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A Training Details

In this section, we introduce the details of our training scheme for human and
animal facial models.

Human At the preprocessing steps, we use Graphonomy [6] for selecting the
interest region. Among 20 labels in Graphonomy, the label ‘hair’, ‘face’, and
‘sunglasses’ is contained in the interest region. We include the label ‘sunglasses’
for the following two reasons: First, a considerable number of images in the
training dataset, which is used in training StyleGAN, contains faces with glasses
on. Thus, StyleGAN is capable of generating various distributions of glasses.
Second, in most cases, glasses are overlapped with the interest region, i.e., facial
region. Consequently, excluding the region for glasses occurs undesirable arti-
facts on the interest region for inverting real-world images with glasses. For the
dilation, we empirically set the size of Gaussian Kernel to be (50,50) to contain
the boundary information. We show examples of preprocessed images in Figure
1. We set Limage as below:

Limage = 1 · L2 + 0.8 · LPIPS + 0.1 · LID

Animal We use DEtection Transformer [4] for selecting the interest region.
We use every part which consists of the animal as the interest region. In the
animal domain, we use LMoCo instead of LID, which is based on the MoCo v2
[8] network. Since the image resolution of the animal dataset is half of the human
dataset, we set the size of Gaussian Kernel to be (25,25) for the dilation, which
is a half size compared to FFHQ. We set Limage as below:

Limage = 1 · L2 + 0.8 · LPIPS + 0.5 · LMoCo

We use Ranger [19] optimizer with learning rate 10�4, and train the model
for 500,000 steps with batch size 4. We save the model per every 10,000 steps,
and lastly, select the model with the lowest validation Limage. We train on the
single V100 GPU in an NVIDIA DGX1 machine, which takes around two weeks
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Fig. 1: Preprocessing. Preprocessed images using uninterest filter for training.
In the uninterest region, we blur severely at the beginning of the iteration, as
shown in I1 and I2. Gradually, images get clear, and we use the image at the
last iteration, I4, which becomes the same with I.

for the training. We set N = 5, the same as Restyle [2].3 In UnF, we applied
Gaussian blur with ri = (N � i)2, which was empirically set to fit our purpose.

B Dataset description

In this section, we introduce the dataset FFHQ [9], CelebA-HQ [13], and AFHQ
[5], which are used for training and testing, among IntereStyle and other baseline
models.

FFHQ Flickr-Faces-HQ (FFHQ) dataset has been released by StyleGAN [9],
consisting of 70,000 high-quality facial images with the resolution 10242. Im-
ages are automatically aligned with Face Alignment Network(FAN) [11, 10] us-
ing landmark information. FFHQ contains only images under permissive licenses.
We did not include any additional images except FFHQ for training IntereStyle.

CelebA-HQ CelebA-HQ dataset contains 30,000 high-quality facial images
with resolution 10242. In the original CelebA dataset, splits for train-val-test
are labeled, which we directly used for selecting the test dataset of CelebA-HQ
dataset. Around 2,800 images are used for the test dataset of CelebA-HQ. All
of the quantitative results are driven from the test dataset of CelebA-HQ.

3 We maintain the training method of Restyle and pSp [15] as much as possible.
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AFHQ AFHQ contains three domains of animal images: dogs, cats, and wild,
with resolution 5122. In this paper, we only used wild domain datasets for train-
ing and validation. We followed the split of the original dataset, which consists
of 4,730 training and 500 validation images.

C Baseline Models Description

In this section, we briefly explain the baseline models of StyleGAN inversion.
For a fair comparison, we exclude models which tune the generator, such as
Pivotal-Tuning Inversion [16] or HyperStyle [3].

Image2StyleGAN Image2StyleGAN [1] (I2S) directly optimizes the style la-
tent, to lower distortion between a generated image and the target image. Since
we directly optimize the latent, we can invert images without any training stages.
However, we need to optimize latents per every inversion, which is extremely
time-consuming. Despite the prominent performance and simplicity, I2S is rarely
used because of its excessively long inference time. Moreover, as shown in Figure
6 in the main paper, I2S causes artifacts in the interest region.

In-Domain GAN Inversion In-Domain GAN inversion (IDGI) [21] targets
to learn the latent space of GAN for reconstructing the input image by decoding
the latent space. IDGI uses a domain-guided encoder, which directly reconstructs
the image on the real-world image space rather than the latent space. Moreover,
domain-regularized optimization enables avoiding the stuck in the local minimum
and uses a domain-guided encoder as a regularizer for preventing an out-of-
domain inversion. For a fair comparison, we only use the domain-guided encoder
for inversion without additional optimization steps per image.

pSp pixel2Style2pixel (pSp) [15] proposes a simple pyramid[12] structure for
StyleGAN inversion, which e↵ectively lowers distortion without any additional
optimization steps. For utilizing the disentangled property of StyleGAN latent,
pSp extracts coarse and fine features separately at the high and low layers,
respectively. pSp provides various applications of StyleGAN inversion, such as
image inpainting[20] and face frontalization[7].

e4e encoder4editing (e4e) [18] points the trade-o↵ between distortion-perception
is related to the distance of latent from W space. Consequently, for maintaining
the latent close toW , e4eminimizes the variation of latents per layer and uses the
latent discriminator at the training stage. Though e4e shows higher distortion
than pSp, it shows high perceptual quality and editability simultaneously.
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Fig. 2: Ablation study for inversion. Inversion results of various ablation
models, with ours. Ours ignores noisy backgrounds and focuses on the interest
region. Consequently, ours can invert the interest region robustly even with ob-
stacles or blurs (first and second columns, respectively), while ablation models
cannot. Since ours focuses on the interest region, it blurs the noisy backgrounds,
as shown in the third and fourth columns. Moreover, images from our model show
higher perceptual quality than baselines, which can be best viewed in zoom-in.

Restyle Restyle [2] claims that the single forward inference is not enough to
utilize every information in the real-world image. Thus, Restyle uses iterative
refinement, which gradually encodes the di↵erence between a pair of input im-
ages. Starting from the image from the average latent of StyleGAN, Restyle
step-wisely updates the image to approach the target image. Restyle achieves
the lowest distortion at the time. All of the results are derived from iterating
five steps, as the original Restyle did.
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Original Iterative Outputs →

Fig. 3: Various inversion results. Various inversion results of our model on
both human and animal datasets. We plotted the inversion images along with the
intermediate outputs during iterative iteration. For every image, we progressed
five iterations, same as the original Restyle. All images are sampled from CelebA-
HQ or AFHQ test dataset.
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D Qualitative Results

D.1 Inversion Results

In Figure 2, we compare inversion results with various ablation cases, qualita-
tively. We exclude Interest Disentanglement(InD) and Uninterest Filter(UnF)
one by one, which yields three ablation models. For the clean image (leftmost
in Figure 2), the quality marginally di↵ers per each model. In the case when
obstacles overlapped on the interest region (first column in Figure 2), simply
applying masked loss without InD, and UnF is not enough to remove the ar-
tifacts. InD and UnF both are helpful for removing the artifacts, and artifacts
are minimized when both methods are applied together. Moreover, our model
shows robust inversion even within deformation, i.e., blur on the interest region
during alignment, as shown in the second column. When images have noisy back-
grounds (third and fourth column in Figure 2), UnF simplifies the background
noise, which makes the model focus on the interest region, and makes images
more realistic. Finally, every image shows better perceptual quality with our
model, which can be viewed in zoom-in.

We show more inversion results of our model, along with intermediate outputs
during the iterative refinement process, in Figure 3. Our model starts from the
image relatively close to I0 and gradually updates it to be closer to I.

D.2 Editing via Latent Manipulations

In this section, we show additional results for image editing via latent manipu-
lation methods, such as InterFaceGAN [17], and StyleCLIP [14].

First, Figure 4 shows the comparison of editing results of our model with
various ablation cases, through InterFaceGAN. We compared editing results with
a clean image (left), and an image where the obstacle overlaps the interest region
(right). For the clean image, InD dramatically reduces undesirable artifacts, e.g.,
eyeglass in the smile, and increases editability (See the fourth column of Figure
4). For the obstacle cases, InD and UnF mitigate the artifacts, in both inversion
and editing cases. Moreover, InD shows a synergistic e↵ect when combined with
UnF, i.e., ours, which increased editability for editing an age and mostly reduced
the artifacts for both inversion and editing cases of the image with obstacles.

Figure 5 shows additional editing results of our model with StyleCLIP. To
prove the high editability, we did experiments on both human and animal do-
mains. In human cases, we showed the results for editing with two prompts:
“curly hair” and “orange”. Not to mention the precise inversion results, our
model showed high editability with both prompts. Though the prompt “orange”
is not giving an intuitive editing direction for human faces, our model reflected
the prompt without harming the perceptual quality of given images. Our model
showed high editability with prompts “lion” and “white”, along with robust
inversion results in animal cases. In the animal domain, several animals have
large domain gaps, e.g., wolves and lions [14], which is harsh to edit between
two domains. However, our model showed high editability between animals from
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Fig. 4: Ablation study for image editing. Image editing results of various
ablation models, with ours. We compare in two cases: a clean image (left) and
a image with an obstacle (right). Even in the clean image, images show low
editability without InD and UnF. Baseline models makes eyeglass artifacts for
smile, and fails to aging the face in the desirable way. For the case of an obstacle,
not only inversion but also edited images contain artifacts around the obstacle,
which is significantly mitigated by our model.

the distance domain. Moreover, with the ambiguous prompt “white”, our model
reflected the prompt without harming the perceptual quality of the original im-
ages.

Figure D.2 showed additional results for style mixing [9]. We totally randomly
sampled images from CelebA-HQ test dataset, to measure the consistency of
the performance of our model, in various cases. Even several images contain
di�cult features for inversion, e.g., overlapped hands and shoulders, extreme
pupil direction, our model showed consistently high perceptual quality on style
mixing. We want to note that GAN inversion models which tune a generator,
e.g., Pivotal Tuning [16], and HyperStyle [3], undergo several di�culties for style
mixing, due to the di�culties of representing several images into a latent space
of a single generator.

E Potential Negative Societal Impacts

Our research o↵ers an inversion model of StyleGAN, which enables several ro-
bust editing without a shift of the identity. Consequently, one can maliciously
manipulate the face of the random person simply by using a single photo with-
out permission. Our robust inversion and editing results make the synthesized
image be hard from distinguished clearly. We can partially prevent the abuse of
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Fig. 5: Various editing results. Editing images via StyleCLIP, in human and
animal domain. Our model showed consistently robust results on both inversion
and editing scenarios. In both domain, our model showed robust editing not only
for the explicit prompt, e.g., “curly hair” and “lion”, but also for the implicit
prompt, e.g., “orange” and “white”.

our model by restrictively releasing the pre-trained model, e.g., as a format of
API, or do not release the editing boundaries that can be used maliciously, e.g.,
editing boundaries related to the sexual or racism-related facial expression.
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Fig. 6: Various style mixing results. Style mixing results of images randomly
selected from CelebA-HQ test dataset, by our model. Following the settings from
the original StyleGAN [9], we extract coarse, middle, and fine styles from source
A, in order, and the rest style from source B. Though several images contain
features that can yield artifacts, e.g., overlapped hands or shoulders, irregular
lights, our model showed robust style mixing results consistently.
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