
Supplementary Materials

A Implementation Details

StyleGAN2 We adopt the standard StyleGAN2 architecture1 for 256 × 256
resolution images, with 8 fully connected layers in the mapping network. We
keep the hyperparameters such as the learning rate, regularization weights and
frequency, untouched, and only add our proposed MixDL.
DiffAug We essentially follow the official configuration2 for low-shot generation,
including the two-layer mapping network and three data augmentation methods.
We have also tried with a standard 8 FC layer mapping network and observed
significant drops in the overall performance as shown in Tab. S1.

FC layers Obama (100-shot) Grumpy Cat (100-shot)

2 46.87 26.52
8 71.13 38.42

Table S1: FID for DiffAug with varying number of FC layers

FastGAN We use the official FastGAN implementation3 for 256× 256 images.
As FastGAN doesn’t have a separate mapping network, we interpolate in Z
space.
Diversity Preservation Methods Baselines such as Normalized Diversifica-
tion (N-Div) [28], Mode Seeking GAN (MSGAN) [29] and DistanceGAN [4]
propose distance preserving objective to combat mode collapse. We train these
models with StyleGAN2 architecture for better synthesis quality and fair com-
parison.
MixDL For MixDL, we alternate between the normal adversarial training step
and the interpolation/regularization step. In the former we go through normal
image-level discrimination and in the latter, we apply patch-level discrimina-
tion on the mixup samples and compute losses for MixDL-G and MixDL-D. For
patch discrimination, we largely adopt the implementation of Cross-domain Cor-
respondence (CDC)4. Our linear projection layer for the discriminator operates
on 512 dimension.
Percpetual Path Length For PPL computation, we mainly follow the imple-
mentation in StyleGAN2. The difference is that we subdivide a latent interpo-
lation path into 10 subintervals and compute the perceptual distance for each

1 https://github.com/rosinality/stylegan2-pytorch
2 https://github.com/mit-han-lab/data-efficient-gans
3 https://github.com/odegeasslbc/FastGAN-pytorch
4 https://github.com/utkarshojha/few-shot-gan-adaptation
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line segment. Since the original PPL computation divides the perceptual dis-
tance by the squared step size, we divide each subinterval length by 0.12. For
clear demonstration, we divide the endpoint mean by 0.12 as well. Note that the
overall procedure is equivalent to calculating LPIPS multiplied by the factor of
100. The standard deviation is computed across the subintervals, and averaged
for the interpolation paths.
Number of Modes We generate 500 samples and compute their perceptual
distances to the 10 training samples. We record the index for the real sample
with the smallest perceptual distance and report the unique count. It is visually
apparent from Fig. S1 that our method boosts mode diversity.

B Datasets

We present the datasets used in our work along with their size.

Animal-Face
Dog

Oxford Flowers FFHQ Babies Sketches Obama
Grumpy

Cat

10 10, 100, 1000, 8192 10, 100, 1000, 2479 5, 10 10, 100 10, 100

Pokemon Amedeo Modigliani Anime Face Landscape Totoro

10 10 10 10 5

Table S2: Number of shots used in each dataset. Names of datasets are pre-
sented in the first and third rows and their corresponding number of shots
used in this paper are described in the second and fourth rows.

C Additional Evaluations with CDC [34]

We provide evaluation results for CDC [34] on two popular low shot benchmarks,
Obama and Cat (Tab. S3). To simulate few-shot setting, we randomly sample
10 images from each dataset.. Since CDC is pretrained on FFHQ, the domain
gap is relatively small, especially for Obama dataset. Nevertheless, we observe
superior performances with MixDL.

Obama (10-shot) Cat (10-shot)

Model FID(↓) LPIPS(↑) Prec.(↑) Rec.(↑) FID(↓) LPIPS(↑) Prec.(↑) Rec.(↑)
CDC 75.0 0.490 0.47 0.07 45.3 0.451 0.52 0.10
MixDL 62.7 0.601 0.53 0.09 41.1 0.590 0.78 0.11

Table S3: FID, precision and recall are computed against the full dataset (with
100 images) while LPIPS is computed among the generated samples.
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D Additional Baseline Comparisons

We present quantitative evaluation results with concurrent competitive base-
lines [43, 11] in combination to different data augmentations in Tab. S4. We
observe consistent benefits from MixDL.

Dataset Anime-face Dog Flower Baby
Metric FID LPIPS FID LPIPS FID LPIPS FID LPIPS

LeCam + DA 286.7 0.130 129.7 0.593 189.2 0.688 127.7 0.588
GenCo + DA 222.4 0.082 147.2 0.565 186.1 0.702 119.3 0.605
MixDL + DA 70.2 0.551 96.4 0.682 129.9 0.705 - -
LeCam + ADA 111.6 0.405 239.0 0.378 191.0 0.659 178.3 0.451
GenCo + ADA 93.7 0.450 112.4 0.652 194.0 0.673 103.8 0.570
MixDL + ADA 75.0 0.571 94.1 0.684 127.7 0.763 - -
MixDL (no aug.) 73.1 0.548 96.0 0.682 136.6 0.734 83.4 0.643

Table S4: Comparison with additional baselines. MixDL consistently outper-
forms others even without advanced augmentations.

E Training Snapshots

We provide training snapshots for FastGAN and StyleGAN2 for visual demon-
stration of diversity and interpolation smoothness. Fig. S1 clearly shows that as
opposed to vanilla FastGAN that rapidly loses diversity and converges to few
prototypes, MixDL successfully alleviates this. Fig. S2 displays interpolation
snapshots for StyleGAN2. In early training iterations, it does show relatively
smooth latent transition, but the sample quality is very unsatisfactory. As the
training proceeds, the sample quality improves as the model overfits, but conse-
quently the interpolation smoothness is quickly lost. This describes the classic
dilemma in few-shot generative modeling. In contrast, Fig. S3 shows that as
MixDL is effective at maintaining latent space smoothness, it provides a sweet
spot where reasonable sample quality and smooth latent transition coexist. Note
that models with MixDL do inevitably overfit in the end, but we can find rea-
sonable stopping point that produces diverse unseen samples with satisfactory
visual quality.

F Additional Generated Samples

We present latent interpolation results in Fig. S4 and Fig. S5. Fig. S4 shows
that MixDL yields smoother latent interpolation compared to baseline methods
that show typical stairlike latent space. Fig. S5 reaffirms this observation on
various datasets. We note that images of Japanese animation character Totoro
were crawled from the web, and 5 real samples were used. Additional synthesis
results from face paintings of Amedeo Modigliani and illustrations of Totoro are
displayed in Fig. S6 and Fig. S7, respectively.
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G Sample Images from Low-shot Benchmarks

In Fig. S8, we present samples from Obama and Grumpy Cat datasets. As they
contain images of a single character, the intra-diversity is inherently very limited,
which is also demonstrated by the LPIPS measure in Tab. 3 of the main paper.

H Naive Application of GAN adaptation

We display results from naive application of CDC. Since it is very difficult to
find a semantically similar source domain for datasets like Pokemon, we naively
leverage the source generator trained on FFHQ. As the source and the target
are semantically different, the adaptation does not yield satisfactory outcomes as
expected. We can observe the dilemma here as well that in the early iterations,
the face shape learned in the source domain is clearly visible while in later
stages, the face shape is no longer visible but the model collapses altogether. As
CDC preserves distances in the target domain through the correspondence to
the source domain, it is not applicable to domains that lack an adequate source
dataset to transfer from. MixDL, on the other hand, improves upon CDC in
that it enables training generative models with minimal overfitting and mode
collapse, without leveraging source domain pretraining. Quantitative evaluations
further support the claim as in Tab. 1 of the main paper.
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Fig. S1: Training snapshots for FastGAN and FastGAN+MixDL in early itera-
tions. As opposed to the base FastGAN that rapidly loses diversity, our regular-
izations help preserve the modes throughout the course of training. Numbers in
the left indicate training iterations.
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Fig. S2: Interpolation snapshots for StyleGAN2. Numbers in the left indicate
training iterations.
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Fig. S3: Interpolation snapshots for StyleGAN2+MixDL.

Fig. S4: Interpolation examples. Baselines clearly display stairlike latent transi-
tion while ours shows smooth interpolation.
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Fig. S5: More interpolation examples from MixDL. Numbers in the parentheses
represent the number of training samples used for each dataset.

Fig. S6: Samples from face paintings of Amedeo Modigliani. While the baselines
simply replicate the given images, ours produces diverse unseen face images.
Ours represents samples from StyleGAN2+MixDL.

Fig. S7: MixDL generation result from 5-shot training on Totoro. Although there
are only 5 training samples, it combines visual features in a natural way to
produce diverse novel samples.
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Fig. S8: Random samples from low-shot benchmark datasets, Obama and
Grumpy Cat. Since they contain photos of a single character, the intra-diversity
is inherently constrained, rendering these benchmarks inappropriate to evaluate
generative diversity.

Fig. S9: Naive application of CDC from FFHQ to Pokemon. As the authors have
pointed out, the adaptation performance degrades when the two domains are
semantically different, but it is not straightforward to find a transferable source
domain for datasets like Pokemon. We observe clear human face shapes in the
early stages (left) and mode collapse in later stages (right) where the face shape
is no longer visible.


