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Abstract. Recently, manipulation of real-world images has been highly
elaborated along with the development of Generative Adversarial Net-
works (GANs) and corresponding encoders, which embed real-world im-
ages into the latent space. However, designing encoders of GAN still
remains a challenging task due to the trade-o↵ between distortion and
perception. In this paper, we point out that the existing encoders try
to lower the distortion not only on the interest region, e.g., human fa-
cial region but also on the uninterest region, e.g., background patterns
and obstacles. However, most uninterest regions in real-world images are
located at out-of-distribution (OOD), which are infeasible to be ideally
reconstructed by generative models. Moreover, we empirically find that
the uninterest region overlapped with the interest region can mangle
the original feature of the interest region, e.g., a microphone overlapped
with a facial region is inverted into the white beard. As a result, lower-
ing the distortion of the whole image while maintaining the perceptual
quality is very challenging. To overcome this trade-o↵, we propose a
simple yet e↵ective encoder training scheme, coined IntereStyle, which
facilitates encoding by focusing on the interest region. IntereStyle steers
the encoder to disentangle the encodings of the interest and uninterest
regions. To this end, we filter the information of the uninterest region
iteratively to regulate the negative impact of the uninterest region. We
demonstrate that IntereStyle achieves both lower distortion and higher
perceptual quality compared to the existing state-of-the-art encoders.
Especially, our model robustly conserves features of the original images,
which shows the robust image editing and style mixing results. We will
release our code with the pre-trained model after the review.

Keywords: StyleGAN, robust GAN inversion, interest region, interest
disentanglement, uninterest filter

1 Introduction

Recently, as Generative Adversarial Networks (GANs) [15] have been remark-
ably developed, real-world image editing through latent manipulation has been
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Fig. 1: Encoding of IntereStyle. Original images, interest region, inversion,
the di↵erence between the original images and their inversions, and the editing
results (smile and Mohawk). The magnitude of the di↵erence between the orig-
inal and inversion images is colored in red. Our model successfully minimizes
distortion on the interest region, even without the interest region mask for the
inference. Moreover, even with low distortion, our model shows high editability.

prevalent [27, 28, 33, 30, 32, 25]. Especially, the strong disentangled property of
StyleGAN [18, 19] latent space, i.e., W , enables scrupulous image editing [32,
22], which can change only desirable features, e.g., facial expression, while main-
taining the others, e.g., identity and hairstyle. For editing the image precisely
with StyleGAN, it is required to get the suitable style latent, from which Style-
GAN can reconstruct the image that has low distortion, high perceptual quality,
and editability without deforming the feature of the original image.

Though StyleGAN is generally known to construct the image with high per-
ceptual quality, the original style space W is not enough to represent every
real-world image with low distortion. Consequently, a vast majority of recent
StyleGAN encoders, including optimization-based methods, embed images into
W+ space [1, 24, 3].W uses the identical style vector for every layer in StyleGAN,
obtained by the mapping function. On the other hand, W+ space provides a dif-
ferent style vector per layer and can even provide a random style vector in R512.
However, as the distribution of style latent is far from W , reconstructed images
show low perceptual quality and editability [30, 25]. Consequently, lowering the
distortion while keeping the other factors is still challenging.

In this paper, we claim that training to lower distortion on the entire re-
gion of the image directly is undesirable. In most cases, images contain regions
that cannot be generated due to the inherent limitation of generators. Figure
1 shows clear examples of real-world images in the facial domain, which con-
tain regions that are infeasible to be generated, e.g., hats, accessories, and noisy
backgrounds. Therefore, an encoder needs to concentrate on the generable region
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Fig. 2: Lowering distortion on the uninterest region. Inversion results of
pSp [24], Restyle [3], and ours. An overlapped obstacle (i.e., hand) on the facial
region precludes clean inversion. Firstly, pSp shows high distortion on the eyes
and generates unrealistic facial shapes on the obstacle region. Restyle tries to
reconstruct the obstacle region, but the reconstructed image shows artifacts on
the nose and chin. On the contrary, our model shows the lowest distortion among
the existing models, while maintaining high perceptual quality as shown above.

for inversion while ignoring the un-generable region (e.g., non-facial region for
StyleGAN trained with FFHQ). This strategy helps the latents inverted from
the generable region to be close to W , which show high perceptual quality and
editability, as shown in Figure 1.

Another observation is that an attempt to reconstruct the region which is
not generable induces severe distortion even on the other generable regions. For
example, in Figure 2, a hand overlapped with the facial region is not generable by
GAN encoders. Restyle [3], which shows the lowest distortion among all encoder-
based inversion models until now, tries to lower distortion on the hand too, which
rather causes catastrophic distortions on the nose and chin.

In the light of these observations, it is important to distinguish the region
to be reconstructed elaborately from the rest. Here we define the term interest
region, where the model focuses on the precise reconstruction with low distor-
tion and high perceptual quality. Practically, in most cases, the interest region
is aligned with the generable region of the image. For example, in facial image
generation, the main interests are the face and hair parts of the output images,
which are easier to generate than backgrounds. By focusing on the interest re-
gion, we can reduce distortion without any additional task, such as an attempt
to encode latent excessively far from W [8].

Contributions We propose a simple yet e↵ective method for training a Style-
GAN encoder, coined IntereStyle, which steers the encoder to invert given images
by focusing on the interest region. In particular, we introduce two novel training
schemes for the StyleGAN encoder: (a) Interest Disentanglement (InD) and (b)
Uninterest Filter (UnF). First, InD precludes the style latent, which includes
the information on the uninterest region, from distorting the inversion result of
the interest region. Second, UnF filters the information of the uninterest region,
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which prevents our model from redundantly attending to the uninterest region.
UnF boosts the e↵ect of InD by forcing the model not to focus on the uninter-
est region overly. In addition, we propose a very simple yet e↵ective scheme for
determining the interest region, required only at the training stage.

We demonstrate that IntereStyle, combined with the iterative refinement
[3], e↵ectively reduces the distortion at the interest region of CelebA-HQ-test
dataset. To the best of our knowledge, IntereStyle achieves the lowest distortion
among the existing state-of-the-art encoder-based StyleGAN inversion models
without generator tuning. Moreover, we qualitatively show that our model ro-
bustly preserves features of the original images even with overlapped obstacles,
while other baselines fail to. Lastly, we show the experimental results for image
editing via InterFaceGAN [28], StyleCLIP [22], and style mixing [18] results,
where our model shows remarkably robust outputs when input images contain
significant noises, e.g., obstacles on the face.

2 Related Work

GAN Inversion GAN inversion aims to transform given real-world images
into latent vectors from which a pre-trained GAN model can reconstruct the
original image. In the early stage of GAN inversion, the majority of models rely
partially [36, 4, 5, 35] or entirely [11, 23, 1, 2, 16, 10, 12, 26] on the optimization
steps per image. Though the optimization-based models show high inversion
qualities, these models should perform numerous optimization steps per every
input image [20], which are extremely time-consuming. Thus, training encoders
that map images into the latent space has been prevalent to invert images in the
real-time domain [29, 35, 24, 30, 3, 31]. However, regardless of encoding methods,
the existing state-of-the-art GAN inversion models focus on the whole region of
images [3, 24, 30, 2], including both interest and uninterest regions. We propose
that focusing mainly on the interest region during GAN inversion improves the
perceptual quality and editability of inverted images.

GAN Inversion Trade-O↵ The desirable GAN inversion should consider both
distortion and perceptual quality of inverted images [6, 30, 25]. However, due to
the trade-o↵ between two features, maintaining low distortion while enhancing
the perceptual quality remains a challenging task [30, 25]. Especially in Style-
GAN, an inverted image from the latent far from W distribution achieves lower
distortion [1, 2, 24] but shows lower perceptual quality [30] than the image from
W distribution. Moreover, the latent far from W distribution shows lower ed-
itability [30, 25], which makes editing the inverted image harder. Here the vari-
ance among latents for all layers can be used as an indicator of distance from W ,
where W shows a zero variance due to the identical latent per layer.3 As shown
in Figure 3, the existing StyleGAN inversion models that show low distortion

3 Technically, we should identify whether the latents are from the mapping network
of StyleGAN or not, but for simplicity, we only use the variance.
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(a) Variance of encoders (b) Variance of Restyle per iteration

Fig. 3: Variance of latents from each encoder. We plot the variance of la-
tents, derived from 2,800 CelebA-HQ test images with each encoder-based Style-
GAN inversion model. The existing iterative refinement-based model, Restyle,
shows relatively high variance among style latents per all layers. The variance of
Restyle latents at iteration i, Restylei, increases along with i. e4e, which engages
variation minimization loss term at the training scheme, shows relatively lower
variance. We plot with a log-scale x-axis for better visualization.

but su↵er from low perceptual quality, e.g., pSp [24] and Restyle [3], show rela-
tively high variance among latents for all layers of StyleGAN. Especially, Figure
3b shows that Restyle gradually increases the variance of latents as the iteration
refinement progresses. In the case of e4e [30], it encodes images into latents close
to W but with high distortion. In contrast to the existing methods, our model
focuses on lowering distortion at the interest region, i.e., hair and face. Since it
is much easier than lowering at the uninterest region, i.e., irregular backgrounds,
hats, and accessories, our model successfully achieves lower distortion than the
existing models while avoiding the drop of high perceptual quality.

3 Method

In this section, we propose a simple yet e↵ective StyleGAN encoder training
scheme named IntereStyle. We first introduce our notation and the model ar-
chitecture. Then, we introduce how to determine the interest region in input
images. Next, we propose two novel methods: interest disentanglement and un-
interest filter in Section 3.3 and Section 3.4, respectively. Finally, we describe
the whole training scheme of IntereStyle in Section 3.5.

3.1 Notation and Architecture

Our architecture is shown in Figure 4, which is based on pSp [24] model, com-
bined with the iterative refinement [3, 31]. At i-th iteration of the iterative re-
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Fig. 4: Overall structure of IntereStyle. IntereStyle trained with total of N -
th iteration, receives N images, i.e., I1, I2, ..., IN . Ii is an original image passed
through a low-pass filter with radius ri, which steers the model to focus on the
coarse features at the early step of iterations, and Ii gets clearer as i grows.
The Encoder targets to embed the di↵erence of two images Ii and ŷi�1 into
the latent space, �i�1. After the N -th iteration is finished, We apply interest
disentanglement. We multiply ŷN with the Imask, to wipe out the uninterest
region. We yield �b, by computing the di↵erence between I and I · Imask. By
adding �b to the obtained latent wN , we yield the output ŷ. At the inference
stage, we yield the final output ŷN , without applying interest disentanglement.

finement, our encoder E receives a latent calculated at the previous step, wi�1
4,

together with a pair of images. The pair consists of (ŷi�1, Ii), where ŷi�1 is a
decoded result of wi�1 via generator G, i.e., ŷi�1 = G(wi�1), and Ii is a prepro-
cessed ground truth image, I, by our proposed method in Section 3.4. E targets
to encode the di↵erence between ŷi�1 and Ii into the latent, �i. Consequently,
G can yield an image ŷi, which is more similar to Ii than ŷi�1, by decoding the
latent wi = wi�1 +�i. Our model iteratively refines the latent with a total of
N iterations. Finally, we utilize a loss function Limage for training, consisting of
the weighted sum of L2, LPIPS [34], and LID [24]. We explain the details of
each loss in Appendix A.

3.2 Interest Region

To guide the model to focus on the interest region, we need to label the inter-
est region first. The interest region can be designated arbitrarily according to
the usage of the inversion model. For instance, facial and hair regions for the
facial domain, and the whole body for the animal domain can be set as the
interest region. For labeling this interest region, the o↵-the-shelf segmentation
networks are used, which is described in Section 4. However, directly using the

4 When i = 1, we utilize w0 as an average latent of StyleGAN.
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Fig. 5: Mask dilation. We compare the interest region obtained by the raw
mask and the dilated mask. In the raw mask, the interest region excludes the
information related to the facial boundary, which occurs distortion of a facial
shape. Consequently, we dilate the mask to force the interest region to include
the facial boundary information, as shown in I ·Dilated Mask.

segmentation masks from networks causes the distortion of facial boundaries in
the generated image. To accommodate the boundary information, we use the
dilated segmentation mask containing the interest region, as shown in Figure
5. Without dilation, the loss term on the interest region cannot penalize the
inverted face on the uninterest region. Consequently, we dilate the mask to pe-
nalize the overflowed reconstruction of the interest region boundary. Though
the small part of the uninterest region would be included in the interest region
through the dilation, we empirically find that our model still precisely generates
the interest region without any distortion of boundaries. We visually show the
e↵ect of mask dilation at the ablation study in Section 4.1.

3.3 Interest Disentanglement

To enforce the model to invert the interest region into the latent space precisely,
we should train the model to concentrate on the interest region regardless of
the uninterest region. However, due to the spatial-agnostic feature of Adaptive
Instance Normalization (AdaIN) [21], inverted style latents considering the un-
interest region may deteriorate the inversion quality of the interest region. To
prevent the encoded style of the uninterest region from deforming the inverted
result of the interest region, the inversion of each region should be disentangled.

As E encodes the di↵erence of the input pair of images in ideal, the latent
� obtained by encoding the pair of images that only di↵er on the uninterest
region does not contain the information of the interest region. In other words, the
decoding results from the latents w and w+� should be the same on the interest
region. Motivated by the above, we propose a simple method named Interest
Disentanglement (InD) to distinguish the inversions of the interest region and
uninterest region. We construct the pair of input images for InD as follows: the
original image I, and the same I but multiplied with the interest region mask.
Then, as shown in Figure 4, we can yield the pair of images which only di↵ers
in the uninterest region, and the corresponding latent from E, �b. Ideally, the
information in �b is solely related to the uninterest region, which implies wN
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generates the interest region robustly even �b is added. Consequently, we define
InD loss, LInD as follows;

LInD := Limage(I · Imask, ŷ · Imask), (1)

where ŷ is the inversion result from the latent w = wN +�b. We apply Interest
Disentanglement only at the training stage, which enables the inference without
the interest region mask. We empirically find that IntereStyle focuses on the
interest region without any prior mask given, after the training.

3.4 Uninterest Filter

At the early steps of the iterative refinement, E focuses on reducing the distor-
tion of the uninterest region [3]. Due to the spatial-agnostic feature of AdaIN,
we claim that excessively focusing on the uninterest region hinders the inversion
of the interest region. We propose a method named Uninterest Filter (UnF), to
make E concentrate on the interest region at every iteration consistently. UnF
eliminates details of the uninterest region, which is inherently infeasible to re-
construct. Thus, E can reduce the redundant attention on the uninterest region
for the low distortion. In detail, UnF eases calculating �i by blurring the unin-
terest region of I at each iteration, with a low-pass Gaussian Filter with radius
r, LPFr. As shown in Figure 4, UnF gradually reduces the radius of Gaussian
filter of LPF as iterations progress, with the following two reasons; First, the
redundant attention on the uninterest region is considerably severe at the early
stage of the iterations [3]. Consequently, we should blur the image at the early
iterations heavily. Second, excessive blur results in the severe texture di↵erence
between the interest and uninterest region. We claim that E is implicitly trained
to encode the di↵erence of the whole region, which can be biased to produce the
blurred region when the blurred images are consistently given. For the realistic
generation, the input at the N -th iteration, IN is deblurred, i.e., identical to I.
We calculate the input image at the i-th iteration as below:

Ii =

(
I · Imask + LPFri(I · (1� Imask)), 0 < i < N

I, i = N.
(2)

3.5 Training IntereStyle

At the training stage, we jointly train the model with the o↵-the-shelf encoder
training loss [24] Limage and LInD. However, in contrast to Restyle [3], which
back-propagates N times per batch, we back-propagate only once after the N -th
iteration is over. Thus, ours show relatively faster training speed compared to
Restyle. Our final training loss is defined as below:

Ltotal := Limage(I · Imask, ŷN · Imask) + �LInD. (3)

Our proposed methods, InD and UnF are synergistic at the training; While
InD disentangles the inversion of the uninterest region, UnF forces to look at
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the interest region. Though applying Limage to the images multiplied with Imask

inherently drives E to focus on the interest region, InD is essential for robust
training. Without LInD, we find E implicitly contains information of the unin-
terest region into �i, which a↵ects the inversion of the interest region by AdaIN.

4 Experiments

In this section, we briefly introduce our datasets and baselines first. The imple-
mentation details are described in Appendix A. Then, we compare the inversion
results with baselines and ablation scenarios, both in qualitative and quantita-
tive ways. Next, we compare the image manipulation of our model, together with
baselines. Finally, we look into the iterative scheme of our model with Restyle.
Though we mainly show the results on the facial domain, we note that our
method shows remarkable results in various domains. We show the experimental
results on the animal domain in Figure 6 briefly and the plenty experimental
results in Appendix D.

Datasets For the facial domain, we trained the encoder using the FFHQ dataset,
consisting of 70,000 human facial images. For the validation, we used the CelebA-
HQ test set, consisting of 2,800 human facial images. We did not add or change
any alignment or augmentation procedures compared to the existing encoder
training methods [24, 3, 30] for a fair comparison. To generate the interest and
uninterest region masks, we used the pre-trained Graphonomy [14] model. For
the animal domain, we used AFHQ wild dataset [9] for training and validation,
which consists of 4,730 and 500 images, respectively. We used the pre-trained
DEtection TRansformer (DE-TR; [7]) for obtaining the interest region.

Baselines We compared our model with the several well-known StyleGAN en-
coders: IDGI [35], pSp [24], e4e [30], and Restyle [3]. Moreover, in the case of
the qualitative comparison of inversion, we additionally compared it with the
optimization-based model [1, 2], which is well-known for its outstanding per-
formance. For the baseline models, we used the pre-trained weights that are
publicly available for evaluation. Please refer to Appendix C for more detailed
information of each baseline.

4.1 Inversion Evaluation

Qualitative Evaluation Figure 6 shows the inverted images of IntereStyle and
two StyleGAN inversion baselines, Image2StyleGAN [1] and Restyle [3]. In this
figure, we show the entire inversion results along with the cropped images, which
correspond to the areas of overlapping of the interest and uninterest regions.
Without our robust inversion schemes, mere attempts to lower distortion over
the entire region often occurred severe artifacts or feature deformations. Indeed,
the baselines produced artifacts, which severely lower the perceptual quality. In
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Fig. 6: Qualitative comparison. Comparison of various StyleGAN inversion
methods. IntereStyle e↵ectively disentangled the uninterest regions (e.g., mic,
letter, fingers and wood) from the interest region, which enabled robust han-
dling of artifacts. However, the baseline models su↵ered from artifacts, which
significantly deformed the feature of original images. Best viewed in zoom-in.

Model IDGI pSp e4e RestylepSp Restylee4e IntereStyle
Region Interest Face Interest Face Interest Face Interest Face Interest Face Interest Face

L2 0.030 0.010 0.018 0.006 0.023 0.007 0.015 0.004 0.021 0.007 0.013 0.003
LPIPS 0.116 0.053 0.095 0.046 0.111 0.051 0.088 0.040 0.109 0.054 0.075 0.036

ID Similarity 0.18 0.56 0.47 0.65 0.51 0.68

Table 1: Quantitative comparison. We calculated each result by multiplying
the mask, i.e., interest and facial masks, for the exact comparison of inversion
quality of each region. IntereStyle showed the lowest L2 and LPIPS on both
the interest and facial regions among the state-of-the-art StyleGAN inversion
models. Moreover, IntereStyle showed the best ID similarity among the baselines.

addition, they mangled features of original images in some cases. For instance,
RestylepSp turned the microphone into a white beard, which does not exist in the
original image. The optimization-based inversion relatively mitigated artifacts
among the baselines, but still su↵ered from them. Moreover, it required more
than 200 times longer inference time compared to the one of IntereStyle. In
contrast, IntereStyle showed the most robust outputs compared to all baselines,
which best preserved the features of original images without artifacts.

In Figure 7, we qualitatively showed the e↵ectiveness of the mask dilation.
Without dilation, the model could not precisely reconstruct the original bound-
ary of the interest region, which was denoted as the red region. In contrast, with
the mask dilation, our model minimized the boundary deformation.
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Original W/O Dilation IntereStyle

Fig. 7: Ablation study on dilated mask. Comparison of the results in the
cases of using raw mask and dilated mask. For measuring the equivalence of the
facial boundaries between the original and inverted images, we used Graphonomy
to obtain the facial region of each image. We then calculated the di↵erence of
each facial region from the original one, denoted by red on the right side. While
the model without the dilated mask could not reconstruct the exact boundary,
our model minimized this error e↵ectively.

Method L2 LPIPS
Interest Face Interest Face

Baseline Restyle [3] 0.015 0.004 0.088 0.040
+ Limage on the interest region 0.013 0.005 0.084 0.038
+ Interest Disentanglement (InD) 0.012 0.003 0.078 0.037
+ Uninterest Filter (UnF) 0.013 0.003 0.075 0.036

Table 2: Ablation study. Performance comparison by adding each component
of IntereStyle. InD and UnF contributed to the improvement of the model, which
showed better results than näıvely applying Limage on the interest region. Es-
pecially, InD is advantageous for reducing L2, and UnF mainly reduces LPIPS.

Quantitative Evaluation We used L2 and LPIPS [34] losses and measured
ID similarity [24] by utilizing the pre-trained Curricularface [17], which shows
the state-of-the-art performance on facial recognition. We measured the quality
on the interest region, the facial and hair regions in this paper, which need to
be inverted precisely. To this end, we multiplied the interest region mask at
the calculation of ID similarity to preclude the facial recognition model from
being a↵ected by the non-facial region. Since the facial recognition performance
is dependent on the features of the non-facial region [13], the inverted images
are prone to be identified as similar faces with the original images due to the
resemblance of non-facial regions. To compare the models solely on the facial
region, we should wipe out the uninterest region.

As shown in Table 1, IntereStyle showed low distortion on both the interest
and facial regions and preserved the identity well simultaneously. We conclude
that focusing on the interest region is indeed helpful for robust inversion. Table 2
shows the ablation study by sequentially applying each component of our method
to measure the e↵ectiveness of the model performance. InD reduced the negative
e↵ect of the uninterest region, which indeed lowered distortion, compared to
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(a) Editing through InterFaceGAN

(b) Editing through StyleCLIP

Fig. 8: Editing comparison. Edited images via (a) InterFaceGAN and (b)
StyleCLIP. Our model showed robust inversion results together with high ed-
itability consistently, while the baselines failed in various cases. First of all, pSp
and e4e failed to invert robustly, which ignored makeups and the detailed ap-
pearance of each image. In the cases of RestylepSp and Restylee4e, both were
vulnerable with the overlapped obstacles. In the right image of (a), RestylepSp

generated severe artifacts, while Restylee4e distorted the shape of mouth sig-
nificantly. Moreover, the Restyle-based models showed poor editability. In (b),
RestylepSp and Restylee4e failed to change the hairstyle in the Mohawk case.

näıvely applying Limage on the interest region. UnF lowered LPIPS by forcing
the model to preserve features of the interest region. Please refer to Appendix
D for more detailed results of each ablation model.
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Fig. 9: Style mixing results. We interpolated latents from Source A to Source
B. We took styles corresponding to either coarse (42 � 82), middle (162 � 322),
or fine (642 � 10242) resolution from source B and took the rest from source A.
IntereStyle showed the robust results on the interpolation, even with obstacles
on the original source images, while RestylepSp su↵ered from severe artifacts.

4.2 Editing via Latent Manipulation

Inversion of GAN is deeply related to the image manipulation on the latent
space. In this section, we compare the quality of edited images produced by var-
ious StyleGAN inversion models [24, 30, 3], manipulated via InterFaceGAN [28]
and StyleCLIP [22] methods, and style mixing [18, 19]. Figure 8 shows the results
of editing real-world images via InterFaceGAN and StyleCLIP, together with the
inversion results. We changed three attributes for each method; smile, age, and
pose for InterFaceGAN, and “smile”, “lipstick”, and “Mohawk hairstyle” for
StyleCLIP. Our model showed high inversion and perceptual qualities consis-
tently among various editing scenarios, even with strong makeups or obstacles.
However, pSp and e4e missed important features of images, such as makeups
or eye shapes. Moreover, pSp produced artifacts in several editing scenarios. In
the cases of RestylepSp and Restylee4e, they failed to robustly handle obstacles.
In the right side of Figure 8a, RestylepSp produced severe artifacts around the
mouth, while Restylee4e totally changed the shape. Moreover, the Restyle-based
models showed low editability in specific cases, such as “Mohawk”.

To attribute to the superior disentanglement feature of StyleGAN latent
space [28], we can separately manipulate the coarse and fine features of images.
Following the settings from the StyleGAN [18] experiment, we took styles cor-
responding to either coarse, middle, or fine spatial resolution, respectively, from
the latent of source B, and the others were taken from the latent of source A.
Moreover, we mixed more than one hard case, e.g., obstacles on faces and ex-
treme poses, to evaluate the robustness of our model. As shown in Figure 9, our
model showed higher perceptual quality on the interpolated images compared
to RestylepSp. RestylepSp produced images with texture shift, i.e., images with
cartoon-like texture, distorted facial shape, and undesirable artifacts during the
style mixing. In contrast, our model generated stable facial outputs. Additional
qualitative results are shown in Appendix D.2.
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Fig. 10: Outputs and variance at each iteration. We compared intermediate
outputs ŷi of an example from CelebA-HQ test dataset, and the average of
variances of latents among all test images at each iteration. Restyle showed severe
artifacts on the interest region and a steep variance increment at each iteration,
while IntereStyle showed robust inversion and maintained low variances.

4.3 Iterative Refinement of IntereStyle

We compared the progress of iterative refinement between Restyle [3] and Inter-
eStyle in Figure 10. Restyle reconstructed most of the coarse features within a
few steps, while the variance of Restyle increased consistently as iteration pro-
gressed. In other words, the reduction of distortion is marginal, though Restyle
excessively focuses on this. Consequently, the latent from Restyle was located
far from W , which yields an image with low perceptual quality. In contrast, In-
tereStyle concentrated on the interest region that could be generated without a
broad extension fromW . Consequently, IntereStyle e↵ectively reduced distortion
on the interest region by iteration while maintaining high perceptual quality.

5 Conclusions

For StyleGAN inversion, focusing on the interest region is essential but under-
explored yet. We found excessive attention on the uninterest region occurs the
drop of perceptual quality and high distortion on the interest region. We pro-
posed a simple yet e↵ective StyleGAN encoder training scheme, coined Inter-
eStyle, composed of Interest Disentanglement and Uninterest Filter. We demon-
strated that IntereStyle showed both low distortion and high perceptual inversion
quality, and enabled various latent manipulations robustly for image editing. We
look forward to our work to be widely used in future research or the industry
field, which needs a delicate inversion of the interest region for image editing.
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M., Theobalt, C.: Stylerig: Rigging stylegan for 3d control over portrait images.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 6142–6151 (2020)

30. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder
for stylegan image manipulation. ACM Transactions on Graphics (TOG) 40(4),
1–14 (2021)

31. Wei, T., Chen, D., Zhou, W., Liao, J., Zhang, W., Yuan, L., Hua, G., Yu, N.: A
simple baseline for stylegan inversion. arXiv preprint arXiv:2104.07661 (2021)

32. Wu, Z., Lischinski, D., Shechtman, E.: Stylespace analysis: Disentangled controls
for stylegan image generation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 12863–12872 (2021)



0 S.J. Moon et al.

33. Yang, G., Fei, N., Ding, M., Liu, G., Lu, Z., Xiang, T.: L2m-gan: Learning to
manipulate latent space semantics for facial attribute editing. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2951–
2960 (2021)

34. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
e↵ectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)

35. Zhu, J., Shen, Y., Zhao, D., Zhou, B.: In-domain gan inversion for real image
editing. In: European conference on computer vision. pp. 592–608. Springer (2020)
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