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1 Dataset

For PSU Near-Regular Texture Database (NRTDB), we collect all the perspec-
tive NPP images, and filter those that fail to be rectified using TILT [42]. The
resultant dataset has 165 NPP images from PSU Near-Regular Texture Database
(NRTDB), which contains facades, friezes, bricks, fences, grounds, Mondrian im-
ages, wallpapers, and carpets.

For Describable Textures Dataset (DTD), we only consider the official test set
(the first split) since some of our baselines are trained on DTD [8]. In the test set,
we select the categories whose images are more likely to be near-periodic. These
categories are banded, chequered, grid, honeycombed, lined, meshed, perforated,
polka-dotted, zigzagged. Then we manually filter out non-NPP images, resulting
in 258 NPP images in the dataset.

For the Facade dataset, we directly use an official CVPR 2010 subset provided
by [30], which contains 109 rectified images of facades. Some of these facades are
strictly not NPP because often the windows are not arranged periodically. But
nonetheless we include these to evaluate our approach when the NPP assumption
is not strictly satisfied.

The sampled images of NRTDB, DTD, Facade datasets are shown in Figure
1, Figure 2 and Figure 3, respectively. For our self-collected dataset, we show all
of them in qualitative results.
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Fig. 1: Sampled NPP images (rectified) of the NRTDB dataset. All examples
are resized for the visualization. More images are included in the qualitative
comparison.

Fig. 2: Sampled NPP images (rectified) of the DTD dataset. All examples are
resized for the visualization. More images are included in the qualitative com-
parison.
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Fig. 3: Sampled NPP images (rectified) of the Facade dataset. All examples are
resized for the visualization. More images are included in the qualitative com-
parison.
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2 NPP-Net

2.1 Displacement Vectors Transformation
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Fig. 4: The illustration of a periodicity. It consists of two displacement vectors
d1 and d2 (orange), which can be transformed to periodicity vectors p1 and p2

(red), respectively.

Lattice Patterns: Assuming a 2D lattice arrangement, a periodicity can be
represented as two displacement vectors d1 and d2 (orange arrows in Figure 4). A
perfect infinite periodic pattern is invariant if shifted by αd1+βd2(α, β ∈ Z). In
order to incorporate the displacement vectors into the Periodicity-Aware Input
Warping module, we need to transform d1 and d2 into pattern periods and
orientations, visualized as the magnitudes and orientations of the red arrows (p1

and p2, called periodicity vectors).

We assume d1 = (d1x, d1y) and d2 = (d2x, d2y) are known (from Periodicity
Proposal). Note that we let d1x, d2x ∈ Z and d1y, d2y ∈ N to remove identical
vectors in another half circle. As we mentioned in the main paper, we can obtain
the periodicity vectors by solving:

p1 · d2 = d1 · p2 = 0. (1)

p1 × d2 = d1 × p2 = d1 × d2, (2)

where the cross product is defined using the corresponding 3D vectors on the
plane z = 0.
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Let p1 = (p1 cos θ1, p1 sin θ1), where θ1 is in the range [0, π). We can compute
θ1 according to Equation 1, given by:

p1 · d2 = p1 cos θ1d2x + p1 sin θ1d2y = 0

tan θ1 = −d2x
d2y

θ1 = arctan−d2x
d2y

(3)

Then the magnitude p1 can be solved based on Equation 2, given by:

p1 × d2 = d1 × d2

p1|d2| sin
π

2
= |d1||d2| sinϕ

p1 =
√

(d1x)2 + (d1y)2 sinϕ

(4)

where ϕ = arccos d1·d2

|d1|·|d2| is the angle between d1 and d2. Similarly, we can

obtain p2 using Equation 1 to Equation 4.

Circular Patterns: Our method can be modified to handle circular periodic
patterns. Define periodicity of circular NPP by a rotation centroid c = (cx, cy)
and an angular period p (in radians). The periodicity proposal module can be
applied to circular NPP to estimate c and p. In addition, two modifications are
needed:

(1) Equation 1 (main paper) is rewritten as two functions:

fc,p(x, y) =
√
(x− cx)2 + (y − cy)2

gc,p(x, y) = atan2∗(y − cy, x− cx) mod p
(5)

where we define atan2∗(y, x) = (atan2(y, x) + 2π) mod 2π.
(2) Periodicity-based patch sampling strategy is modified. Let center of pre-

dicted patch be x. Instead of shifting x to obtain centers of known patch xαβ

in lattice patterns, we directly rotate the input image around c based on α · p,
where α is an integer constant. Then we sample known patch centers in circular
images at position x.

2.2 Implementation Details

We apply the following settings below (for the final pipeline) for all applications.
Same as [20], we set the number of frequency d in positional encoding as 10.

Periodicity Proposal. In our implementation, the key hyperparameter for
periodicity detection method [19] is an integer q, which defines the range of
possible displacements in d1 and d2. Specifically, d1 and d2 are in the set R,
given by:

R = {(x, y)| −
W

q
< x <

W

q
, 0 ≤ y <

H

q
} − {(x, y)| −

W

q + 1
< x <

W

q + 1
, 0 ≤ y <

H

q + 1
}, (6)
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where H and W are the image height and width. The periodicity detection
method outputs the best periodicity in R.

In the periodicity searching, we evaluate different q in {i|i ∈ Z+, i < 10} for
multiple periodicities, which are ranked based on reconstruction errors. Specif-
ically, we generate Top-M (M=3) pseudo square masks whose centers are far
away from the image boundary or unknown regions. The mask size for each
mask is empirically set to 5L

6
√
2
, where L is the distance from the center pixel to

the nearest invalid pixel. Then we run the initial pipeline for evaluation of each
q based on its reconstruction error in these masked regions.

Network Architecture. The first MLP contains 9 fully-connected Snake
layers [44] with 512 channels. It also includes a skip connection that concatenates
the Top-1 coordinate and original features to the fifth layer’s activation. The
outputs of this MLP are concatenated with the Top 2nd to K-th coordinate
features and then fed to the second MLP. The second MLP has 4 fully-connected
Snake layers with 512, 512, 256, and 3 channels. The output features of the first
MLP are also concatenated with the second layer activation of the second MLP
for the skip connection.

Single-Image Optimization. In the patch loss, we sample square ground
truth patches for supervision. We set the patch size s in {64, 96, 128, 160} based
on the Top-1 periodicity, where larger periods are matched with a larger patch
size. For the patch center x, we filter out the shifted patch centers xαβ with
their known patch area smaller than 70% of the whole patch area, and we use
N = 3 (size of TN ). We set λp in Lpatch to 0.4, and λc to 1, 10, 5 in completion,
remapping and segmentation (explained later), respectively. In final Loss L, we
set λ1 = 1, λ2 = 0.001, |B1| = 8192, and |B2| = 2. Further, B2 contains half of
sampled centers in unknown regions and half of those in known regions.

For training details, we use the Adam optimizer with the learning rate that
starts with 5× 10−4 and decays every 500 epochs. Furthermore, for every 2000
epoch, we shrink the patch size by twice and increase the number of the sampled
patches by twice to encourage the network to focus on finer-level details.

Runtime. The periodicity proposal takes 100 seconds (for 10 candidate pe-
riodicities). The optimization takes around 8 minutes, 5 minutes, and 3 minutes
for NPP completion, NPP remapping, and NPP segmentation to converge on a
single NVIDIA Titan XP GPU, respectively.
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3 NPP Completion

3.1 Mask Generation

We apply different mask generation strategies to test the methods on different
scales. For each image in NRTDB [1], we generate an unknown mask with height
and width sampled from [100, 500]. The top-most and left-most coordinates of
the mask are sampled from [H2 − 250, H

2 +250] and [W2 − 250, W
2 +250], respec-

tively. We crop the mask when it exceeds the image boundary. For each image in
DTD [8], we generate an unknown mask with height and width equal to 70% of
the image height and width (starting from the bottom right) respectively. This
mask generation strategy allows us to evaluate the extrapolation performance of
the methods. For each image in Facade, we generate a mask in the center of the
image, where the mask size is (H6 ,

W
3 ).

3.2 More Metrics

We also evaluate the models using FID [21] and RMSE. FID evaluates the dis-
tance between the distribution of ground truth and outputs images at the dataset
level. But, FID requires all the images to be resized to a fixed size. Thus for im-
ages with low resolution, this resizing operation introduces aliasing even if we
use the recent proposed clean FID implementation [21]. RMSE is a pixel-wise
metric to compare the difference of pixel values.

3.3 Ablation Study

More results for experiments in main paper: We show the quantitative
results with FID and RMSE (evaluated only in unknown regions) and all met-
rics (evaluated in the full images) in Table 1, Table 2 and Table 3. Note that
“No Periodicity” variant simply overfits the known regions without learning any
structural information. Also, the facade dataset may have different performance
because it contains some images that are strictly not NPP images. Figure 5, Fig-
ure 6, and Figure 7 show the qualitative results for variants without periodicity
prior and those with various combination of loss functions. Figure 8 shows the
comparison with variants using different settings of periodicity augmentation.
In summary, NPP-Net outperforms all the tested variants on NRTDB and DTD
datasets.

More experiments for choice of loss: We further tested three variants of
NPP-Net in NRTDB: (1) replace robust L2 loss by L2 loss, (2) replace contextual
loss by perceptual loss, (3) replace perceptual loss by contextual loss. The LPIPS
of variants (1)(2)(3) are 0.206, 0.226, and 0.209. They are still worse than the
full model (0.188).

Choice of activation function: We replaced SNAKE activation function in
our MLP with Sine function (following SIREN), and the LPIPS in NRTDB is
0.194 (3% worse). This is because the periodic activation function in SIREN
helps in handling fine details but not necessarily complex periodic patterns.
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Category Method
Only Unknown Regions Full Images

RMSE ↓ FID ↓ LPIPS ↓ SSIM ↑ PSNR↑ RMSE ↓ FID ↓

NPP-Net
Variants

No Periodicity 8.890 223.7 0.134 0.861 23.34 4.526 47.85
Pixel Only 8.703 153.5 0.180 0.859 23.65 5.756 47.84
Patch Only 9.270 128.1 0.313 0.426 15.98 8.698 98.41

Pixel + Random 8.241 100.0 0.104 0.902 24.52 4.770 26.06
Initial Pipeline 8.246 81.99 0.124 0.893 24.29 5.160 27.46
Top1 + Offsets 8.228 74.83 0.109 0.900 24.48 4.856 23.51
Top5 + Offsets 8.266 74.83 0.100 0.900 24.55 4.721 23.08
Top3 w/o Offsets 8.259 78.20 0.119 0.892 24.31 5.038 26.01

NPP-Net Top3 + Offsets 8.164 70.43 0.100 0.908 24.71 4.839 20.46

Table 1: Comparing different variants of NPP-Net for NPP completion in NRTDB.

NPP-Net outperforms all other variants. Note that “No Periodicity” variant overfits

the known regions in the full images case.

Category Method
Only Unknown Regions Full Images

RMSE ↓ FID ↓ LPIPS ↓ SSIM ↑ PSNR↑ RMSE ↓ FID ↓

NPP-Net
Variants

No Periodicity 8.758 186.3 0.256 0.661 19.35 6.082 86.97
Pixel Only 8.400 145.7 0.263 0.685 20.43 6.545 81.80
Patch Only 9.097 122.4 0.382 0.335 13.62 9.020 115.0

Pixel + Random 7.981 89.26 0.173 0.742 20.85 6.202 54.09
Initial Pipeline 8.100 96.64 0.212 0.704 20.00 6.516 65.91
Top1 + Offsets 8.061 93.93 0.201 0.714 20.42 6.431 61.02
Top5 + Offsets 8.024 86.97 0.171 0.730 20.85 6.264 50.97
Top3 w/o Offsets 8.079 90.48 0.193 0.718 20.15 6.407 57.70

NPP-Net Top3 + Offsets 7.918 85.39 0.162 0.744 21.15 6.161 50.39

Table 2: Comparing different variants of NPP-Net for NPP completion in DTD. NPP-

Net outperforms all other variants.

Category Method
Only Unknown Regions Full Images

RMSE ↓ FID ↓ LPIPS ↓ SSIM ↑ PSNR↑ RMSE ↓ FID ↓

NPP-Net
Variants

No Periodicity 9.597 264.3 0.040 0.961 27.20 4.646 16.13
Pixel Only 9.902 281.6 0.137 0.914 24.80 7.196 53.69
Patch Only 9.987 156.6 0.535 0.166 11.04 9.993 234.9

Pixel + Random 9.540 132.7 0.073 0.939 25.43 6.289 18.15
Initial Pipeline 9.399 102.1 0.092 0.932 24.70 6.607 18.65
Top1 + Offsets 9.472 101.5 0.083 0.933 24.70 6.463 18.37
Top5 + Offsets 9.474 92.34 0.067 0.936 25.55 6.149 17.14
Top3 w/o Offsets 9.403 96.38 0.085 0.935 24.96 6.475 17.68

NPP-Net Top3 + Offsets 9.464 91.05 0.063 0.944 25.51 6.155 16.94

Table 3: Comparing different variants of NPP-Net for NPP completion in Facade

dataset. NPP-Net outperforms all other variants. Besides, the Facade dataset contains

a number of non-NPP images, resulting in a different performance from the other two

datasets. “No Periodicity” variant overfits the known regions in the full images case.
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Fig. 5: Qualitative results for variants without periodicity prior and with different
loss functions. NPP-Net outperforms all other variants. Note that periods in the
fifth and seventh row are not scaled by 2.
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Fig. 6: Qualitative results for variants without periodicity prior and with different
loss function. NPP-Net outperforms all other variants.
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Fig. 7: Qualitative results for variants without periodicity prior and with different
loss function. NPP-Net outperforms all other variants.
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Fig. 8: Qualitative results for periodicity augmentation. NPP-Net outperforms
all other variants.
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3.4 Comparison with Baselines

We show the quantitative results with FID and RMSE (evaluated only in un-
known regions) and all metrics (evaluated in the full images) in Table 4, Table
5, and Table 6. For NRTDB and DTD datasets, NPP-Net outperforms all the
baselines. For RMSE in Table 4, DIP and Siren perform better in the full im-
age even if they generate bad results in unknown regions because they simply
overfit the known ones. For FID in Table 5, image quilting performs better. One
possible reason is that the images in this dataset have smaller variations in the
motifs thus simply tiling them may produce reasonable results.

The Facade dataset contains some images that are not strictly NPP images.
Thus the performance is different from the other two datasets. But NPP-Net can
still outperform other baselines (except for Lama that trained on large datasets)
by optimizing only on a single image. Similarly, DIP and Siren perform better
in the full image since they simply overfit the known ones.

We also show more qualitative results with all baselines. Figure 9 to Figure
14 show that NPP-Net outperforms baselines in terms of global consistency.
Figure 15 and Figure 16 are for local variations, including boundaries and lighting
effects. As shown in the results, NPP-Net can handle the NPP images that only
have periodic patterns along one direction. This is because NPP-Net tends to
focus on this direction while ignoring the second one since this minimizes the loss
in the known regions better. Note that pretrained PEN-Net only accepts images
with a fixed resolution, thus we resize the input image to satisfy the constraint,
which may lead to blurry results. Lama also performs well since it implicitly
learns scene prior, such as periodicity, from large datasets, while NPP-Net is
only optimized on a single image.

In addition, We show the results in the main paper with all the baselines
in Figure 17 and Figure 18. Besides, Figure 17 also shows more examples for
extrapolation and different mask shapes. The results show NPP-Net outperforms
baselines (especially for those single image-based counterparts) in terms of global
consistency and local variations with various shapes and sizes of masks.

Please note that, although we minimizes LPIPS in known regions during
training, we provides evaluation of all methods only in unknown regions (Table 1
in main paper). Even removing LPIPS loss, NPP-Net still obtains 0.204 LPIPS
(24% better than the best baseline (BPI) that does not optimize LPIPS). In
addition, NPP-Net performs the best in SSIM and FID (main paper and supp),
which are not explicitly minimized by all methods.
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Category Method
Only Unknown Regions Full Images

RMSE ↓ FID ↓ LPIPS ↓ SSIM ↑ PSNR↑ RMSE ↓ FID ↓

Large
Datasets

PEN-Net [39] 9.231 204.1 - - - - -
ProFill [40] 9.137 187.4 - - - - -
Lama [29] 8.567 86.18 - - - - -

Single
Image

Image Quilting [11] 9.739 89.53 - - - - -
PatchMatch [3] 8.956 86.67 - - - - -

DIP [31] 8.906 242.3 0.177 0.829 22.32 4.702 79.65
Siren [25] 9.859 303.4 0.183 0.791 21.17 4.418 85.18

Huang et al. [13] 8.921 104.7 - - - - -
BPI [18] 9.213 71.77 - - - - -

NPP-Net 8.164 70.43 0.100 0.908 24.71 4.839 50.39

Table 4: Comparing with different baselines for NPP completion in NRTDB dataset.

NPP-Net outperforms all baselines.

Category Method
Only Unknown Regions Full Images

RMSE ↓ FID ↓ LPIPS ↓ SSIM ↑ PSNR↑ RMSE ↓ FID ↓

Large
Datasets

PEN-Net [39] 8.952 166.5 - - - - -
ProFill [40] 9.024 199.7 - - - - -
Lama [29] 9.137 93.14 - - - - -

Single
Image

Image Quilting [11] 9.431 83.39 - - - - -
PatchMatch [3] 8.637 105.4 - - - - -

DIP [31] 9.350 263.32 0.344 0.604 16.23 6.549 153.74
Siren [25] 9.895 314.1 0.393 0.544 16.21 6.220 174.9

Huang et al. [13] 8.520 97.97 - - - - -
BPI [18] 8.910 85.93 - - - - -

NPP-Net 7.918 85.39 0.162 0.744 21.15 6.161 50.39

Table 5: Comparing with different baselines for NPP completion in DTD dataset.

NPP-Net outperforms all baselines.

Category Method
Only Unknown Regions Full Images

RMSE ↓ FID ↓ LPIPS ↓ SSIM ↑ PSNR↑ RMSE ↓ FID ↓

Large
Datasets

PEN-Net [39] 9.745 133.3 - - - - -
ProFill [40] 9.566 138.0 - - - - -
Lama [29] 9.434 83.07 - - - - -

Single
Image

Image Quilting [11] 10.16 121.46 - - - - -
PatchMatch [3] 9.741 95.34 - - - - -

DIP [31] 9.660 239.9 0.055 0.951 26.71 5.080 20.98
Siren [25] 10.17 404.7 0.060 0.938 24.39 2.730 33.54

Huang et al. [13] 9.447 104.9 - - - - -
BPI [18] 9.992 98.52 - - - - -

NPP-Net 9.464 99.50 0.063 0.944 25.51 6.155 16.94

Table 6: Comparing with different baselines for NPP completion in Facade dataset.

Note that, Facade dataset has different performance since it contains some non-NPP

images.



NPP-Net 15

Input

Image

Quilting

PatchMatch

DIP

Siren

PEN-Net

ProFill

Lama

Huang

et al.

BPI

NPP-Net

Ground
Truth

Fig. 9: Comparison with other baselines for image completion.
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Fig. 10: Comparison with other baselines for image completion. Note that periods
in the second column are not scaled by 2.
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Fig. 11: Comparison with other baselines for image completion. Note that periods
in the fifth column are not scaled by 2.
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Fig. 12: Comparison with other baselines for image completion.
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Fig. 13: Comparison with other baselines for image completion. Note that periods
in the fifth column are not scaled by 2.
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Fig. 14: Comparison with other baselines for image completion.
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Fig. 15: Comparison with other baselines for image completion.
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Fig. 16: Comparison with other baselines for image completion.
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Fig. 17: Comparison with other baselines for image completion. Note that periods
in the last column are not scaled by 2.
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Fig. 18: Comparison with other baselines for image completion.
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3.5 Influence of Mask Size

As mentioned in the main paper, we perform two experiments to study the
influence of different mask sizes.

First, for each image in NRTDB dataset, if the K-th periodicity has the small-
est error among Top-3 periodicities, we assign the image to the K-th periodicity.
We show the number of images assigned to each periodicity with different mask
sizes in Figure 19. While the Top 1st periodicity is the best one for most of the
images with small mask size, this number decreases in the large mask case (64%
of the image). This demonstrates that the other periodicities contain better pe-
riodicity and leveraging them by our periodicity augmentation strategy can be
helpful for learning NPP representation, especially when the mask is large.

To compute the periodicity error, we manually annotate the periodicity with
the smallest period as ground truth periodicity for the dataset. For each peri-
odicity, we generate a 2D point cloud, defined as {αd1 + βd2|α, β ∈ Z}. We
also filter points that are out of image range. The periodicity error is calculated
using the average L2 distance between every point in proposed point clouds and
its nearest neighbor in the ground truth point cloud (one-directional chamfer
distance).

In the second experiment, we show all the evaluation metrics of image com-
pletion task to analyze the influence of mask size in NRTDB and DTD datasets
in Figure 20 and Figure 21, respectively. While LPIPS, SSIM, PSNR, and RMSE
are evaluated only in unknown regions, we evaluate FID in the full image since
FID is inaccurate if the image resolution is very small (e.g., 4% of original im-
age). NPP-Net outperforms other baselines, especially when the mask size is
large. Figure 22 to Figure 23 show the qualitative results, where NPP-Net per-
forms the best among all methods.
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Fig. 19: The number of NPP images for each periodicity that has the smallest
periodicity errors (among Top-3) with different mask sizes in NRTDB. As the
mask size grows, the best periodicity emerges in the other periodicities, thus
utilizing them in NPP-Net is useful.



26 B. Chen et al.

4% 16% 25% 36% 49% 64%
Mask Area Ratio

0.2

0.3

0.4

0.5

0.6

0.7

LP
IP

S

NPP-Net

Image Quilting
PatchMatch
DIP

Siren
Profill
PEN-Net

Lama
Huang et al.

BPI
NPP-Net

(a) LPIPS

4% 16% 25% 36% 49% 64%
Mask Area Ratio

0

50

100

150

200

FI
D

NPP-Net

Image Quilting
PatchMatch
DIP

Siren
Profill
PEN-Net

Lama
Huang et al.

BPI
NPP-Net

(a) FID

4% 16% 25% 36% 49% 64%
Mask Area Ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SS
IM

NPP-Net

Image Quilting
PatchMatch
DIP

Siren
Profill
PEN-Net

Lama
Huang et al.

BPI
NPP-Net

(b) SSIM

4% 16% 25% 36% 49% 64%
Mask Area Ratio

10

12

14

16

18

20

PS
NR

NPP-Net

Image Quilting
PatchMatch
DIP

Siren
Profill
PEN-Net

Lama
Huang et al.

BPI
NPP-Net

(c) PSNR

4% 16% 25% 36% 49% 64%
Mask Area Ratio

7.5

8.0

8.5

9.0

9.5

RM
SE

NPP-Net

Image Quilting
PatchMatch
DIP

Siren
Profill
PEN-Net

Lama
Huang et al.

BPI
NPP-Net

(d) RMSE

Fig. 20: Comparison of model performances for different mask sizes in the
NRTDB dataset. FID is evaluated in the full image, and the other three metrics
are tested in the unknown regions.
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Fig. 21: Comparison of model performances for different mask sizes in the DTD
dataset. FID is evaluated in the full image, and the other four metrics are tested
in the unknown regions.
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Fig. 22: Qualitative results for different size of masks. From left to right, the
mask sizes are 4%, 16%, 25%, 36%, 49% and 64%. NPP-Net outperforms all the
baselines.
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Fig. 23: Qualitative results for different size of masks. From left to right, the
mask sizes are 4%, 16%, 25%, 36%, 49% and 64%. NPP-Net outperforms all the
baselines.
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3.6 Periodicity Refinement

The completed output of NPP-Net can also improve the periodicity detection
since more known and reliable information is available for the detection, espe-
cially for large masks. The better periodicity can help BPI and NPP-Net achieve
better results. Note that, we do not adopt this strategy on Huang et al. because
it is not easy to incorporate the detection method into their pipeline.

Specifically, given a masked NPP image, we perform our pipeline to complete
the image. Then we input the completed image to our pipeline for periodicity
proposal, but still, train NPP-Net only in the originally known regions for better
completion results. A similar process is also applied to BPI. In practice, we
only refine the masked images with the ratio of unknown regions to the sum of
unknown and known ones larger than 40%.

Table 7 and Figure 24 show the quantitative and qualitative results for the
refinement in NRTDB dataset, respectively. Methods with refinement perform
better than those without refinement. Among all the methods, NPP-Net with
refinement performs the best, demonstrating the effectiveness of refinement for
large masks.

Method
Only Unknown Regions

LPIPS ↓ SSIM ↑ PSNR ↑ FID ↓ RMSE ↓

BPI 0.252 0.385 14.83 82.77 9.496
BPI (Refine) 0.244 0.402 14.93 90.16 9.462

NPP-Net 0.186 0.626 17.55 74.10 9.001
NPP-Net (Refine) 0.171 0.636 17.87 68.20 8.904

Table 7: Comparison of BPI and NPP-Net with and without periodicity refine-
ment. NPP-Net with refinement outperforms all other compared methods.

Input
Input

(Refine) BPI
BPI

(Refine) NPP-Net
NPP-Net
(Refine) GT

Fig. 24: Qualitative results for periodicity refinement. NPP-Net with refinement
outperforms all other compared methods.
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3.7 Learnable Periodicity

There are several texture synthesis methods [7,15] that directly treat periodicity
as a learnable parameter during training. However, as mentioned in the main
paper, this does not work for many real-world NPP images due to the presence
of local variations. Predicting periodicity before training stabilizes the network
optimization. Figure 25 shows four texture synthesis samples from PSGAN.

(a) Input (b) PSGAN Output

Fig. 25: Texture synthesis results of PSGAN. The left image shows the input and
the right image shows four synthesized samples of PSGAN.
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4 NPP Segmentation

4.1 Method

We aim to segment the non-periodic regions in an NPP image in an unsupervised
manner. The key idea is to detect initial non-periodic regions, treat them as the
unknown mask, and relabel regions with low reconstruction error as periodic
regions.

Specifically, we first apply a traditional image segmentation method [16] to
generate an initial segmentation for non-periodic regions, treated as unknown
regions. This segmentation method first divides image pixels as superpixels and
uses Gaussian Mixture Model for a coarse segmentation, which is further refined
by GraphCut. We treat the class that contains the largest number of pixels as the
periodic class, and the rest of the classes as non-periodic classes for initialization.
One drawback of this method is that it often over-segments the non-periodic re-
gions. Thus we use NPP-Net to refine the initial segmentation. In detail, we use
the same pipeline of image completion to complete the unknown (non-periodic)
regions. For every pixel x in non-periodic regions, we can compute the recon-
struction error using two metrics since the ground-truth value of x is known.
The first metric is the L1 distance, comparing the difference between output
and ground truth pixels, given by:

S1(x) = |Ĝ(x)−G(x)|, (7)

where Ĝ(x) and G(x) are the grayscale value of output and ground truth at x,
respectively. The second metric is perceptual distance [41] based on pretrained
network, given by:

S2(x) = ||PÎ(x)− PI(x)||2, (8)

where PÎ and PI denote the normalized perceptual activation image (first layer
of AlexNet) of the output and ground truth NPP image, respectively. Only x
with low reconstruction error is eligible for relabelling, and these x are defined
as a set S, given by:

S = {x|S1(x) < ϵ1, S2(x) < ϵ2}, (9)

where ϵ1 and ϵ2 are constants. Finally, we relabel x ∈ S to periodic class to obtain
our segmentation. For implementation details, we set ϵ1 = 0.15 and ϵ2 = 0.3.
Also, we blur the input NPP image before using our pipeline to remove fine
details in the image because we only focus on the global structure.

4.2 Comparison with Baselines

We compare with HRNet [27] and Borovec et al. [16]. The first one is a network
trained on a large dataset (ADE20K [43]), and the latter one is an unsupervised
method based on Gaussian Mixture Model and Graphcut.

We show NPP segmentation results in Figure 26, where NPP-Net outper-
forms all the chosen baselines. HRNet cannot produce reasonable results because
it is trained on a dataset of objects and scenes rather than periodic patterns.
Borovec et al. often over-segments the non-periodic regions since it is based on
low-level features without high-level periodicity understanding.
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Input HRNet Borovec et al. NPP-Net

Fig. 26: Qualitative results of non-periodic region segmentation. The green re-
gions refer to non-periodic regions.
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4.3 NPP Classification

The NPP segmentation can be extended to classify whether an input image is
NPP or not. This can serve as a pre-filtering step before applying NPP-Net for
completion. Also, it can be adopted to collect NPP images from a large collection
of natural images.

Given an arbitrary image with an unknown mask, we label the regions around
the unknown mask as initial non-periodic regions. The remaining known regions
are treated as periodic regions for training. Then we apply NPP segmentation
to relabel the non-periodic regions. If more than 50% of pixels are relabeled, we
classify it as an NPP image.

We test this classification method on the DTD dataset. We select 40 non-
NPP images from the class “potholed” in the original dataset, together with 258
images in the chosen DTD dataset for experiments. We generate an unknown
mask with height and width equal to 50% of the image height and width (starting
from the bottom right) respectively. We initialize the initial non-periodic region
as a mask with height and width equal to 70% of the image height and width
(but excluding the unknown region).

Quantitatively, the precision of NPP classification for all images (298 images),
only non-NPP images (258 images), and only NPP images (40 images) are 82.2%,
81.9%, 84.6% respectively.

Figure 27 shows the qualitative results of the NPP classification. NPP-Net
correctly classifies the images even if the strong local variations are presented
(row 1 column 4). Besides, we also show the failure cases in Figure 28, where
NPP-Net fails for the images with homogenous contents or complicated back-
grounds.
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Fig. 27: The qualitative results of NPP classification. The regions inside the
purple box are the initial non-periodic regions, and the regions highlighted in
green refer to the final periodic regions. NPP-Net correctly classifies images in
the first row (NPP images) and second row (non-NPP images). The more regions
in green, the more likely the image is a non-NPP image.

Fig. 28: The failure cases of NPP classification. The regions inside the purple box
are the initial non-periodic regions, and the regions highlighted in green refer
to the final periodic regions. NPP-Net fails to correctly classify images in the
first row (NPP images) and second row (non-NPP images) because they have
homogenous contents or complicated backgrounds. The more regions in green,
the more likely the image is a non-NPP image.
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5 NPP Remapping

5.1 Method

NPP textures are usually adopted in various applications such as rendering. A
perspective camera can be used to obtain real-world NPP texture by rectifying
the captured NPP perspective image. However, the potential blurry texture issue
prevents us to obtain high-quality texture. Consider an NPP captured by a
perspective camera in a tilted angle, as shown in Figure 29 (a). The far-away
motifs are blurry because the regions are out of focus. This problem becomes
severe after rectification due to the remapping issue, shown in Figure 29 (b).
The goal of NPP remapping is to recover the blurry regions (caused by image
remapping errors) in the NPP images. It outputs clear NPP images by preserving
local variations and global structure, shown in Figure 29 (c).

The key idea is to detect the blurry regions from the input and treat them the
same as the unknown regions in the completion task with minor modification.
Specifically, we first detect the blurry regions using [26], treated as unknown
regions. This prevents the patch loss from sampling ground truth patches in
blurry regions for supervision. Simply treating it as a completion problem cannot
preserve the local variations (e.g., lighting) in the blurry regions, thus we modify
the pixel loss to account for this issue. Instead of computing this loss only in
known (clear) regions, we also compute the loss on unknown (blurry) regions,
given by:

Lpixel(x) = M(x)Lrob(Ĉ(x), C(x)) + σ(1−M(x))Lrob(Ĉ(x), C(x)), (10)

where σ is a constant weight. M(x) is 1 if x in clear regions, and 0 in blurry
regions. We keep the remaining part the same as completion to optimize NPP-
Net. For implementation details, we set σ = 0.3.

(a) Perspective NPP (b) Rectified NPP (c) Output

Fig. 29: Illustration of an NPP Remapping scenario.
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5.2 Comparison with Baselines

We consider two baselines. MPRNet [37] and SelfDeblur [22] are state-of-the-art
deblurring methods trained on large datasets and a single image, respectively.

We show more qualitative results in Figure 30 and Figure 31. Note that in
Figure 30, MPRNet produces pixelated pattern in row 3. NPP-Net outperforms
all the baselines for the blurry region recovery.

Also, Figure 31 demonstrates another application for image remapping [9]:
the indoor panorama may have an NPP floor with far-away blurry floor regions.
We can use a pre-trained panorama segmentation method to segment the floor
regions, and rectify them into orthographic view, shown as the inputs in Figure
31. After recovering the blurry regions using NPP-Net, we can warp it back to
the original panorama, resulting in a panorama with clearer floor regions.

Input Input (Zoom In) MPRNet SelfDeblur NPP-Net

Fig. 30: Qualitative results for image remapping. MPRNet generates pixelated
result in row 3. NPP-Net outperforms all other baselines.
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Input Input (Zoom In) MPRNet SelfDeblur NPP-Net

Fig. 31: Qualitative results of remapped (orthographic) floor regions in indoor
panorama for image remapping. The small black masks inside known regions is
the tripod. NPP-Net outperforms all other baselines.
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6 Multi-Plane NPP Completion

NPP-Net can be extended to multi-planar scenes. The key idea is to automati-
cally segment and rectify each plane, apply NPP-Net on each plane for comple-
tion, and project the completed image back to the original image.

Given a masked image (Figure 32 (a)) with different NPPs on different planes,
we first adopt a pre-trained plane segmentation network [36] to obtain a coarse
plane segmentation. Since this network is not trained on images with masks, we
first use our “No Periodicity” variant to inpaint the masked (unknown) regions.
The output is shown in Figure 32 (b). This process takes about 30 seconds. Then
we can input this inpainted image in (b) to the pre-trained network to generate
the coarse plane segmentation in Figure 32 (c).

For each segmented plane, we select a bounding box using a similar strategy
as the pseudo mask generation in periodicity searching (Sec 2.2). This bounding
box is utilized as a reference to rectify the plane using TILT [42]. Thus we do not
require accurate segmentation since it is only used for bounding box selection.
Figure 32 (c) visualizes bounding boxes for two plane, and Figure 32 (d) shows
the rectified planes.

For each rectified plane, we detect the Top-3 periodicity (Figure 32 (d)) only
using the rectified bounding box regions to remove the influence of other planes.
Then we perform NPP segmentation to segment the non-periodic regions (mainly
from other planes) and treat them as invalid pixels. In this case, the initial non-
periodic regions are defined as all image regions excluding the bounding box
regions. The segmentation results are shown in Figure 32 (e). After that, we run
NPP completion on each plane, and the results are in Figure 32 (f).

Finally, we transform all completed planes back to the original image coor-
dinate system and recompose the image. The final inpainted and ground truth
images are in Figure 32 (g) and (h) respectively.

The qualitative comparisons with baselines are shown in Figure 33 to Figure
36.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 32: Illustration of the multi-planar image completion extension for NPP-Net.
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(a) Input (b) Huang et al.

(c) Lama (d) BPI

(e) NPP-Net (f) GT

Fig. 33: Qualitative results of a multi-planar NPP scene.
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(a) Input (b) Huang et al.

(c) Lama (d) BPI

(e) NPP-Net (f) GT

Fig. 34: Qualitative results of a multi-planar NPP scene.
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(a) Input (b) Huang et al.

(c) Lama (d) BPI

(e) NPP-Net (f) GT

Fig. 35: Qualitative results of a multi-planar NPP scene. All images are resized
to half of the original size to reduce file size.
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(a) Input (b) Huang et al.

(c) Lama (d) BPI

(e) NPP-Net (f) GT

Fig. 36: Qualitative results of a multi-planar NPP scene.
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7 Failure Case and Future Work

Our method fails in the case of non-planar NPP scene. Figure 37 shows a failure
case for non-planar scene.

For future work, We plan to explore: (1) NPP scenes with more complicated
geometry (e.g., non-planar scenes). (2) a few-shot learning strategy for NPP-Net
that can incorporate prior knowledge from only a few NPP images.

Fig. 37: Failure case of NPP-Net for non-planar scene, where region inside red
box is inpainted.

8 Use of Existing Assets

CodeBase: We implement NPP-Net based on the existing assets [35,23,24,17,12,4].
For metrics, we adopt the following implementations: LPIPS [41], FID [21],
RMSE [6], SSIM [34], and PSNR [5]. Also, we adopt the following implementa-
tions for baselines: Image Qualiting [2], PatchMatch [32], DIP [10], Siren [33],
ProFill [38], Huang et al. [14,28], and BPI [32].
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