show the capability of generating
arbitrary-timestep frames and other applications using RIFE. An ablation study
is carried out to analyze our design. Finally, we discuss some limitations of RIFE.

4.1 Benchmarks and Evaluation Metrics

We train our models on the Vimeo90K training dataset and directly test it on
the following benchmarks.

Vimeo90K. There are 3,782 triplets in the Vimeo90K testing set [62] with
resolution of 448× 256. This dataset is widely evaluated in recent VFI methods.

UCF101. The UCF101 dataset [53] contains videos with various human actions.
There are 379 triplets with a resolution of 256× 256.

HD. Bao et al. [4] collect 11 videos for evaluation. The HD benchmark consists
of four 1080p, three 720p and four 1280 × 544 videos. Following the author of
this benchmark, we use the first 100 frames of each video for evaluation.

X4K-1000FPS. A recently released high frame rate 4K dataset [51] containing
15 scenes for testing. We follow the evaluation of [45].

We measure the peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and interpolation error (IE) for quantitative evaluation. All the methods
are tested on a TITAN X (Pascal) GPU. To report the runtime, we test all mod-
els for processing a pair of 640×480 images using the same device. Disagreements
with some of the published results are explained in the Appendix.
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Table 2: Quantitative evaluation (PSNR) for 4× interpolation on the
HD [4] and 8× interpolation on X4K-1000FPS [51] benchmark

Method Arbitrary-timestep HD544p HD720p HD1080p X4K-1000FPS

DAIN [3] ✓ 22.17 30.25 OOM 26.78†
CAIN [10] - 21.81 31.59 31.08 -
BMBC [44] ✓ 19.51 23.47 OOM OOM
DSepconv [8] - 19.28 23.48 OOM OOM
CDFI [13] - 21.85 29.28 OOM OOM
EDSCm [9] ✓ 21.89 30.35 30.91 -
ABME [45] - 22.46 31.43 33.22 30.16†
RIFEm ✓ 22.95 31.87 34.25 30.58‡

†: copy from [45]. ‡: estimate flows on 1/4 downsampled videos.

4.2 Comparisons with Previous Methods

We compare RIFE with previous VFI models [62,43,4,3,10,41,44,8,27,13,9]. These
models are officially released except SoftSplat [41]. A recently unofficial repro-
duction [49] report SoftSplat [41] is slower than ABME [45], and we can not
verify it with the available materials. In addition, we train DVF [30] model and
SuperSlomo [22] using our training pipeline on Vimeo90K dataset because the
released models of these methods are trained on early datasets.

Interpolating Arbitrary-timestep Frame. Arbitrary-timestep VFI is impor-
tant in frame-rate conversion. We apply RIFEm to interpolate multiple interme-
diate frames at different timesteps t ∈ (0, 1), as shown in Figure 6. RIFEm can
successfully handle t = 0.125 (8×) which is not included in the training data.

To provide a quantitative comparison of multiple frame interpolation, we
further extract every fourth frame of videos from HD benchmark [4] and use them
to interpolate other frames. We divide the HD benchmark into three subsets
with different resolution to test these methods. We show the quantitative PSNR
between generated frames and frames of the original videos in Table 2. Note
that DAIN [3], BMBC [44] and EDSCm [8] can generate a frame at an arbitrary
timestep. Some other methods can only interpolate the intermediate frame at
t = 0.5. Thus we use them recursively to produce 4× results. Specifically, we
firstly apply the single interpolation method once to get intermediate frame
Î0.5. Then we feed I0 and Î0.5 to get Î0.25 and so on. Furthermore, we test 8×
interpolation in a recently released dataset, X4K-1000FPS [51]. Overall, RIFEm

is very effective in the multiple frame interpolation.

Model Scaling. To scale our models that can be compared with existing meth-
ods, we introduce two modifications following: test-time augmentation and res-
olution multiplying. 1) We flip the input images horizontally and vertically to
get augmented test data. We infer and average (with flipping) these two results
finally. This model is denoted as RIFE-2T. 2) We remove the first downsample
layer of IFNet and add a downsample layer before its output to match the origin
pipeline. We also perform this modification on RefineNet. It enlarges the pro-
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Table 3: Quantitative comparisons on several benchmarks. The images
of each dataset are directly inputted to each model. Some models are unable
to run on 1080p images due to exceeding the memory available on our graphics
card (denoted as “OOM). We use gray backgrounds to mark the methods that
require pre-trained depth models or optical flow models

Method
# Parameters Runtime UCF101 [53] Vimeo90K [62] M.B. [2] HD [3]

(Million) (ms) PSNR SSIM PSNR SSIM IE PSNR

DVF [62] 1.6 80 34.92 0.968 34.56 0.973 2.47 31.47
TOFlow [2] 1.1 84 34.58 0.967 33.73 0.968 2.15 29.37

DAIN [3] 24.0 436 35.00 0.968 34.71 0.976 2.04 31.64†

DSepConv [8] 21.8 236 35.08 0.969 34.73 0.974 2.03 OOM

SoftSplat [41]† 7.7 - 35.39 0.970 36.10 0.980 1.81 -
BMBC [44] 11.0 1580 35.15 0.969 35.01 0.976 2.04 OOM
CDFI [13] 5.0 198 35.21 0.969 35.17 0.977 1.98 OOM
ABME [45] 18.1 339 35.37 0.970 36.18 0.981 1.88 32.17
RIFE-Large 9.8 80 35.41 0.970 36.19 0.981 1.82 32.31

Relatively Fast Models
CAIN [10] 42.8 38 34.98 0.969 34.65 0.973 2.28 31.77
Superslomo [22] 19.8 62 35.15 0.968 34.64 0.974 2.21 31.55
SepConv [42] 21.6 51 34.78 0.967 33.79 0.970 2.27 30.87
AdaCoF [27] 21.8 34 34.91 0.968 34.27 0.971 2.31 31.43
EDSC [9] 8.9 46 35.13 0.968 34.84 0.975 2.02 31.59
RIFE 9.8 16 35.28 0.969 35.61 0.978 1.96 32.14
RIFEm‡ 9.8 16 35.22 0.969 35.46 0.978 2.16 32.31

†: copy from the original papers. ‡: trained on Vimeo90K-Septuplet dataset.

cess resolution of the feature maps and produces a model named RIFE-2R. We
combine these two modifications to extend RIFE to RIFE-Large (2T2R).
Middle Timestep Interpolation. We report the performance of middle timestep
interpolation in Table 3. For ease of comparison, we group the models by run-
ning speed. RIFE achieve very high performance compared to other small mod-
els. Meanwhile, RIFE needs only about 3 gigabytes of GPU memory to process
1080p videos. We get a larger version of our model (RIFE-Large) by model
scaling, which runs about 4× faster than ABME [45] with comparable perfor-
mance. We provide a visual comparison of video clips with large motions from
the Vimeo90K testing set in Figure 7, where SepConv [43] and DAIN [3] pro-
duce ghosting artifacts, and CAIN [10] causes missing-parts artifacts. Overall,
RIFE (with small computation) can produce more reliable results.

4.3 General Temporal Encode

In the VFI task, our temporal encoding t is used to control the timestep. To show
its generalization capability, we demonstrate that we can control this encoding
to implement diverse applications. As shown in Figure 8, if we input a gradient
encoding tp, the RIFEm will synthesize the two images from dynamic scenes in
a “panoramic” view (use different timestamps for each column). The position
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Inputs SepConv [42] DAIN [3] CAIN [10] RIFE (Ours) GT

Fig. 7: Qualitative comparison on Vimeo90K [62] testing set

I0 I1

̂Ip
tp

Fig. 8: Synthesize images from two views on one “panoramic” image Îp
using RIFEm. Îp has been stretched for better visualization

relation of the vehicle in Îp is between I0 and I1. In other words, if I0, I1 are

from the binocular camera, the shooting time of I1 is later than that of I0. Îp
is the result of a wider FOV camera scan in columns. Similarly, this method
may potentially eliminate the rolling shutter of the videos by having different
timestamps for each horizontal row.

4.4 Image Representation Interpolation

RIFEm can interpolate other image representations using the intermediate flows
and fusion map approximating from images. For instance, we interpolate the
results of MiDaS [47] which is a popular monocular depth model, shown in
Figure 9. The synthesis formula is simply as follows:

D̂t = M ⊙
←−
W(D0, Ft→0) + (1−M)⊙

←−
W(D1, Ft→1), (8)

where D0, D1 are estimated by MiDas [47] and F,M are estimated by RIFEm.
RIFE may potentially be used to extend some models and provide visually plau-
sible effects when we ignore z-axis motion of objects.

4.5 Ablation Studies

We design some ablation studies on the intermediate flow estimation, distillation
scheme, model design and loss function, shown in Table 4. These experiments
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Fig. 9: Interpolation for depth map using RIFEm.

use the same hyper-parameter setting and evaluation on Vimeo90K [62] and
MiddleBury [2] benchmarks.

IFNet vs. Flow Reversal. We compare IFNet with previous intermediate
flow estimation methods. Specifically, we use RAFT [56] and PWC-Net [54]
with officially pre-trained parameters to estimate the bi-directional flows. Then
we implement three flow reversal methods, including linear reversal [22], using
a hidden convolutional layer with 128 channels, and the flow reversal layer from
EQVI [28]. The optical flow models and flow reversal modules are combined to-
gether to replace the IFNet. Furthermore, we try to use the forward warping [41]
operator to bypass flow reversal. These models are jointly fine-tuned with Re-
fineNet. Because these models can not directly approximate the fusion map, the
fusion map is subsequently approximated by RefineNet. As shown in Table 4,
RIFE is more efficient and gets better interpolation performance. These flow
models can estimate accurate bi-directional optical flow, but the flow reversal
has difficulties in dealing with the object shift problem illustrated in Figure 3.

Ablation on the Distillation Scheme. We observe that removing the distil-
lation framework makes model training sometimes divergent. Furthermore, we
show the importance of distillation design in following experiments. a1) Remove
the privileged teacher block and use the last IFBlocks results to guide the first
two IFBlocks, denoted as “self-consistency”; a2) Use pre-trained RAFT [56]
to estimate the intermediate flows based on the ground truth image, denoted
as “RAFT-KD”. This guidance is inspired by the pseudo-labels method [26].
However, this implementation relies on the pre-trained optical flow model and
extremely increases the training duration (3×). We found a1 and a2 suffer in
quality. These experiments demonstrate the importance of optical flow supervi-
sion. Some recent work [25,34] has also echoed the improvement using suitable
optical flow distillation.

Ablation on RIFE’s Architecture and Loss Function. To verify the coarse-
to-fine strategy of IFNet, we removed the first IFBlock and the first two IFBlocks
in two experiments, respectively. We also try some other popular techniques,
such as Batch Normlization (BN) [21]. BN does stabilize the training, but de-
grades final performance and increases inference overhead. We provide a pair of
experiments to show LLap [40,41] is quantitatively better than L1.

Limitations. Our work may not cover some practical application requirements.
Firstly, RIFE focuses on using two input frames and multi-frame input [61,28,24]
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Table 4: Ablation study

Setting
Vimeo90K [62] MiddleBury [2] Runtime

PSNR IE 640× 480

Intermediate Flow Estimation
RAFT [56] + linear reversal [22] 34.68 2.31 60ms
RAFT [56] + CNN reversal 34.82 2.24 65ms
RAFT [56] + reversal layer [28] 35.16 2.04 101ms
PWC-Net [54] + reversal layer [28] 35.24 2.06 83ms
PWC-Net [54] + forward warping [41] 35.48 2.02 52ms
RIFE 35.61 1.96 16ms

Distillation Scheme
RIFE w/ self-consistency 35.37 2.02 16ms
RIFE w/ RAFT-KD 35.52 1.98 16ms
RIFE (priviledged distillation) 35.61 1.96 16ms

Model Design
RIFE w/ one IFBlock 35.17 2.12 12ms
RIFE w/ two IFBlocks 35.46 1.97 14ms
RIFE + BN [21] 35.49 2.02 21ms
RIFE 35.61 1.96 16ms

Loss Function
RIFE w/ L1 35.51 1.94 16ms
RIFE w/ LLap 35.61 1.96 16ms

is left to future work. One straightforward approach is to extend IFNet to use
more frames as input. Secondly, most experiments are done with SSIM and PSNR
as quantitative indexes. If human perception quality is preferred, RIFE can read-
ily be changed to use the perceptually related losses [5,42]. Thirdly, additional
training data may be necessary for extending RIFE to various applications, such
as interpolation for depth map and animation videos [52].

5 Conclusion

We develop an efficient and flexible algorithm for VFI, namely RIFE. A sepa-
rate neural module IFNet directly estimates the intermediate optical flows, su-
pervised by a privileged distillation scheme, where the teacher model can access
the ground truth intermediate frames. Experiments confirm RIFE can effectively
process videos of different scenes. Furthermore, an extra input with temporal en-
coding enables RIFE for arbitrary-timestep frame interpolation. The lightweight
nature of RIFE makes it much more accessible for downstream tasks.
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