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1 Social Impact

All generated results of both the main paper and the appendix are based on
learned statistics of the training dataset. Therefore, the results only reflect biases
in those released data without our subjective opinion, especially for the face
images from FFHQ. This work is only researched for the algorithmic discussion,
and related societal impacts should not be ignored by users.

2 Detailed Network Settings

We provide some details for different model components in this section. Gated
Convolution Block (GC). For the GC block used for upsampling prior fea-
tures from MAE, which contains GateConv2D [12]→BatchNorm→ReLU. And
the GateConv2D works with stride=2.
Encoder and Decoder of ACR. The encoder and decoder of ACR are con-
sisted of vanilla Conv2D→BatchNorm→ReLU.
Fast Fourier Convolution Block (FFC). As illustrated in [9], features for
FFC are split into local ones encoded by vanilla convolutions and global ones
encoded by the spectral transform. The spectral transform is consisted of Fast
Fourier Transform (FFT), Conv2D→BatchNorm→ReLU, and the inverse FFT.
And both the real and imaginary parts are confirmed in the Conv2D after FFT.
After the inverse FFT, local and global features are combined as the final output.

3 Loss Functions of ACR

We provide some details about the loss functions of ACR, which are referred
to LaMa [9] and include L1 loss, adversarial loss, feature match loss, and high
receptive field (HRF) perceptual loss [9]. L1 loss is only calculated between the
unmasked regions as

LL1 = (1−M)⊙ |̂I− Ĩ|1, (1)

where M indicates 0-1 mask that 1 means masked regions; ⊙ means the element-
wise multiplication; Î, Ĩ indicate the ground truth and predicted images respec-
tively. The adversarial loss is consisted of a PatchGAN [6] based discriminator
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loss LD and a WGAN-GP [3] based generator loss LG as

LD =− EÎ

[
logD(̂I)

]
− EĨ,M

[
logD(̃I)⊙ (1−M)

]
− EĨ,M

[
log(1−D(̃I))⊙M

]
,

LG = −EĨ

[
logD(̃I)

]
,

Ladv = LD + LG + λGPLGP ,

(2)

where LGP = EÎ||▽ÎD(̂I)||2 is the gradient penalty [3] and λGP = 1e − 3.
Moreover, the feature match loss [10] Lfm, which is based on L1 loss between
discriminator features Df of true and fake samples as

Lfm = E(|Df (Î)−Df (Ĩ)|1). (3)

Furthermore, we use the HRF loss Lhrf in [9] as

Lhrf = E(
[
ϕhrf (̂I)− ϕhrf (̃I)

]2
), (4)

where ϕhrf indicates a pretrained segmentation ResNet50 with dilated convo-
lutions, which shows superior performance in inpainting compared with vanilla
VGG as discussed in [9]. The final loss of our model can be written as

Lfinal = λL1LL1 + λadvLadv + λfmLfm + λhrfLhrf , (5)

where λL1 = 10, λadv = 10, λfm = 100, λhrf = 30 set by the experience.

4 More Implement Details

High-Resolution (HR) Finetuning. To save the computation, we find that
dynamic finetune the inpainting model from 256 to 512 resolutions can still
achieve competitive results. We gradually reduce the resolution from 512 to 256,
and then let them back to 512, which can be seen as a cycle. For each epoch in
Places2, we finetune the model with 64 cycles.
The Subset of Places2 for Ablations. To flexibly evaluate our ablation
studies, we choose to use a subset of Places2 with 5 scenes of ‘bow window’,
‘house’, ‘village’, ‘dining room’, and ‘viaduct’ with about 25,000 training images
and 500 validation images. This subset contains indoor, outdoor, and natural
scenes, which are comprehensive to evaluate the inpainting performance.
Detailed Settings of Places2. We reorganize detailed settings of main exper-
iments and ablations in Tab. 1.

5 User Study

To test the effectiveness of our model with human perception, we conduct user
studies on several models. We specifically ask 12 participants who are unfamil-
iar with image inpainting to judge the quality of inpainted images. FFHQ is
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Table 1. Settings of main experiments (Main Exp.) and ablations. ‘Res.’, ‘F.T.’ mean
resolution and finetuned. Models without finetuning are trained from scratch with pre-
trained MAE. ‘HR subset’ indicate validated images of 512×512. Related data scales
are in brackets.

Exp. Res. F.T. from
Places2(train) Places2(eval)
whole subset whole subset HR subset
(1.8M) (25,000) (36,500) (500) (1,000)

MAE 256 – ✓ – – –

Main Exp.-1 256 – ✓ ✓
Main Exp.-2 512 Main Exp.-1 ✓ ✓
Ablations-1 256 – ✓ ✓
Ablations-2 512 Main Exp.-1 ✓ ✓

compared with three models: Co-Mod [14], LaMa [9] and ours, while Places2 is
compared with four methods: Co-Mod, LaMa, CTSDG [4] and ours. We ran-
domly shuffle and combine the outcomes of these algorithms except the masked
inputs. After that, volunteers must choose the best one from each group. On
both datasets, as shown in Fig. 1, our technique outperforms other competitors.
Although Co-Mod also achieves competitive results in Places2, it is trained with
extra 6.2 million images from Places365-Challenge, which is much larger than
the training set of other competitors.
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Fig. 1. Average scores of FFHQ and Places2 for user studies, which are collected from
volunteers who select the best one from shuffled inpainted images.

6 Complete Quantitative Results

Tab. 2 presents more quantitative results for different masking rates ranging
from 10% to 50% on datasets FFHQ and Places2. Except for the FID on the
FFHQ, our model beats other state-of-the-art methods on other metrics, which
demonstrates the superiority of our model.
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Table 2. Quantitative results on FFHQ and Places2 with different mask ratios.

FFHQ (256×256) Places2 (256×256)

Mask Co-Mod LaMa Ours EC Co-Mod LaMa CTSDG Ours

PSNR↑

10˜20% 28.45 29.84 30.11 26.61 26.40 28.23 26.73 28.36
20˜30% 26.04 27.52 27.78 24.26 23.61 25.31 24.37 25.48
30˜40% 24.29 25.82 26.07 22.60 21.73 23.44 22.71 23.60
40˜50% 22.93 24.48 24.71 21.28 20.28 22.03 21.41 22.18
Mixed 25.25 26.60 26.81 23.31 22.57 24.37 23.43 24.53

SSIM↑

10˜20% 0.938 0.950 0.951 0.913 0.926 0.942 0.913 0.942
20˜30% 0.909 0.924 0.926 0.872 0.880 0.901 0.872 0.903
30˜40% 0.876 0.897 0.899 0.828 0.831 0.859 0.828 0.861
40˜50% 0.843 0.869 0.872 0.783 0.781 0.814 0.782 0.818
Mixed 0.889 0.903 0.906 0.839 0.843 0.869 0.835 0.871

FID↓

10˜20% 3.22 3.60 3.42 1.95 0.52 0.45 2.44 0.41
20˜30% 4.66 5.20 4.94 3.79 1.00 0.95 5.62 0.81
30˜40% 5.68 6.57 6.14 6.98 1.65 1.73 11.43 1.40
40˜50% 7.04 8.69 8.12 11.50 2.38 2.82 19.88 2.20
Mixed 5.85 6.38 6.15 6.21 1.49 1.63 11.18 1.31

LPIPS↓

10˜20% 0.049 0.045 0.043 0.073 0.053 0.047 0.085 0.042
20˜30% 0.069 0.062 0.059 0.111 0.098 0.083 0.133 0.073
30˜40% 0.091 0.082 0.077 0.152 0.140 0.121 0.185 0.106
40˜50% 0.113 0.101 0.095 0.194 0.184 0.161 0.237 0.141
Mixed 0.085 0.078 0.074 0.149 0.246 0.155 0.185 0.101

7 Quantitative Comparisons on DIV2K

We further give quantitative high-resolution results on 100 DIV2K [1] validation
images with 2k resolutions in Tab. 3. Following the evaluation protocol of DIV2K
in Tab. 3. Our model beats other HR inpainting methods.

Table 3. Quantitative results on DIV2K with mixed masks.

PSNR↑ SSIM↑ FID↓ LPIPS↓
HiFill 20.67 0.787 135.53 0.241
LaMa 21.24 0.865 118.80 0.200
Ours 21.64 0.868 113.98 0.171

8 Experiments with Center Square Masks

Both quantitative and qualitative results of 512×512 Places2 test set with 40%
center square masks are shown in Tab. 4 and Fig. 2 respectively. Note that our
method is trained without any rectangular mask, while masks of Co-Mod include
rectangular ones. Co-Mod suffers from hallucinated artifacts and LaMa tends to
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generate blur results. Our model beat others with best PSNR and LPIPS even
without training on rectangular masks, benefited by MAE priors.

Table 4. Quantitative results with 40% center square masks on 512×512 Places2.

PSNR↑ SSIM↑ FID↓ LPIPS↓
Co-Mod 17.59 0.755 52.38 0.262
LaMa 19.69 0.801 61.67 0.268
Ours 19.82 0.804 53.61 0.214

(a) Masked input (b) Co-Mod (c) LaMa (d) MAE (e) Ours

Fig. 2. Qualitative results with 40% center square masks on 512×512 Places2.

9 Ablations about Prior Attention from Different Layers

In Tab. 5, we test prior attentions of different layers from the start of the MAE
decoder, and find that half-layer (4) just enjoys marginally better FID compared
with all-layer (8) used in the main paper. These results show that using such
attention priors from MAE is effective, while in general there is no significant
difference in using attention from which layer.

10 Comparing with More SOTA Methods

We further compare our method with recently proposed ZITS [2] and MAT [7]
on Places2 in Tab. 6. Our method can still outperform them with mixed masks.

11 More Qualitative Results

More 256×256 results of Places2 and FFHQ are shown in Fig. 3 and Fig. 4
respectively. For face images, we recommend to zoom-in for details near the eye
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Table 5. Quantitative results of prior attention layers used from the start of MAE on
the Places2 subset.

Attn layer PSNR↑ SSIM↑ FID↓ LPIPS↓
- 24.34 0.860 26.84 0.117
2 24.50 0.863 25.61 0.112
4 24.51 0.862 25.38 0.113
6 24.54 0.863 25.67 0.114

8 (ours) 24.51 0.864 25.49 0.113

Table 6. Quantitative results compared with ZITS [2] and MAT [7] on Places2 with
mixed masks.

256×256 512×512

PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓
MAT 22.37 0.841 1.68 0.134 21.68 0.838 32.43 0.165
ZITS 24.42 0.870 1.47 0.108 24.23 0.881 26.08 0.133
Ours 24.53 0.871 1.31 0.101 24.33 0.880 25.39 0.119

regions. Our method tends to generate consistent eyes for face inpainting. We
also provide more 512×512 results of Places2 in Fig. 5, and some 1024×1024
results from DIV2K [1] in Fig. 6. For the HR inpainting, we find an interesting
phenomenon that the MAE enhanced results enjoy larger receptive fields for the
structural recovery in HR cases as shown in the first row of Fig. 6. Besides,
for a better reading experience, 1k results shown in the main paper are slightly
compressed. We show the high quality ones in Fig. 7.

12 Limitations and Future Works

Although our proposed FAR is powerful enough to inpaint impressive results,
it still suffers from fail cases as shown in Fig. 8. MAE has some difficulty in
exactly recovering the object/building boundaries or some complex man-made
structures, which leads to some ambiguity. To tackle this problem, we think
that structure priors can provide more exact boundaries for high-fidelity results.
Besides, as mentioned in the main paper, an interesting future work would be
exploring features from different MAE layers for inpainting. In our opinion, such
improvements are orthogonal to other proposed components in this paper. Our
pre-trained Places2 MAE will be released, which is benefit for the community
to further study the representation learning based image inpainting. Moreover,
although our MAE pre-trained on Places2 is generalized enough for the inpaint-
ing, pre-training MAEs on larger datasets (such as ImageNet-22K [8] or even
JFT-3B [13]) may achieve superior downstream performance.
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(a) Masked input (b) LaMa (c) MAE (d) Ours

Fig. 3. Qualitative results of places2 256×256 images. From left to right are masked
inputs, LaMa [9], MAE [5], and our results. Please zoom-in for details.



8 C. Cao et al.

(a) Masked input (b) LaMa (c) MAE (d) Ours

Fig. 4. Qualitative results of places2 256×256 images. From left to right are masked
inputs, LaMa [9], MAE [5], and our results. Please zoom-in for details.
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(a) Masked image (b) HiFill (c) Co-Mod (d) LaMa (e) Ours

Fig. 5. Qualitative results of 512×512 images from Places2. From left to right are
masked image, HiFill [11], Co-Mod [14], LaMa [9], and our results. Please zoom-in for
details.
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(a) Masked input (b) MAE (c) LaMa (d) Ours

Fig. 6. Qualitative results of 1024×1024 images from DIV2K. From left to right are
masked inputs, MAE [5], LaMa [9], and our results. Please zoom-in for details. For the
first picture, both LaMa and our method fill all holes in the first row of the Colosseum,
but our method still remains the holes in the second row. Because the MAE result
is learned with a global receptive field, which guides our method to inpaint a more
reasonable result rather than copying meaningless textures nearby.



Appendix 11

(a) Masked input (b) MAE (c) LaMa (d) Ours

Fig. 7. Qualitative results of 1024×1024 images, which have also been shown in the
main paper. From left to right are masked inputs, MAE [5], LaMa [9], and our results.
Please zoom-in for details.

(a) GT (d) Ours(c) MAE(b) Masked input

Fig. 8. Failed cases of our method. GT indicates ground truth images
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