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1 Introduction

In this supplementary material, we elaborate the details on the following aspects:

1. Additional remarks on implementing deep gradients (Sect. 2), where
we provide more discussions on efficient implementation.

2. Detailed benchmarking settings and reproducibility (Sect. 3), where
we provide more details on experimental settings and the guaranteed repro-
ducibility of our experiments.

3. More visual results (Sect. 4), providing more visual comparisons between
our approach and the state-of-the-art methods on test datasets.

4. Video results. In https://www.youtube.com/watch?v=8KvFwN1_3DY we
provide more visual results in videos.

2 Additional Remarks on Implementing Deep Gradients

In Eq. (12) of submitted paper, we formulate the deep gradients
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after simple derivations, we achieve at the formula Eq. (12) in the paper:
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Since thatXi→t = f(F̂i→t) and f(·) is a continuous and invertible,
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cobian. Since each layer is invertible, the inverse Jacobian exists.
To calculate remaining second-order graident ∂Xi→t
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, let we write the func-

tion f as a composite of multiple invertible functions: f = f1 ◦ f2 ◦ f3 · · · fn, and
denote the Jacobian of fi as gi. By the chain rule,
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Let the transformed features by fi be Zi, where Zn+1 = ∆F̂i→t and Z0 = Xi→t.
Then Eq. (5) can be written as
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Above equation indicates that we can compute the second-order gradient ∂sn
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by dynamic programming. In details, we can keep update of intermediate vari-
ables ∂Zi
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and ∂si

∂F̂i→t
, and evaluate the new terms gi and
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(which is the

Hessian of the function of ith invertible layer) at each new step. As a result, all
the derivatives in Eq. (2) can be evaluated efficiently within single pass.

Though here we present method to efficiently evaluate the gradients for deep
invertible transformations, we note that in our submitted paper, the transfor-
mation is simply implemented with a single linear layer. It gets rid of the sec-
ond order gradient, as linear functions have all-zero Hessian. However, we have
shown that such a single transformation is already beneficial in our ablation
study experiments (Sect. 4.3). The further advantage of modeling deeper gradi-
ents remain to be explored and will be leaved in our future work.

3 Detailed Benchmarking Settings and Reproducibility

Inconsistency of evaluation protocols in prior works. Evaluation polices
of previous works have several inconsistent aspects, while here we discuss on a
few of them. For 8× VFI, SloMo [5], QVI [15] and [3] train their models on
self-collected, mostly distinct datasets from YouTube, while DAIN [1] is trained
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Table 1. Comparing our reimplementations with reference results on the GoPro
dataset in terms of PSNR.

SloMo QVI DAIN FLAVR XVFI

Reference 28.52[6] 30.55[6] 29.00[6] 31.31[6] 29.75[13]
Ours 30.12 31.65 29.70 31.30 30.16

on the videos from triplet subset of Vimeo-90K [16], XVFI is trained on the new-
public dataset of X4K1000FPS [13], and FLAVR [6] is trained on the training
set of GoPro [7]. When it comes to the evaluation policy, FLAVR report results
on the 512 × 512 patches cropped from the original 1280 × 720 test images of
GoPro, while the results reported by [15] do not do such cropping. XVFI and
FLAVR test their method on self-selected subsets of Adobe240 [14], while QVI
is tested on the downsampled versions of such images.

In Sect. 4 of our paper, we aim to provide standard and unified benchmarking
results on the dataset of GoPro, X4K1000FPS, Adobe240, Vimeo-90K, UCF101,
DAVIS and the easy, medium, hard and extreme subsets from SNU-FILM. In
the following, we first describe the general setting of our evaluation policy, then
explain the details for the reproducibility and reliability of experiments related
to each approach.

3.1 Experiments for 8× VFI

Experimental settings. For fair comparisons, we trained all the methods
whose training code is public available on the training set of GoPro [1,5,6,13,15].
The data sampling strategy applied in [6] is adopted in our experiment resulting
in total 22128 frame sequences with a length of 25. The 1st, 9th, 17th and 25th
frames of each sequence are used as our inputs. The 7 frames between the 9th
and 17th frames are used as ground truth. The test set of GoPro is sampled in
the similar way resulting in 1500 non-cropped sequences with length of 25.

For evaluations on X4K1000FPS, we use the same test set defined by [13]. For
Adobe240 evaluations, we follow [13] to sample 630 non-overlapped sequences.
Note that randomly sampling test data on Adobe240 is also performed by [13]
and [15], while the scale of our sampled test data is about 3× larger than [13].
We do not do image downsampling as applied in [15].

Reproducibility of SloMo [5], QVI [16], DAIN [1], FLAVR [6] and
XVFI [13]. To guarantee the reproducibility of results for these methods, we
first show reproducibility of these methods on the GoPro test set using the same
settings of [6], then adapt these verified re-implementations to perform compar-
isons on the GoPro, X4K1000FPS and Adobe240 dataset. For reproducibility of
XVFI, we show that our retrained model get similar results with [13] by training
on the X4K1000FPS dataset [13], compared with the released pretrained model
by [13]. After verifying the reproducibility of XVFI, we then retrain it on the
GoPro dataset. See Table 1 for comparisons between our replementations and
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Table 2. Comparing our reimplementations with reference results on 2× VFI datasets
in terms of PSNR. Results of our reimplementations and those from reference are
interleaved by “/” in each table unit, respectively.

Vimeo-90K
(septulets)

UCF101 DAVIS
SNU-FILM

Easy Medium Hard Extreme

SloMo 34.43/32.90 [6] 32.45/32.33 [6] 26.10/25.65 [6] 36.12/- 33.44/- 29.17/- 24.14/-
QVI 34.98/35.15 [12] 32.87/32.89 [12] 27.20/27.17 [12] 39.53/- 36.43/- 31.07/- 24.96/-
CAIN 34.69/34.83 [12] 32.40/32.52 [12] 27.12/27.21 [12] 39.33/- 35.34/- 30.15/- 24.88/-
ABME 35.67/- 32.81/- 27.00/- 39.59/39.59 [10] 35.77/35.77 [10] 30.58/30.58 [10] 25.42/25.42 [10]
EDSC 34.52/- 32.67/- 26.28/- 40.01/40.01 [2] 35.37/35.37 [2] 29.59/29.59 [2] 24.39/24.39 [2]
XVFI5 35.21/- 32.68/- 26.89/- 39.21/39.76[11] 34.96/35.12[11] 29.43/29.30[11] 24.02/23.98[11]
DAIN 33.57/33.35 [12] 31.65/31.64 [12] 26.61/26.12 [12] 38.53/- 34.34/- 29.50/- 24.54/-
BMBC 34.76/34.76 [12] 32.61/32.61 [12] 26.42/26.42 [12] 39.90/39.90 [10] 35.34/35.31 [10] 29.34/39.33 [10] 23.65/23.92 [10]
Softsplat 35.76/35.76 [12] 32.89/32.89 [12] 27.42/27.42 [12] - - - -
VFIT-B 36.96/36.96 [12] 33.44/33.44 [12] 28.09/28.09 [12] - - - -
FLAVR 36.30/36.30 [6] 33.33/33.33 [6] 27.44/27.44 [6] 40.44/- 36.37/- 30.87/- 25.18/-

references. It can be seen that the results of our retrained models are no worse
than those reported in the reference.

Note that for EDSC [2], there lacks open-source training code and reference
results for 8× VFI. Therefore, we resort to use the released pretrained model
provided by authors. Specifically, the model EDSC m is used for evaluation.

3.2 Experiments for 2× VFI

In addition to the methods used for 8× evaluation [1,5,6,13,15], we additionally
retrained CAIN[4] on the septuplet subset of Vimeo-90K for 2× evaluation. For
2× VFI, our training set consists of 64612 septuplets. We use the 1st, 3rd, 5th
and 7th frames from each set as the input, and the 4th as the ground truth. The
evaluations on Vimeo-90K, UCF101 and DAVIS follow the identical setting as in
[6]. We follow the same settings used in [2,4,10] to report results on the 4 datasets
from SNU-FILM. For ABME [10], BMBC [9] and EDSC [2], we evaluate with
their pre-trained weights due to lacking the official training code. Softsplat [8]
and VFIT-B[12] also do not open-source their code or models, and we take
the results from [12]. To show the reproducibility, see Table 2 for comparisons
between our reimplementations and references. All of our reimplementations are
comparable with corresponding reference.

4 More results

More visual results are illustrated in Fig. 1, 2, 3, 4, 5, 6.

5 The XVFI in [11] is trained on the combination of triplets and septulets subsets of
Vimeo-90K.
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Fig. 1. Visual comparisons on DAVIS. We overlay the nearest 2 input frames to il-
lustrate the input motion. Best compared in the electronic version of this paper with
zoom.
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Fig. 2. Visual comparisons on DAVIS.
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Fig. 3. Visual comparisons on DAVIS (top 1 raw) and SNU-FILM (bottom 4 rows).
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Fig. 4. Visual comparisons on Adobe240.
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Fig. 5. Visual comparisons on Adobe240.
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Fig. 6. Visual comparisons on Adobe240.
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