
End-to-End Visual Editing with a
Generatively Pre-Trained Artist

Supplementary Material

Andrew Brown1,2 , Cheng-Yang Fu2 , Omkar Parkhi2 ,
Tamara L. Berg2 , and Andrea Vedaldi1,2

1 Visual Geometry Group, University of Oxford {abrown}@robots.ox.ac.uk
2 Meta AI Research {chengyangfu, omkar, tlberg, vedaldi}@fb.com

https://www.robots.ox.ac.uk/~abrown/E2EVE/

Table of Contents

A Additional Qualitative Results . 1
B Additional Method Details . 8

B.1 VQ-GAN Training . 8
B.2 Constructing Evaluation Data Triplets . 8

C Additional Baseline Details . 8
C.1 Constructing Inputs for Baseline methods . 9
C.2 Baseline Implementation Details . 9
C.3 Quantitative Analysis of Baseline Design Choices 10

D Additional Quantitative Results . 11
D.1 Computational Efficiency of E2EVE . 11
D.2 Effect of Sampling Methods . 12
D.3 Random Free-Form Masks . 14
D.4 Additional Ablation Discussions . 15

A Additional Qualitative Results

In this Section we describe additional qualitative results, and analyse cases of
unreasonable generations from the model. All images in this supplementary ma-
terial are sourced from UnSplash [10], or DFDC [2]. For videos demonstrating
the capabilities of E2EVE, please see our website: https://www.robots.ox.ac.
uk/~abrown/E2EVE/

Dresses-7m - block edits . In fig. 1 we show block edits from our method on the
Dresses-7m dataset. To demonstrate the model robustness and sample diversity,
we generate edits for the same source image, while varying the edit region and
driver image. The generated edits are remarkable. E2EVE generates natural-
looking edits, that are local to the edit-region and faithful to the driver images.
Additionally, the edits are visually diverse, and contain many different clothing

https://orcid.org/0000-0002-9556-2633
https://orcid.org/0000-0002-1377-3278
https://orcid.org/0000-0001-8959-3284
https://orcid.org/0000-0002-1272-3359
https://orcid.org/0000-0003-1374-2858
https://www.robots.ox.ac.uk/~abrown/E2EVE/
https://www.robots.ox.ac.uk/~abrown/E2EVE/
https://www.robots.ox.ac.uk/~abrown/E2EVE/

2 Brown et al.

structures, styles, patterns and colors, with the same two edits rarely sharing the
same generated content. Neither the source image, nor any of the driver images
in fig. 1 are depicted in Dresses-7m. However, E2EVE demonstrates zero-shot
generalisation capabilities to the new patterns and structures in these images in
order to blend the content of the driver images cohesively with the source image.

Dresses-7m - free-form edits . We show additional free-form edits from E2EVE
on the Dresses-7m dataset in fig. 2. Although all structural information besides
the outline of the clothing item (i.e. the outline of the mask) are masked in
the source image, E2EVE generates natural and diverse clothing structures for
the same source image and edit region (e.g. see the different waist and neckline
structures in fig. 2a), that are faithful to the driver images. Impressively, although
the training set of Dresses-7m contains only dresses, E2EVE is able to generalise
well to an edit region depicting a T-shirt in fig. 2b.

Because the edit region R fully contains an object (in this case, a clothing
item), and separates this object in the foreground from the background, we are
hence able to paste the edited region back on to the source image, without
creating any disjoint spatial continuity over the edit region boundary in the
output. This has the effect of removing any non-local effects from the edit, while
preserving the naturalness of the source image outside of the edit region. All
generated results in fig. 2 are hence shown with the generated edit region pasted
back onto the source image.

Unreasonable Generations - E2EVE . E2EVE generates very impressive results
even in cases when the driver and source images are highly uncorrelated (see
Fig. 5 in main paper, and fig. 1 in the supp. mat.). However, there are still
some edits proposed by the model that are unreasonable. This is not a problem
unique to our approach, and is due to the model lacking a full understanding
of the semantic content of images. fig. 3 highlights three cases of unreasonable
edits that were seen in a small number of generated images from E2EVE using
block-edits trained on Dresses-7m.

fig. 3 left: E2EVE leaves part of the masked edit region in the output gen-
erated image. E2EVE simply marks the masked region in the model inputs by
leaving a R-shaped hole in the masked source image (Section 3.2 in main paper),
and very occasionally, part of this hole is left in the model output. Interestingly,
this only happens when R includes the bottom-most rows of the image.

fig. 3 middle: E2EVE generates an unnatural-looking face. The Dresses-7m
dataset contains some faces. When trained on this dataset, the model hence
learns that faces are likely to appear in the top-most parts of images. When the
edit region includes the top-most part of the image, E2EVE may generate an
unnatural looking face. These generations could be avoided by removing faces
from the training set.

fig. 3 right: E2EVE generates an unreasonable edit when the source and
driver images are completely mis-aligned. In this case E2EVE is asked to blend
some legs into the top of a dress. This is an impossible edit to complete natu-
rally, and one that would not appear in the self-supervised training regime used

End-to-End Visual Editing with a Generatively Pre-Trained Artist 3

by the method. Impressively, E2EVE is still able to generate cohesive blends
occasionally when given such non-aligned inputs (see top-right-most generation
in fig. 1).

FFHQ - Comparisons. In fig. 4 we show some qualitative comparisons to prior
work for the models trained on the FFHQ dataset. Our method generates edits
that are natural-looking, faithful to the driver, and that are local, whereas the
prior work struggles to achieve all three (see Table 1 in the main paper for the
quantitative demonstration of this trend).

FFHQ - E2EVE. In fig. 5 we show additional qualitative results from our method
trained on FFHQ. Here, we probe whether E2EVE is able to make different edits
to the same source image, or make the same edit to many different source images.
Specifically, we choose three driver image and edit region pairs, (y,R), and pair
them with a number of varied source images.

E2EVE generates natural-looking edits, even when the driver and source im-
ages are non-aligned (e.g. due to the different genders in the source and driver
images). Impressively the generated images are faithful to the specific details
of the driver image across all of the source images. For example, the style of
the edited glasses and new hairstyle specifically match the corresponding driver
images. This highlights the capability of image-based visual editing to explic-
itly edit specific visual content. Furthermore E2EVE makes stylistic changes to
the driver image to make for a more natural edit that is cohesive with the sur-
rounding source image. For example, the added hair (both head and beard) are
manipulated in color and texture to roughly match the rest of the hair in the
image.

4 Brown et al.

Fig. 1. Qualitative results from the block edits version of E2EVE trained on the dresses-
7m dataset. To demonstrate the robustness of our method and the visual diversity of
the generations, we fix the source image, and vary both the edit region and driver
images. In each case, the masked region of the source image is that contained within
the blue line. Please zoom in for details. Images are sourced from UnSplash [10].

End-to-End Visual Editing with a Generatively Pre-Trained Artist 5

Fig. 2. Qualitative results from the free-form edits version of E2EVE trained on the
dresses-7m dataset. We show all image generation permutations for 5 masked source
images, and 5 driver images. In each case, the masked region of the source image is
that contained within the blue line. Please zoom in for details. Images are sourced from
UnSplash [10].

6 Brown et al.

⊕ = ⊕ = ⊕ =

Fig. 3. Examples of unreasonable generations from E2EVE. In a small number of sam-
ples from the block-edits model trained on Dresses-7m, some unreasonable generations
are seen. Left: Part of the edit region is left in the output image. Middle: An unnatural
looking face is generated occasionally when the edit region fills the top-most part of
the source image. Right: Non-aligned inputs can lead to unreasonable generations.

a. ⊕ =

b. ⊕ =

c. ⊕ =

d. ⊕ =

e. ⊕ =

In-Domain Im2SG EdiBERT Ours Source w. mask driver

Fig. 4. Qualitative comparisons to prior work when trained on FFHQ. Our method
generates edits that are natural-looking, faithful to the driver and local to the edit
region, whereas prior work struggles to achieve a balance of all three. In each case, the
masked region of the source image is that contained within the blue line. Images are
sourced from DFDC [2].

End-to-End Visual Editing with a Generatively Pre-Trained Artist 7

Ours Source w. masks source

driver

Fig. 5. Qualitative results for our method when trained on FFHQ. For each source
image (row) we use the same three driver image and edit region pairs to generate three
edited images. To save space, we display the three different edit regions used for the
three samples on the same image (the source w. masks column). The left column of
generated images corresponds to the green edit region, the middle column corresponds
to the blue edit region, and the right column corresponds to the orange region. This
figure is best viewed in color. Images are sourced from DFDC [2].

8 Brown et al.

B Additional Method Details

In this Section, we provide further details on how our method is implemented.
Specifically we detail how the VQ-GANs that we use in our method are trained.
This is in addition to Section 3.3 in the main paper. We also give further clar-
ification on how triplets are formed for the evaluation data. This is in addition
to Section 4 in the main paper.

B.1 VQ-GAN Training

Here, we explain the loss function for training the VQ-GAN. Following [3], the
VQ-GAN is trained to optimize the following loss function:

LV Q(E,G,Z) = ∥x− x̂∥2 + ∥sg[Φ(x)]− z∥22 + ∥sg[z]− Φ(x̂)∥22 (1)

where x is the input image, x̂ = Ψ(z) is the reconstructed image, z = Φ(x)
are the discrete codes, Φ is the encoder, and Ψ is the paired decoder. The first
term is a reconstruction loss, the second a loss pulling the codebook vectors to-
wards the encoder outputs, and the third term is the commitment loss [7], which
makes sure that the encoder commits to an embedding and the output does
not grow arbitrarily. Here, sg[·] is the stop-gradient operation. Backpropoga-
tion through the non-differentiable quantization step is computed via a straight
through gradient estimator. For more details and motivation see [3, 7, 8, 9].

B.2 Constructing Evaluation Data Triplets

Here, we give further clarification on how evaluation data triplets are formed.
Following Section 4 in the main paper, each triplet (x, y,R) in the evaluation
data consists of the source image x, the edit region R, and the driver image
y = x′|R that is taken from the same spatial location (i.e. the coordinate centres
of both driver image and edit region align), but from a different image x′. We
add the further detail that the edit region R is purposefully chosen to be larger
than the driver image y. Due to the lack of strict alignment in the datasets (apart
from FFHQ), this rule ensures that there is a high chance of there existing a
feasible edit for each triplet.

C Additional Baseline Details

In this Section, we provide further details on how the baselines that we compare
to in our experiments are implemented. We explain how we form the inputs for
the baselines in section C.1, we list the hyper-parameters and code sources for
the baseline methods in section C.2, and we analyse the quantitative effect of
certain baseline implementation design choices in section C.3.

End-to-End Visual Editing with a Generatively Pre-Trained Artist 9

C.1 Constructing Inputs for Baseline methods

Here, we detail how we form the inputs for each of the prior work baselines.
Whereas our method takes as input the driver image y and masked source im-
age x as separate pieces of conditioning information, the prior work baselines
instead take as input a composited image, where the driver image has been
pasted onto the source image. In the corresponding papers for each of the base-
line approaches, the composited image is constructed such that the driver and
source images semantically align in terms of both scale and positioning. This
is done either manually, or by relying on the strict alignment of datasets such
as FFHQ. However, in our work, we are not limited to aligned datasets, and
wish to avoid manual intervention when forming evaluation data. A challenge
hence exists in how to construct the composited images automatically from the
evaluation data triplets (x, y,R).

Recall that for quantitative evaluation, we generate 10 edits from each method
for each evaluation data triplet. To this end, for each evaluation data triplet, we
form 10 composited images for each evaluation data triplet by pasting the driver
image at different positions within the edit region R in x. The edit region R is
larger than the driver image y so simply pasting y into R in x without resizing
would still leave a hole in x within R around the driver y. This would unfairly
disadvantage the prior work, as such a hole would place the composited image
out of the domain of natural images that the prior work models have been trained
on. Instead, we inpaint the remaining hole with the underlying image content
from x. This should instead have the opposite effect of advantaging the prior
work baselines over our method, seeing as they are shown more of the source
image x in their input.

For the experiments with free-form edits in the main paper, we create the
composited input image for EdiBERT by tiling the driver image such that it can
be pasted into R in x.

C.2 Baseline Implementation Details

Here, we detail how the baseline methods that are compared to in Section 4 in
the main paper were implemented. Where possible, we use official code repos-
itories, and used the default hyper-parameters recommended by the authors.
For the cases where we used hyper-parameters different to those recommended
by the authors, we have provided quantitative analysis justifying these choices
in section C.3.

EdiBERT [5]. We use the official code repository and follow the author’s guid-
ance for their image composition experimental setting. Namely, we dilate the
mask by 1 token to reduce border irregularities, we periodically collage the image
with the input, and use spiral ordering for sampling edited tokens. An additional
parameter is the number of optimisation epochs. In each optimisation epoch, all
tokens in the edit region are updated once. Although the authors set the number
of optimisation epochs to 2 for image composition, we find empirically that using

10 Brown et al.

Naturalness (↓) Faithfulness (↑) Locality (↓)

Image Edit-R R@1 R@5 R@20 (L1)

Dresses-7m
(block-edits)

Baseline: Copy-Paste 21.457 35.924 1.000 1.000 1.000 0.000
Baseline: Inpaint 15.797 25.769 0.071 0.214 0.515 0.095
EdiBERT [5] (1 epoch) ⋆ 17.193 32.621 0.554 0.837 0.963 0.052
EdiBERT [5] (2 epoch) † 16.058 31.800 0.404 0.711 0.923 0.052
EdiBERT [5] (3 epoch) 15.570 31.727 0.325 0.625 0.890 0.052
(ours) E2EVE 14.411 24.743 0.797 0.937 0.978 0.056

FFHQ
(block-edits)

Baseline: Copy-Paste 33.330 25.811 1.000 1.000 1.000 0.000
Baseline: Inpaint 18.328 12.665 0.421 0.704 0.895 0.139
In-domain [11] ⋆ 19.880 14.270 0.539 0.800 0.938 0.178
In-domain [11] w. reg † 24.192 13.733 0.953 0.988 0.995 0.321
EdiBERT [5] (1 epoch) ⋆ 13.192 12.230 0.718 0.925 0.983 0.093
EdiBERT [5] (2 epoch) † 13.450 10.874 0.675 0.895 0.976 0.092
EdiBERT [5] (3 epoch) 13.496 10.739 0.640 0.870 0.970 0.092
(ours) E2EVE 12.770 10.574 0.853 0.970 0.994 0.106

LSUN
Bedrooms
(block-edits)

Baseline: Copy-Paste 24.402 28.828 1.000 1.000 1.000 0.000
Baseline: Inpaint 15.080 21.493 0.113 0.297 0.596 0.161
In-domain [11] ⋆ 32.333 43.544 0.171 0.363 0.608 0.208
In-domain [11] w. reg † 46.566 42.718 0.677 0.815 0.914 0.326
EdiBERT [5] (1 epoch) ⋆ 16.518 27.528 0.537 0.816 0.946 0.111
EdiBERT [5] (2 epoch)† 15.791 26.234 0.392 0.712 0.903 0.111
EdiBERT [5] (3 epoch) 15.696 27.384 0.316 0.629 0.871 0.111
(ours) E2EVE 14.107 22.187 0.789 0.923 0.981 0.119

Table 1. Results for block-edits when analysing design choices for baseline implemen-
tations. When implementing prior work, we use default recommended implementation
settings where possible. However, we find that different implementation settings for
In-Domain and EdiBERT lead to a more preferable balance of the metrics. Here, we
analyse the effect of these implementation details. Key: † refers to the design choice
recommended by the authors of the respective paper. ⋆ refers to the design choice that
we report numbers for in the main paper. Results for our method and the simple base-
lines have been included for ease of reference.

1 epoch obtains a better balance between metrics, and these are the results that
we report in the main paper.

GAN inv [1]. We use the official code repository of StyleGAN2-Ada [6] for the
implementation of GAN inv [1]. We use the default recommended optimiza-
tion hyper-parameters for projecting given images into a pretrained GAN latent
space.

In-Domain [11]. We use the official code repository, and follow their default
implementation for Semantic Diffusion. The In-Domain approach follows a two
stage pipeline, with a GAN inversion stage, followed by a domain-regularised
optimisation stage. We find empirically that removing the regularisation stage
results in a better balance between metrics, and these are the results that we
report in the main paper.

C.3 Quantitative Analysis of Baseline Design Choices

Here, we analyse the quantitative effect of two baseline implementation design
choices. Specifically, we analyse the effect of the number of optimisation epochs

End-to-End Visual Editing with a Generatively Pre-Trained Artist 11

in EdiBERT, termed EdiBERT [5] (n epoch), where n refers to the number of
optimisation epochs. We also analyse the effect of either including the regulari-
sation stage in the In-Domain method (termed, In-domain [11] w. reg), or not
(termed, In-domain [11]). We use the same metrics as used in Section 4 in the
main paper, namely, naturalness, faithfulness and locality. The results are shown
in table 1.

For EdiBERT, increasing the number of optimisation epochs results in more
natural-looking samples, but this is at the cost of a sharp drop in faithfulness.
This is as expected because the EdiBERT optimization procedure improves the
likelihood of the generated image with respect to the learnt unconditional image
prior, with little constraint in keeping faithfulness to the driver. We choose to
report numbers for 1 epoch of optimization in the main paper, as this offers the
most competitive balance between metrics. For all versions of EdiBERT, our
method is still superior in terms of naturalness and faithfulness, as reported in
the main paper.

For In-Domain, adding the regularisation means that the model becomes far
more faithful to the driver image, but at the cost of a large drop in locality and
naturalness. In fact, for the FFHQ dataset, the regularisation method outper-
forms E2EVE in terms of faithfulness, but this is at the cost of the source image
being no longer recognizable with poor naturalness and locality of 0.321. Hence,
we report metrics in the main paper for In-Domain without the regularisation,
as only in this version of the method where the editing can be considered local.

D Additional Quantitative Results

In this Section we provide additional quantitative results. These results ex-
plore the computational efficiency of our approach compared to prior work (sec-
tion D.1), different sampling techniques (section D.2), and the use of random
free-form masks on FFHQ (section D.3)

D.1 Computational Efficiency of E2EVE

The throughput (measured in generated images/second) for E2EVE compared
to each baseline method is shown in table 2.

E2EVE notably achieves higher throughput than some GAN-based approaches
(GAN inv, and In-domain w. reg). Because E2EVE is trained end-to-end for the
editing task, generated images can be sampled directly from the model. This
avoids the costly test-time optimisation processes necessary for these GAN-based
approaches.

Additionally, E2EVE achieves comparable throughput with the attention-
based baseline EdiBERT, and even achieves higher throughput when EdiBERT
uses more than 1 optimisation epoch (the authors recommend using 2). Whereas
E2EVE samples every token of the output generated image during inference, Ed-
iBERT only samples the tokens within the edit region. This means that EdiBERT
can achieve higher throughput by requiring less sampling iterations, but this is at

12 Brown et al.

Method
Throughput (↑)

img/s

GAN inv [1]: StyleGANv2 00.01
GAN inv [1]: StyleGANv2-Ada 00.01
In-domain [11] w. reg 00.17
EdiBERT [5] (3 epoch) 00.23
EdiBERT [5] (2 epoch) 00.33
EdiBERT [5] (1 epoch) 00.67
In-domain [11] 33.33

(ours) E2EVE 00.27

Table 2. Computational efficiency of E2EVE compared to baseline approaches as
measured by throughput (generated images per second). Throughput is computed via
time taken to generate a single sample with batch size of 1 on an NVIDIA A100.
throughput is averaged over multiple samples.

the cost of not making any non-local edits that may be necessary for improving
the overall naturalness of the generated image (see section 4.2 in main paper).
Although E2EVE samples more tokens than EdiBERT during inference, E2EVE
uses a significantly smaller backbone transformer (24 vs 32 layers), leading to
comparable throughput times.

In-domain achieves very competitive throughput when not using the regular-
isation stage (In-domain [11]). This speed is expected from and is an advantage
of the simple encoder-decoder inversion architecture. However, this fast inference
speed comes at the cost of significantly worse generated samples than E2EVE
across naturalness, faithfulness and locality (see Table 1 in the main paper and
Section C.3).

D.2 Effect of Sampling Methods

We explore the effect of different sampling methods in fig. 6 on the faithfulness,
naturalness and locality metrics across all datasets. At each sampling step dur-
ing inference, a token is sampled from the output probability histogram from
the model. Here, we analyse two different sampling techniques: first, top-k sam-
pling, where the probabilities are first sorted, and only the top-k are sampled
from. Second, top-p sampling (nucleus sampling [4]), where the probabilities are
sorted, and only those with a cumulative probability less than the p-value are
sampled from.

A top-p value of 0 and a top-k value of 1 results in a deterministic (or greedy)
sampling process where the most likely token is sampled at each step. A top-p
value of 1 and a top-k value of 1024 means that every token is considered at
each step. Several interesting conclusions can be made.

First, deterministic sampling leads to a sharp drop in naturalness and faith-
fulness. This is an expected result, as simply choosing the highest probability
token at each step tends to not result in the most probable sequences.

Second, aside from deterministic sampling, the performance across all met-
rics and datasets is fairly consistent and robust across all top-p and top-k values,

End-to-End Visual Editing with a Generatively Pre-Trained Artist 13

Fig. 6. The effect of different sampling methods on the naturalness, faithfulness and
locality metrics across different datasets. We analyse the effect of the p-value and k-
value for top-p and top-k sampling methods, respectively.

as indicated by the small range that the metrics change over outside of a top-p
value of 0 and top-k value of 1. This is in contrast to [3] where naturalness (FID)
was observed to severely degrade for unconditional generation when all tokens
are sampled over. This indicates that in our case the distribution at each sam-
pling step is narrow/peaked, meaning that there are just a few tokens with high
probability that can be sampled from reasonably. Hence, the most likely tokens
hold so much of the probability mass that considering the long tail does not
affect the generated images drastically. This makes sense, because rather than
generating images unconditionally, E2EVE is generating edited images, where
the content of the output image is often easily predicted from the conditioning
information.

Third, locality is optimal for deterministic/greedy sampling and degrades
once more tokens are considered in the sampling. To explain this, we note that
simply copying the source image outside of the edit region would lead to the best
performance in the locality metric. We conjecture that the most probable token
at each step outside the edit region corresponds to the spatially corresponding
token in the source image. By observing the probability histograms outside of
the edit region, we see that often there is one token that takes almost all of the
probability mass, and this likely corresponds to the corresponding token in the
source image. When more tokens are considered during sampling, occasionally
non-local edits are sampled from the long tail of the histogram.

14 Brown et al.

⊕ = ⊕ = ⊕ = ⊕ = ⊕ =

a. b. c. d.

⊕ = ⊕ =

e.

Driver Source w. mask E2EVE Output Driver Source w. mask E2EVE Output Driver Source w. mask E2EVE Output Driver 1 Source w. mask E2EVE Out. w. mask Driver 2 E2EVE Output Driver 1 Source w. mask In-Domain out. w. mask Driver 2 In-Domain Output

Fig. 7. E2EVE generates impressive samples with small (a,b) or large (c) randomly
shaped R (blue region), offering greater creative user-control.

Table 3. Comparing E2EVE trained on randomly shaped edit regions, R.

Naturalness (FID) Faithfullness (R@1) Locality (masked L1)

Random R size S / M / L S / M / L S / M / L

Base: Copy-Paste 80.926 / 83.219 / 96.521 0.478 / 0.539 / 0.618 0.000 / 0.000 / 0.000
Base: Inpaint 26.695 / 22.204 / 21.044 0.671 / 0.408 / 0.145 0.139 / 0.155 / 0.174
In-domain [86] 34.884 / 39.443 / 43.317 0.069 / 0.442 / 0.752 0.183 / 0.206 / 0.228
(ours) E2EVE 14.927 / 13.169 / 13.299 0.911 / 0.838 / 0.669 0.102 / 0.112 / 0.121

D.3 Random Free-Form Masks

Here, we explore the use of random masks for the masked region in the source
image, R. Qualitative results are included in Figure 5 in the main paper, and
also copied here in fig. 7.

In table 3, we include additional experiments using 10,240 “random” free-
form edit regions R drawn independently of the image contents and of size small
(S=5-20% of the image), medium (M=20-40%), and large (L=40-60%). They can
cover small features or large regions (e.g. haircuts or expressions) as in fig. 7-
a,b,c.

E2EVE generates significantly more natural, local and faithful samples than
the baselines except for large Rs, where faithfulness decreases slightly while
maintaining naturalness. The latter results are however visually impressive, sig-
nificantly extrapolating the small driver image as needed to make the output
result cohesive (fig. 7c).

End-to-End Visual Editing with a Generatively Pre-Trained Artist 15

Table 4. Model ablations and sweeps for block edits. Key: NLL: Negative log likelihood.
α, pos-aug, size-aug: the parameters used to define the sub-cropping transformation T .
Filter: filtering E2EVE samples by visual similarity to the driver image. 2VQ: using
two VQ-GANs rather than one. Datasets: D: Dresses-7m, B: Bedrooms, F -FFHQ.

Naturalness (↓) Faithfulness (↑) Locality (↓) NLL (↓) Diversity (↑)
α pos-aug size-aug Filter 2VQ Data Image Edit-R R@1 R@5 R@20 (L1) Image Edit-R

a. 0.8 ✓ ✓ D 17.241 30.076 0.882 0.980 0.996 0.056 2.181 0.135 0.309
b. 0.6 ✓ ✓ D 15.593 29.364 0.920 0.986 0.997 0.056 1.704 0.137 0.315
c. 0.4 ✓ ✓ D 13.967 26.975 0.811 0.954 0.988 0.056 1.594 0.139 0.327
d. 0.0 ✓ ✓ D 15.797 25.769 0.071 0.214 0.515 0.095 1.537 0.190 0.419

e. 0.6 ✓ ✓ ✓ D 15.605 26.513 0.887 0.980 0.997 0.056 1.518 0.142 0.338
f. 0.5-0.6 ✓ ✓ ✓ ✓ D 14.951 26.186 0.856 0.968 0.992 0.056 1.460 0.143 0.344
g. 0.4-0.7 ✓ ✓ ✓ D 14.589 27.824 0.864 0.970 0.992 0.056 1.494 0.139 0.328
h. 0.4-0.7 ✓ ✓ ✓ ✓ D 14.411 24.743 0.797 0.937 0.960 0.056 1.448 0.143 0.344

i. 0.4-0.7 ✓ ✓ ✓ D 13.913 24.583 0.611 0.817 0.929 0.056 1.448 0.145 0.351
j. 0.4-0.7 ✓ ✓ ✓ B 14.347 22.998 0.636 0.831 0.929 0.119 2.942 0.287 0.460
k. 0.4-0.7 ✓ ✓ ✓ F 12.636 10.699 0.723 0.899 0.976 0.106 2.392 0.203 0.321
l. EdiBERT [5] B 16.643 29.775 0.356 0.627 0.823 0.111 - 0.291 0.575
m. EdiBERT [5] F 13.036 12.891 0.536 0.778 0.925 0.093 - 0.181 0.423

n. 0.4-0.7 ✓ ✓ ✓ D 14.107 23.916 0.720 0.891 0.963 0.056 1.454 0.144 0.347

D.4 Additional Ablation Discussions

Here, we include further discussions on the model ablations, as an extension
to Section 4.3 in the main paper. We include the model ablation Table again
here in table 4. Not filtering the samples by similarity to the driver (rows i,j,k)
reduces faithfulness of both E2EVE and EdiBERT (rows l,m); even so, E2EVE
outperforms all prior work in this metric (see Table 1 in the main paper). Fi-
nally, training just one VQ-GAN rather than two (row n) results in a drop in
faithfulness, as the single VQ-GAN struggles to faithfully reconstruct the details
in the smaller driver image.

Bibliography

[1] Abdal, R., Qin, Y., Wonka, P.: Image2stylegan++: How to edit the embed-
ded images? In: CVPR (2020)

[2] Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Ferrer,
C.C.: The deepfake detection challenge dataset (2020)

[3] Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-
resolution image synthesis. In: CVPR (2021)

[4] Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of
neural text degeneration. In: ICLR (2020)

[5] Issenhuth, T., Tanielian, U., Mary, J., Picard, D.: Edibert, a generative
model for image editing. arXiv:2111.15264 [cs.CV] (2021)

[6] Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Train-
ing generative adversarial networks with limited data. In: NeurIPS (2020)

[7] van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete represen-
tation learning. In: NeurIPS (2017)

[8] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen,
M., Sutskever, I.: Zero-shot text-to-image generation. In: ICML (2021)

[9] Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: Pixelcnn++: A pix-
elcnn implementation with discretized logistic mixture likelihood and other
modifications. In: ICLR (2017)

[10] UnSplash: Unsplash - www.unsplash.com
[11] Zhu, J., Shen, Y., Zhao, D., Zhou, B.: In-domain gan inversion for real image

editing. In: ECCV (2020)

	End-to-End Visual Editing with a Generatively Pre-Trained Artist Supplementary Material
	Additional Qualitative Results
	Additional Method Details
	VQ-GAN Training
	Constructing Evaluation Data Triplets

	Additional Baseline Details
	Constructing Inputs for Baseline methods
	Baseline Implementation Details
	Quantitative Analysis of Baseline Design Choices

	Additional Quantitative Results
	Computational Efficiency of E2EVE
	Effect of Sampling Methods
	Random Free-Form Masks
	Additional Ablation Discussions

