
StyleGAN2-ADA

-Linear [8]

FakeCLR

Original OriginalInversion Inversion
Interpolation

InsGen [8]

StyleGAN2-

APA [18]

0.13 0.1 0.11 0.07 0.05 0.04

0.13 0.16 0.13 0.060.1 0.050.11 0.14 0.2

0.11 0.15 0.19

0.12 0.1 0.12 0.120.10.12 0.11 0.1 0.15

FID: 13.01

PPL: 232

PPL: 220

FID: 16.90

PPL: 206

FID: 11.47

PPL: 136

FID: 9.90

0.12 0.11 0.1 0.12 0.060.060.12 0.20.1

Fig. 1: Training GANs with 2K training samples (FFHQ-2K dataset) typically
results in severe discontinuity in latent space, i.e. under-diversity interpolation
on the top three rows. Compared to some reference studies, generator trained
with FakeCLR show more accurate inversion, smoother latent space, more di-
verse interpolation, and better FID and PPL. The small grey images visualize
the difference between the two face images. The red numbers are mean of pixel-
wise difference, we highlighted the difference score> 0.15 with red border and
the difference score≤ 0.6 with blue border

FakeCLR: Exploring Contrastive Learning for
Solving Latent Discontinuity in Data-Efficient

GANs

Ziqiang Li1[0000−0001−9484−2310] ?, Chaoyue Wang2, Heliang Zheng2, Jing
Zhang3, and Bin Li1

1 University of Science and Technology of China, China
2 JD Explore Academy, China

3 The University of Sydney, Australia
iceli@mail.ustc.edu.cn, chaoyue.wang@outlook.com,

zhenghl@mail.ustc.edu.cn, jing.zhang1@sydney.edu.au, binli@ustc.edu.cn

1 Supplementary Materials

1.1 Qualitative Results of latent space continuity on FFHQ-100
dataset

Some visual interpolation results on FFHQ-2K dataset are shown in Fig. 1.

? This work was performed when Ziqiang Li was visiting JD Explore Academy as a
research intern.

2 Ziqiang Li, Chaoyue Wang, Heliang Zheng, Jing Zhang, and Bin Li

(a) N=200 (b) N=500 (c) N=2000 (d) N=5000

Fig. 2: Weight distribution m under different temperature coefficient τm and
queue size N , where the batch size is set to 50 (for illustrative purposes only).

1.2 The Distribution of Forgetting Factor (m)

Fig. 2 illustrates the distribution of forgetting factor m under different temper-
ature coefficient τm and queue size N .

1.3 Proof and Discussion of Iteration-based contrastive learning

Adding the iteration-based weight (mi) to negative samples leads to a iteration-
based InfoNCE loss:

ĈF (·),φ(·)

(
xq,x

+
k ,
{
x−ki ,mi

}N
i=1

)
=

− log
exp

(
φ (vq)

T
φ
(
v+
k

)
/τ
)

exp
(
φ (vq)

T
φ
(
v+
k

)
/τ
)

+
∑N
i=1 exp

((
φ (vq)

T
φ
(
v−ki
)

+ mi

)
/τ
) , (1)

It may be useful to let:

Y = exp
(
φ (vq)

T
φ
(
v+
k

)
/τ
)

+

N∑
i=1

exp
((
φ (vq)

T
φ
(
v−ki
)

+ mi

)
/τ
)
,

U = exp
(
φ (vq)

T
φ
(
v+
k

)
/τ
)
.

(2)

Proposition 1. The gradient of iteration-based InfoNCE loss is ∇ĈF (·),φ(·) =
∇Y ·U−Y ·∇U

Y ·U . Specifically,

∇φ(vq)ĈF (·),φ(·) =

∑N
i=1 exp

((
φ (vq)

T
φ
(
v−ki
)

+ mi

)
/τ
)
·
(
φ
(
v−ki
)
− φ

(
v+
k

))
Y · τ

∇φ(v+
k)ĈF (·),φ(·) = −

∑N
i=1 exp

((
φ (vq)

T
φ
(
v−ki
)

+ mi

)
/τ
)
· φ (vq)

Y · τ

∇φ(v−
ki

)ĈF (·),φ(·) =
exp

((
φ (vq)

T
φ
(
v−ki
)

+ mi

)
/τ
)
· φ (vq)

Y · τ
(3)

FakeCLR for Data-Efficient GANs 3

Proof.

∇φ(vq)ĈF (·),φ(·) =
∇φ(vq)Y

Y
−
∇φ(vq)U

U

=
exp

(
φ (vq)

T φ(v+
k)/τ

)
· φ(v+

k) +
∑N
i=1 exp

((
φ (vq)

T φ(v−
ki

) + mi

)
/τ
)
· φ(v−

ki
)− Y · φ(v+

k)

Y · τ

=

∑N
i=1 exp

((
φ (vq)

T φ(v−
ki

) + mi

)
/τ
)
·
(
φ(v−

ki
)− φ(v+

k)
)

Y · τ

∇
φ(v

+
k

)
ĈF (·),φ(·) =

∇
φ(v

+
k

)
Y

Y
−
∇
φ(v

+
k

)
U

U
=
U · φ (vq)

Y · τ
−
φ (vq)

τ

= −

∑N
i=1 exp

((
φ (vq)

T φ(v−
ki

) + mi

)
/τ
)
· φ (vq)

Y · τ

∇
φ(v

−
ki

)
ĈF (·),φ(·) =

∇
φ(v

−
ki

)
Y

Y
−
∇
φ(v

−
ki

)
U

U
=

exp
((
φ (vq)

T φ(v−
ki

) + mi

)
/τ
)
· φ (vq)

Y · τ
(4)

As we can see, all of the gradient of InfoNCE loss in Eq. (3) are related to
iteration-based weight mi. Eq. (3) makes intuitive sense: (i) The proposed mi

improves the gradient from the positive samples. (ii) In particular, for negative
samples, the proposed mi improves the gradient of end-of-queue samples that
are more similar to the query and can be considered as hard samples, which
significantly improves the efficiency of contrastive learning.

1.4 Pseudocode of Iteration-based Contrastive Learning

We also demonstrate the PyTorch-like pseudocode in Algorithm 1.

1.5 Generated Images on FFHQ

Fig. 3 illustrates some randomly synthesized images on FFHQ dataset.

1.6 Analysis of Computation Cost

Although three strategies have been adopted in our proposed FakeCLR, they
are all lightweight and only a fraction of the cost has been introduced. The cost
of time on FFHQ (256×256) datasets have been demonstrated in Fig. 1.

1.7 Nearest Neighbor Test on FFHQ-100 and Obama Datasets

We show the nearest neighbor test in pixel and LPIPS spaces on FFHQ-2K and
Obama datasets in Fig. 4 and Fig. 5, respectively. The results indicates that our
FakeCLR has more diverse generated images and does not simply memorize the
training images even give small datasets.

1.8 Comparisons on PPL and KID Metrics on FFHQ-100 and
Obama Datasets

We report the PPL and KID metrics on FFHQ-100 and Obama Datasets in
Table 2. Both of them demonstrate the superiority of FakeCLR.

4 Ziqiang Li, Chaoyue Wang, Heliang Zheng, Jing Zhang, and Bin Li

FFHQ

100

FFHQ

1K

FFHQ

2K

FFHQ

5K

InsGen FakeCLR

Fig. 3: Generated images with different number of training images on FFHQ
dataset. All images are synthesized randomly without truncation.

FakeCLR for Data-Efficient GANs 5

Query Top-3 nearest neighbors (LPIPS)Top-3 nearest neighbors (Pixel)

StyleGAN2-

ADA

FakeCLR

FakeCLR

Fake Image

as Query

Real Image

As Query

(for comparison)

Fig. 4: Nearest neighbors in pixel space (left) and LPIPS feature space (right)
on the Obama dataset. Followed as DiffAugment [1], we select fake image as
query in the first row. Furthermore, we select the real image as new query for
comparing with previous methods in the bottom two rows.

1.9 Generated Images on Few-shot Generation

Fig. 6 illustrates some randomly synthesized images on Obama (100), Grumpy
Cat (100), Panda (100), AnimalFace Cat (160), and AnimalFace Dog (389)
datasets.

1.10 Experiments Considering Path Length Regularization

Path length regularization in StyleGAN2 is another way to promote latent con-
tinuity. In this section, we consider the strength of Path length regularization
in the FakeCLR. As shown in Table 3, path length regularization boosts latent
continuity, yet decreases the FID a little bit. Our FakeCLR show consistent
improvement under different regularization settings.

1.11 Experiments on other architectures and settings

As shown in Table 4, we conducted experiments on CIFAR-10 (using full and 20%
training data) under the unconditional and conditional settings and StyleGAN2-
ADA and BigGAN backbones. From both architectures and settings aspects, our
FakeCLR can improve the generation performance.

1.12 What if adding real samples into the fake queue?

Table 5 presents some explorations of adding real samples into the fake queue of
FakeCLR? Instance-perturbation is selected as the baseline for a fair comparison.
In Config A, we add real images from the beginning of training, 50% real+50%

6 Ziqiang Li, Chaoyue Wang, Heliang Zheng, Jing Zhang, and Bin Li

Query Top-3 nearest neighbors (LPIPS)Top-3 nearest neighbors (Pixel)

StyleGAN2-

ADA

FakeCLR

FakeCLR

Fake Image

as Query

Real Image

As Query

(for comparison)

Fig. 5: Nearest neighbors in pixel space (left) and LPIPS feature space (right)
on the FFHQ-100 dataset. Followed as DiffAugment [1], we select fake image as
query in the first row. Furthermore, we select the real image as new query for
comparing with previous methods in the bottom two rows.

fake samples form the queue. Similarly, we add real images from the half itera-
tions of training (Config B). Experiments demonstrate that adding real samples
into our queue is not conducive to the final results. The reasons could be: i) Our
FakeCLR aims to solve latent space discontinuity, while adding real samples may
have side effects on learning the correlation among fake samples. ii) In terms of
contrastive learning, real samples can be regarded as easy negative samples for
fake samples, but contrastive learning usually prefers hard negative samples.

References

1. Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-
efficient gan training. Advances in Neural Information Processing Systems 33 (2020)

FakeCLR for Data-Efficient GANs 7

queue size

Obama

Panda

AnimalFace

Cat

AnimalFace

Dog

Grumpy
Cat

Fig. 6: Generated images with different number of training images on few-shot
dataset. All images are synthesized randomly without truncation.

8 Ziqiang Li, Chaoyue Wang, Heliang Zheng, Jing Zhang, and Bin Li

Algorithm 1: Pseudocode of iteration-based contrastive learning in a
PyTorch-like style.

f q, f k: encoder networks for query and key (NxC)
queue: dictionary as a queue of K keys (CxK)
queue label: dictionary as a queue of K iteration-based label (1xK)
m: momentum
t: temperature of contrastive learning
t weight: temperature of iteration-based weight (0.01)
f k.params = f q.params # initialize
for x in loader: # load a minibatch x with N samples

q = aug(x) # queries: NxC
k = aug(x) # keys: NxC
k = k.detach() # no gradient to keys

positive logits: Nx1
l pos = torch.einsum(’nc,nc->n’, [q, k]).unsqueeze(-1)
negative logits: NxK
l neg = torch.einsum(’nc,ck->nk’, [q, queue.clone().detach()])

iteration-based weight for negative samples
iteration weight=queue label.clone().detach()
iteration weight=(iteration weight-min(iteration weight))
/(max(iteration weight)-min(iteration weight))
iteration weight=torch.normalize(iteration weight,p=2,dim=0)# normalize
iteration weight=F.softmax(iteration weight/t weight,dim=0)

iteration-weighted negative logits
l neg=l neg+iteration weight

logits: Nx(1+K)
logits = cat([l pos, l neg], dim=1)

contrastive loss
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyLoss(logits/t, labels)

Adam update: query network
loss.backward()
update(f q.params)

momentum update: key network
f k.params = m*f k.params+(1-m)*f q.params

update dictionary
enqueue(queue,queue label,k) # enqueue the current minibatch
dequeue(queue,queue label)# dequeue the earliest minibatch

Table 1: The cost of time on FFHQ (256×256) datasets. All results are calculated
by averaged over 10 times on two NVIDIA Tesla A100 GPUs with 64 batch size.

256×256 Resolution sec/kimg

StyleGAN2-ADA 6.16
StyleGAN2-ADA-Linear 6.15

Instance-real 8.18
Instance-fake 10.06

InsGen 11.70
FakeCLR 10.67

FakeCLR for Data-Efficient GANs 9

Table 2: Comparison with previous methods over FFHQ-2K and Obama
datasets: KID and PPL of w space are reported. Results with ∗ are the searched
best results for each dataset, which are better than InsGen with the default
setting.

Methods
KID(×10−2)↓ PPL(w)↓

Obama FFHQ-2K Obama FFHQ-2K

ADA[10] 1.29 0.466 843 232
APA[18] 1.12 0.562 836 220

InsGen∗[8] 0.605 0.455 818 206
FakeCLR (our) 0.296 0.345 752 136

Table 3: FID and PPL on FFHQ-2K for different strength of PL regularization
(All other experiments follow the default parameter PL weight=2). † indicates
that we adopt the fixed queue size = 200 for a fair comparison.

Methods
FID PPL (w)

2 5 10 2 5 10

InsGen [8] 12.11 13.87 12.29 199 183 180

FakeCLR† 10.40 10.78 11.32 171 160 145

Table 4: Comparisons of different architectures and settings (CIFAR-10 dataset).

Methods
Conditional Unconditional
20% full 20% full

BigGAN-APA [18] 15.3 8.28 - -
BigGAN-FakeCLR 13.6 7.62 - -

StyleGAN-InsGen [8] 5.3 2.24 4.83 2.7
StyleGAN-FakeCLR 4.28 2.13 4.6 2.32

Table 5: FID on adding real samples into fake queue over FFHQ-2K dataset.
Methods FID

Instance-perturbation (baseline) 11.29
Config A 12.46
Config B 13.71

	FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity in Data-Efficient GANs

