
KeypointNeRF:
Generalizing Image-based Volumetric Avatars
using Relative Spatial Encoding of Keypoints

— Supplementary Material —

A Overview

In this document we provide additional implementation details (Sec. B), infor-
mation about the baseline methods (Sec. C), more qualitative and quantitative
results (Sec. D), and reflect on the limitations of KeypointNeRF and future work
(Sec. E).

B Implementation Details

Image Encoders. We employ a single HourGlass [43] network to learn a geo-
metric prior of humans and condition the density estimation network. The input
image is normalized to [−1, 1] range and processed by four convolutional blocks
(256 filters) interleaved with group normalization. We then employ an HourGlass
block (down-sampling rate of four) with group normalization layers and refine
the final output with four convolutional layers to produce the deep feature map
F gl
n ∈ RH/8×W/8×64. Additionally, after the second convolutional block, we em-

ploy the transposed convolutional layer to produce the shallow high-resolution
feature map F gh

n ∈ RH/2×W/2×8. As activation function we use ReLU for all
layers. We implemented a second convolutional encoder that is independent of
the density prediction branch to produce an alternative pathway for the ap-
pearance information F a

n ∈ RH/4×W/4×8 as in DoubleField [54]. We follow the
design of [25] and implement this encoder as a 15-layer convolutional network
with residual connections and ReLU activations.
Multi-view Feature Fusion. The feature fusion network is implemented as a
four-layer MLP (128, 136, 120, and 64 neurons with Softplus activations) that ag-
gregates features from multiple views. Its output is aggregated via mean-variance
pooling [62] to produce the geometry feature vector GX ∈ R128.
Density Fields. The geometry feature vector is decoded as density value σ via
a four-layer MLP (64 neurons with Softplus activations).
View-dependent Color Fields. To produce the final color prediction c for
a query point X, we implemented an additional MLP that predicts blending
weights as an intermediate step which are used to blend the input pixel colors.
This network follows the design proposed in IBRNet to communicate informa-
tion among multi-view features by using the mean-variance pooling operator.
The per-view input feature vectors (described in Sec. 4.4) are first fused into a
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Fig. B.1. Studio Capture Results. Reconstruction results on held-out subjects from
only two input views. Our method produces much sharper results with fewer artifacts
compared to prior work. Best viewed in electronic format.

global feature vector via the mean-variance pooling operator. Then this feature
is attached to the pixel-aligned feature vectors Φ(X|F a

n ) and propagated through
a nine-layer MLP with residual connections and an exponential linear unit as
activation to predict the blending weights (Eq. 4).
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Fig.D.2. Keypoint perturbation via different noise levels (from left to right: 1mm,
2mm, 3mm, 4mm, 5mm, 10mm, and 20mm). The rendered images tend to become
blurry around the keypoints (e.g. eyes) for large noise levels (> 10mm).

C Baseline Methods

We used the publicly released code of MVSNeRF [13] and IBRNet [62] with their
default parameters. We re-implemented PVA [48] since their code is not public
and we directly used the public results of NHP [29] for the experiments on the
ZJU-MoCap dataset [45].

D Additional Results

Multi-view studio Capture Results. We further provide qualitative results
for two more baseline methods (MVSNeRF [13] and PVA [48]) for the exper-
imental setup described in Sec. 6.1. The results in Fig. B.1 demonstrate that
the best performing baseline (IBRNet) produces incomplete images with lots of
blur and foggy artifacts. PVA yields consistent, but overly smoothed renderings,
while MVSNeRF does not work well for the widely spread-out input views. For
more qualitative results, we refer the reader to the supplementary video.

Keypoint perturbation. To evaluate the sensitivity of our method on a less
accurate estimation of keypoints, we perturb them with different Gaussian noise
levels (ranging from 1 to 20mm) for unseen subjects from Sec. 6.1 and observe
that the rendered images (Fig. D.2) occasionally tend to become blurry around
the keypoints (e.g. eyes) for large noise levels (> 10mm).

The impact of the iPhone calibration for the in-the-wild capture. We
evaluate the robustness of KeypointNeRF to a nosier camera calibration by
estimating the iPhone camera parameters without the depth term for the ex-
perimental setup presented in Sec. 6.2. We observe (Tab. D.1) a negligible drop
(PSNR/SSIM by -0.04/-0.5) in performance for our method, demonstrating the
robustness of our method under noisy camera calibration.

Convolutional feature encoders.We further measure the impact of the Hour-
Glass feature extractor and compare it with the U-Net encoder that is used by
the other baseline methods [48, 62]. We follow the experimental setup from
subsections 6.1 and 6.2 and report quantitative results in Tab. D.2 and D.3
respectively. We observe that HourGlass encoder consistently improves the re-
construction quality.
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Table D.1. In-the-wild Captures. Quantitative comparison of IBRNet [62], our
method without any spatial encoding, and our method with the proposed keypoint
encoding; visual results are provided in Fig. 4 for the iPhone calibration with the
depth term

RGB calibration RGB-D calibration
SSIM↑ PSNR↑ SSIM↑ PSNR↑

IBRNet [62] 81.72 18.41 81.74 18.45
Ours (no keypoints) 79.36 19.85 79.50 19.79
KeypointNeRF 86.22 25.25 86.73 25.29

Table D.2. Studio Capture Results. HourGlass [43] vs U-Net [48, 62] encoder for
the experiment conducted in Sec. 6.1.

SSIM↑ PSNR↑

PVA [48] 81.95 25.87
IBRNet [62] 82.39 27.14
KeypointNeRF (w. U-Net encoder [48,62]) 84.34 26.23
KeypointNeRF (w. HourGlass encoder [43]) 85.19 27.64

Table D.3. In-the-wild Captures. HourGlass [43] vs U-Net [48,62] encoder for the
experiment conducted in Sec. 6.2

SSIM↑ PSNR↑

IBRNet [62] 81.72 18.41
KeypointNeRF (w. U-Net encoder [48,62]) 84.20 25.67
KeypointNeRF (w. HourGlass encoder [43]) 86.22 25.25
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E Limitations and Future Work

While our method offers an efficient way of reconstructing volumetric avatars
from as few as two input images, it still has several difficulties. The image-
based rendering formulation of our method parametrizes the color prediction as
blending of available pixels, which ensures good color generalization at inference
time, however it makes the method sensitive to occlusions. The method itself has
also difficulties reconstructing challenging thin geometries (e.g. glasses) and is
less robust to highly articulated human motions (see Fig. E.3). As future work
we consider addressing these challenges and additionally integrating learnable
3D lifting methods [20,24] with the proposed relative spatial encoding for more
optimal end-to-end network training.

In
p
u
ts

IBRNet [62] KeypointNeRF NHP [29] KeypointNeRF

Fig. E.3. Limitations. Our method struggles to reconstruct the thin frames of the
glasses (left) and has difficulties reconstructing human articulations that are outside
of the training distribution.
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