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A A brief overview over the LRP-algorithm used

Layer-wise relevance propagation (LRP) [2] is a modified-gradient type algorithm
for backward passes in neural networks and other models. LRP is based on the
idea of replacing the partial derivatives, which are usually flowing back along the
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edges of a graph, by terms derived from Taylor decompositions for single layers4

of the network. While the ϵ-LRP-rule is similar to gradient-times-input, other
rules such as the β-rule5 result in explanations which exhibit visually low noise
and are robust to gradient shattering effects6 common in deep neural networks
due to its normalization properties. Consider a neuron y with inputs xi, weights
wi, and a relevance score being already computed for its output being Ry. The
relevance score Ry is the analogue for the total derivative dz

dy in conventional
backpropagation started at output logits, however computed using LRP. Then
the relevance score for the input xi according to the β = 0-rule is given as

Ri = Ry
(wixi)+∑
k(wkxk)+

(1)

where (·)+ is the positive part.This measures the proportion of the positive part
of the weighted input (wixi)+ for the input neuron i relative to the positive
weighted inputs from all inputs used to compute the value of neuron y. There-
fore it redistributes relevance from an output to the inputs proportional to this
fraction and proportional to the relevance Ry of the output neuron. We used
the β = 0-rule for all convolution layers and the ϵ-rule for the top-most fully
connected layer. Before applying LRP, we fuse batchnorm layers into convolu-
tion layers and reset the batchnorm layers. The backpropagation in the resetted
batchnorm layers uses the identity. Technically the base LRP algorithm is im-
plemented in PyTorch as custom static autograd functions. This results for con-
volution layers in relevance scores having a shape of (1, C,H,W ) in the gradient
field.

LRP scores computed in the input space of neural networks have been shown
to perform well on metrics regarding the ordering of input space regions accord-
ing to the computed explanation scores and the correlation of this ordering to
changes in model output logits7 8 9 when modifying the highest scoring regions.

B LRP-max pseudocode

In this section, we include the pseudo-code for obtaining LRP-max pixel-wise
explanations. In particular, we study the LRP-max responses for T-FF in this

4 Montavon et al.,: Explaining NonLinear Classification Decisions with Deep Taylor
Decomposition. In Pattern Recognition (2017)

5 Montavon et al.,: Layer-Wise Relevance Propagation: An Overview. Book chapter
in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (2019)

6 Balduzzi et al.,: The Shattered Gradients Problem: If resnets are the answer, then
what is the question?. In ICML (2017)

7 Samek et al.,: Evaluating the Visualization of What a Deep Neural Network Has
Learned. IEEE Transactions on Neural Networks and Learning Systems (2017)

8 Pörner et al.,: Evaluating neural network explanation methods using hybrid docu-
ments and morphosyntactic agreement. In ACL (2018)

9 Arras et al.,: Evaluating Recurrent Neural Network Explanations. In ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (2019)
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work. The pseudo-code is shown in Algorithm 1. We remark that LRP-max is a
procedure to automatically extract image regions for every T-FF.

Algorithm 1: Obtain LRP-max pixel-wise explanations ( For a single
feature map, for a single sample )

Input:
forensics detector M ,
counterfeit image x where x.size() = (3, xheight, xwidth),
forensic feature map l, c where l, c indicate layer and channel index
respectively.
Output:
Êlc(x) where E indicates the LRP-max pixel-wise explanations for sample x
corresponding to forensic feature map at layer index l and channel index c.
Do note that Êlc(x).size() is (xheight, xwidth).
Every forensic feature map can be characterized by a unique set of l, c.

1 zlc(x)← LRP − FORWARD(Mlc(xi)) ; /*(h, w) relevance scores*/

2 h∗, w∗ ← argmax(zlc(x)) ; /*find index of max relevance*/

3 zmax
lc (x)← zlc(x)[h

∗, w∗] ; /*LRP-max response neuron*/

4 Elc(x)← LRP −BACKWARD(zmax
lc (x)) ; /*explain LRP-max neuron*/

5 Êlc(x)←
∑3

k=0(Elc(x)(k, xheight, xwidth) ; /*spatial LRP-max*/

6 return Êlc(x)

C Computational Complexity of FF-RS / LRP-max

Both FF-RS and LRP-max require an additional forward and backward pass
during computation. We emphasize that our proposed FF-RS and LRP-max
are not used during training of universal detectors, but are only used for our
analytical study. Therefore, we remark that there is no substantial amount of
additional computational overhead.

D Non Color-conditional T-FF

There are a few T-FF that are not color-conditional. In this section, we show non
color-conditional T-FF. We show LRP-max response image regions for ResNet-
50 and EfficientNet-B0 in Fig. D.1 and D.3 respectively. We further show the
maximum spatial activation distributions before and after color ablation for
ResNet-50 and EfficientNet-B0 in Fig. D.2 and D.4 respectively. As one can ob-
serve using LRP-max response image regions, these non color-conditional T-FF
contain frequency / texture artifacts. The maximum spatial activation distribu-
tions clearly show that these non color-conditional T-FF produce identical /
similar distributions before and after color ablation.
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ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

Fig.D.1. T-FF that are not color-conditional in ResNet-50 Universal detector: We
show the LRP-max response regions for 5 non color-conditional T-FF for ProGAN [26]
and all 6 unseen GANs [29,28,6,66,11,44]. Each row represents a non color-conditional
T-FF. We emphasize that T-FF are discovered using our proposed forensic feature
relevance statistic (FF-RS). This detector is trained with ProGAN [26] counterfeits [61]
and cross-model forensic transfer is evaluated on other unseen GANs. All counterfeits
are obtained from the ForenSynths dataset [61]. Visual inspection of LRP-max regions
of non color-conditional T-FF shows frequency / texture artifacts. i.e.: rapid changes
in pixel intensities. This shows that the universal detector also uses frequency / texture
artifacts for cross-model transfer although color is a critical T-FF as ≈ 85% of T-FF
are color-conditional. We emphasize that our proposed method is capable of identifying
other T-FF (i.e.: frequency / texture artifacts).

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]
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Baseline Grayscale
Fig.D.2. Non Color-conditional T-FF in ResNet-50: Each row represents a non color-
conditional T-FF (exact same T-FF as shown in Fig. D.1), and we show the maximum
spatial activation distributions for ProGAN [26], StyleGAN2 [29], StyleGAN [28], Big-
GAN [6], CycleGAN [66], StarGAN [11] and GauGAN [44] counterfeits before (Base-
line) and after color ablation (Grayscale). We remark that for each counterfeit in the
ForenSynths dataset [61], we apply global max pooling to the specific T-FF to obtain a
maximum spatial activation value (scalar). We can clearly observe that these T-FF are
producing identical / similar spatial activations (max) for the same set of counterfeits
after removing color information which demonstrates that these T-FF do not respond
to color information. This clearly indicates that these T-FF are not color-conditional
(Confirmed by our Mood’s median test).
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ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

Fig.D.3. T-FF that are not color-conditional in EfficientNet-B0 Universal detec-
tor: We show the LRP-max response regions for 5 non color-conditional T-FF for
ProGAN [26] and all 6 unseen GANs [29,28,6,66,11,44]. Each row represents a non
color-conditional T-FF. We emphasize that T-FF are discovered using our proposed
forensic feature relevance statistic (FF-RS). This detector is trained with ProGAN [26]
counterfeits [61] and cross-model forensic transfer is evaluated on other unseen GANs.
All counterfeits are obtained from the ForenSynths dataset [61]. Visual inspection of
LRP-max regions of non color-conditional T-FF shows frequency / texture artifacts.
i.e.: rapid changes in pixel intensities. This shows that the universal detector also uses
frequency / texture artifacts for cross-model transfer although color is a critical T-FF
as ≈ 52% of T-FF are color-conditional. We emphasize that our proposed method is
capable of identifying other T-FF (i.e.: frequency / texture artifacts).

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]
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Fig.D.4. Non Color-conditional T-FF in EfficientNet-B0: Each row represents a
non color-conditional T-FF (exact same T-FF as shown in Fig. D.3), and we show the
maximum spatial activation distributions for ProGAN [26], StyleGAN2 [29], StyleGAN
[28], BigGAN [6], CycleGAN [66], StarGAN [11] and GauGAN [44] counterfeits before
(Baseline) and after color ablation (Grayscale). We remark that for each counterfeit
in the ForenSynths dataset [61], we apply global max pooling to the specific T-FF to
obtain a maximum spatial activation value (scalar). We can clearly observe that these
T-FF are producing identical spatial activations (max) for the same set of counterfeits
after removing color information which demonstrates that these T-FF do not respond
to color information. This clearly indicates that these T-FF are not color-conditional.
(Confirmed by our Mood’s median test).
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E k hyper-parameter in top-k for T-FF

In this section, we include more discussion regarding the k hyper-parameter in
top-k. We show that as we increase k, the AP and GAN detection accuracies drop
across ProGAN [26] and all unseen GANs [29,28,6,66,11,44]. For our analysis, we
identify the smallest k with a substantial drop in cross-model forensic transfer
as indicated by AP and GAN detection accuracies. The results for ResNet-50
and EfficientNet-B0 detectors are shown in Table E.1

Table E.1. Sensitivity assessments for different k values using feature map dropout
of discovered T-FF : We show the results for the publicly released ResNet-50 universal
detector [61] (top) and our own version of EfficientNet-B0 [55] universal detector (bot-
tom) following the exact training / test strategy proposed in [61]. We show the AP,
real and GAN detection accuracies for baseline [61] and different top-k forensic feature
dropout. Feature map dropout is performed by suppressing (zeroing out) the resulting
activations of target feature maps (i.e.: top-k). We can clearly observe that feature
map dropout of topk-k corresponding to T-FF results in substantial drop in AP and
GAN detection accuracies across ProGAN and all 6 unseen GANs [29,28,6,66,11,44] as
we increase k. Given that we aim to identify the smallestk, we identify k = 114 and
k = 27 as the suitable k for ResNet-50 and EfficientNet-B0 universal detectors.

ResNet-50 ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100.0 100.0 100.0 99.3 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
top-29 98.6 99.9 40.7 84.9 89.2 62.3 84.9 92.9 52.4 66.8 85.1 35.4 76.9 89.4 42.2 87.7 98.2 30.4 85.6 94.0 45.6
top-57 96.8 99.9 26.3 84.0 91.1 54.9 84.0 92.4 50.6 63.2 83.3 30.9 71.4 88.9 30.6 86.0 98.1 29.0 82.4 92.7 41.2
top-114 69.8 99.4 3.2 56.6 89.4 11.3 56.6 90.6 13.7 55.4 86.3 18.3 61.2 91.4 17.4 72.6 89.4 35.9 71.0 95.0 18.8
top-228 58.6 99.3 2.3 49.2 29.2 76.6 49.2 24.5 76.2 51.6 48.1 50.6 50.2 83.0 16.2 59.3 46.7 66.4 60.7 65.5 52.5

EfficientNet-B0 ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100. 100. 100. 99.0 95.2 85.4 99.0 96.1 94.3 84.4 79.7 75.9 97.3 89.6 93.0 96.0 92.8 85.5 98.3 94.1 94.4
top-5 91.8 99.9 14.5 68.9 75.1 53.7 68.9 74.6 38.3 57.4 74.6 38.3 78.9 85.5 54.4 82.4 94.2 40.8 70.7 97.4 13.9
top-27 50.0 100. 0.0 52.1 94.3 7.0 52.1 97.3 2.6 53.5 97.4 3.8 47.5 100.0 0.0 50.0 100. 0.0 46.2 100. 0.0
top-49 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0

F Cross-model forensic transfer using BigGAN [6]
pre-training dataset

In this section, we show that color is a critical T-FF using an additional training
dataset. We use BigGAN real / fake as second dataset with 1.04M images to train
universal detectors following Wang et al. [61] and verify our findings. We remark
that ForenSynths [61] uses ProGAN real / fake dataset. We perform large-scale
experiments using EfficientNet-B0 universal detector. We report median coun-
terfeit probability results for 6 GANs [29,28,6,66,11,44] in Fig. F.1. This shows
on a second dataset that color ablation causes counterfeit probability to drop by
> 58% for all unseen GANs. These results on another dataset further support
that color is a critical T-FF in universal detectors for counterfeit detection.
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ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]
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Fig. F.1. Color is a critical T-FF in universal detectors: We show the box-whisker
plots of probability (%) predicted by the universal detector for counterfeits before
(Baseline) and after color ablation (Grayscale) for ProGAN [26], StyleGAN2 [29],
StyleGAN [28], BigGAN [6], CycleGAN [66], StarGAN [11] and GauGAN [44]. The
red line in each box-plot shows the median probability. We show the results for the
EfficientNet-B0 universal detector following the exact training / test strategy proposed
in [61]. Using BigGAN real / fake dataset we verify that Color is a critical T-FF in
Universal Detectors. We show that color ablation results in median probability for
counterfeits drop by > 58% across all unseen GANs. Do note that median probability
does not drop significantly for BigGAN during color ablation showing the importance
of color for cross-model forensic transfer.

G Is the performance degradation in universal detectors
due to unseen corruptions?

We remark that some performance degrade is due to CNNs’ poor generalization
to unseen corruptions (grayscale), but here we show that significant amount of
degradation is due to color being a critical transferable forensic feature (T-FF)
in the universal detector, therefore ablation of color (i.e., grayscale) leads to
significant performance degrade. Specifically, we perform an experiment using
official EfficientNet-B0 ImageNet classifier (architecture identical to our univer-
sal detector) under Grayscale (OOD) setup. We measure the median probability
of the correct class before and after Grayscale (OOD) and observe only 17%
drop due to Grayscale. Comparing the within-model OOD setup with the cross-
model setup, the median probability drop during cross- model forensic transfer
is much larger, i.e.: median probability drop during cross-model forensic transfer
is > 89% (ProGAN, Fig. 4 main paper) and > 58% (BigGAN, Fig. F.1) for
EfficientNet-B0 universal detector. This shows that color is critical in forensic
transfer compared to within-model OOD setups. See row 1, col 1 in Fig. F.1,
Fig. 4, col 1 main paper: the median probability does not drop much for the
GAN used to train universal detector under Grayscale (OOD).

H Color-conditional T-FF (Additional Results)

In this section, we show more color-conditional T-FF to support our finding that
color is a critical T-FF. We show LRP-max response image regions for ResNet-
50 and EfficientNet-B0 in Fig. H.1 and H.3 respectively. We further show the
maximum spatial activation distributions before and after color ablation for
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these color-conditional T-FF in Fig. H.2(ResNet-50) and Fig. H.4(EfficientNet-
B0) respectively.

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

Fig.H.1. Additional results demonstrating that color is a critical transferable forensic
feature (T-FF) in universal detectors (ResNet-50): Large-scale study on visual inter-
pretability of T-FF discovered through our proposed forensic feature relevance statistic
(FF-RS), reveal that color information is critical for cross-model forensic transfer. Each
row represents a color-conditional T-FF and we show the LRP-max response regions
for ProGAN [26], StyleGAN2 [29], StyleGAN [28], BigGAN [6], CycleGAN [66], Star-
GAN [11] and GauGAN [44] counterfeits for the publicly released ResNet-50 universal
detector by Wang et al. [61]. This detector is trained with ProGAN [26] counterfeits
[61] and cross-model forensic transfer is evaluated on other unseen GANs. All counter-
feits are obtained from the ForenSynths dataset [61]. The consistent color-conditional
LRP-max response across all GANs for these T-FF clearly indicate that color is critical
for cross-model forensic transfer in universal detectors.

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]
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Fig.H.2. Additional results showing Color-conditional T-FF in ResNet-50: Each row
represents a color-conditional T-FF (exact same T-FF as shown in Fig. H.1), and
we show the maximum spatial activation distributions for ProGAN [26], StyleGAN2
[29], StyleGAN [28], BigGAN [6], CycleGAN [66], StarGAN [11] and GauGAN [44]
counterfeits before (Baseline) and after color ablation (Grayscale). We remark that for
each counterfeit in the ForenSynths dataset [61], we apply global max pooling to the
specific T-FF to obtain a maximum spatial activation value (scalar). We can clearly
observe that these T-FF are producing noticeably lower spatial activations (max) for
the same set of counterfeits after removing color information. This clearly indicates
that these T-FF are color-conditional (Confirmed by our Mood’s median test).
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I CR-Universal Detectors (Additional Results)

We show the AP, real and GAN detection accuracies for the universal Detectors
in Table I.1 and for CR-Universal Detectors trained using our proposed data aug-
mentation scheme in Table I.2. As one can observe, our proposed CR-universal
detectors are more robust and can avoid attacks from color-ablated counterfeits
compared to the original universal detectors proposed by Wang et al. [61].

Table I.1. Universal detectors are more susceptible to color ablated counterfeit attacks
as color is a critical T-FF : We show the results for the publicly released ResNet-50 uni-
versal detector [61] (top) and our own version of EfficientNet-B0 [55] universal detector
(bottom) following the exact training and test strategy proposed in [61]. We show the
AP, real and GAN image detection accuracies for Baseline and Grayscale (color ab-
lated) images. As one can observe, AP and GAN detection accuracies drop substantially
during cross-model transfer when removing color information from counterfeits.

ResNet-50 ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4

Grayscale 99.9 100.0 81.5 89.1 92.7 61.9 96.7 94.6 84.8 75.2 85.8 48.8 84.2 94.5 41.0 89.2 93.4 60.7 97.6 97.7 78.8

EfficientNet-B0 ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 99.0 95.2 85.4 99.0 96.1 94.3 84.4 79.7 75.9 97.3 89.6 93.0 96.0 92.8 85.5 98.3 94.1 94.4

Grayscale 99.9 100.0 80.0 91.0 95.2 26.6 91.0 97.2 56.0 68.4 91.7 28.9 86.5 96.4 40.0 91.8 91.3 72.9 93.7 99.7 48.2

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

Fig.H.3. Additional results demonstrating that color is a critical T-FF in universal
detectors (EfficientNet-B0): Large-scale study on visual interpretability of T-FF dis-
covered through our proposed FF-RS (ω) reveal that color information is critical for
cross-model forensic transfer. Each row represents a color-based T-FF and we show the
LRP-max response regions for ProGAN [26], StyleGAN2 [29], StyleGAN [28], BigGAN
[6], CycleGAN [66], StarGAN [11] and GauGAN [44] counterfeits for our own version
of EfficientNet-B0 [55] universal detector following the exact training / test strategy
proposed by Wang et al. [61]. This detector is trained with ProGAN [26] counterfeits
[61] and cross-model forensic transfer is evaluated on other unseen GANs. All counter-
feits are obtained from the ForenSynths dataset [61]. The consistent color-conditional
LRP-max response across all GANs for these T-FF clearly indicate that color is critical
for cross-model forensic transfer in universal detectors.
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ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]
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Fig.H.4. Additional results showing Color-conditional T-FF in EfficientNet-B0: Each
row represents a color-conditional T-FF (exact same T-FF as shown in Fig. H.3), and
we show the maximum spatial activation distributions for ProGAN [26], StyleGAN2
[29], StyleGAN [28], BigGAN [6], CycleGAN [66], StarGAN [11] and GauGAN [44]
counterfeits before (Baseline) and after color ablation (Grayscale). We remark that for
each counterfeit in the ForenSynths dataset [61], we apply global max pooling to the
specific T-FF to obtain a maximum spatial activation value (scalar). We can clearly
observe that these T-FF are producing noticeably lower spatial activations (max) for
the same set of counterfeits after removing color information. This clearly indicates
that these T-FF are color-conditional (Confirmed by our Mood’s median test).

Table I.2. CR-Universal detectors trained using our proposed data augmentation
scheme are more robust to color ablated counterfeits: We show the results for the
ResNet-50 universal detector [61] (top) and our own version of EfficientNet-B0 [55]
universal detector (bottom) following the exact training and test strategy proposed
in [61]. We show the AP, real and GAN image detection accuracies for Baseline and
Grayscale (color ablated) images. As one can observe, AP and GAN detection accura-
cies remain similar during cross-model transfer when removing color information from
counterfeits.

CR-ResNet-50 ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 98.5 94.4 92.8 99.5 97.4 95.3 89.9 80.3 86.8 96.6 90.2 90.3 96.2 91.2 88.8 99.5 96.5 96.8

Grayscale 100.0 100.0 100.0 98.0 90.0 95.0 99.6 95.1 98.0 87.6 72.7 88.8 91.1 81.6 81.8 95.4 87.0 89.5 99.4 95.1 97.2

CR-EfficientNet-B0 ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 98.1 92.3 74.5 98.1 97.2 90.5 82.3 78.0 70.3 95.7 89.0 88.5 95.9 90.2 87.3 99.0 96.4 94.5

Grayscale 100.0 100.0 100.0 98.8 91.4 77.9 98.8 95.7 94.4 81.0 76.5 71.3 91.3 85.9 78.5 94.8 90.5 84.0 98.8 95.2 94.1
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J Pixel-wise explanations are not informative to discover
T-FF (Additional Results)

In this section, we show additional results to demonstrate that direct pixel-wise
explanations of universal detector decisions are not informative to discover T-
FF. Similar to main paper, we use 2 popular interpretation methods namely
Guided-GradCAM [50] and LRP [5] to analyse the pixel-wise explanations of
universal detector decisions. We show additional results for ResNet-50 detector
in Fig. J.1. We also show results for EfficientNet-B0 in Fig. J.2 and J.3. As
one can observe from Fig. J.1, J.2 and J.3 pixel-wise explanations of universal
detector decisions are not informative to discover T-FF due to their focus on
spatial localization.

K Research Reproducibility / Code Details

Code: Pytorch code is available at https://keshik6.github.io/transferable-
forensic-features/. Refer to README for step-by-step instructions. The
codebase is clearly documented. The code is structured as follows:

– lrp/: Base Pytorch module containing LRP implementations for ResNet and
EfficientNet architectures. This includes all Pytorch wrappers.

– fmap ranking/: Pytorch module to calculate FF-RS (ω) for counterfeit
detection.

– sensitivity assessment/: Pytorch module to perform sensitivity assess-
ments for T-FF and color ablation.

– patch extraction/: Pytorch module to extract LRP-max response image
regions for every T-FF.

– activation histograms/: Pytorch module to calculate maximum spatial
activation for images for every T-FF.

– utils/: Contains all utilities, helper functions and plotting functions.

Pre-trained models submission: All pretrained models can be found at
https://keshik6.github.io/transferable-forensic-features/. We provide
both ResNet-50 and EfficientNet-B0 pretrained universal detectors. We also in-
clude CR-universal detector models. All our claims reported in Main / Supple-
mentary can be reproduced using these checkpoints.

Docker information: For training /analysis in containerised environments
(HPC, Super-computing clusters), please use nvcr.io/nvidia/pytorch:20.12-py3
container.

Experiment details and hyper-parameters: For training universal de-
tectors, we use the exact setup proposed in [61] with Adam optimizer (β1 =
0.9, β2 = 0.999), batch size of 64 and initial learning rate of 1e−4. For data
augmentation, we use the exact setup proposed in [61] that includes random
cropping (224x224), random horizontal flip and 50% JPEG + Blurring. All ex-
periments were repeated 3 times. For LRP, we use beta0 setting. For statistical
tests, we use Mood’s median test with a significance level of α = 0.05.

https://keshik6.github.io/transferable-forensic-features/
https://keshik6.github.io/transferable-forensic-features/
https://keshik6.github.io/transferable-forensic-features/
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Fig. J.1. Additional results showing that pixel-wise explanations of universal detector
decisions are not informative to discover T-FF : We show pixel-wise explanations using
Guided-GradCAM (GGC) (row 2) [50] and LRP (row 3) [5] for the ResNet-50 uni-
versal detector [61] for ProGAN [26], CycleGAN [66], StarGAN [11], BigGAN [6] and
StyleGAN2 [29]. The universal detector predicts probability p >= 95% for all coun-
terfeit images shown above. All these counterfeits are obtained from the ForenSynths
dataset [61]. For LRP [5], we only show the positive relevances. We also show the
pixel-wise explanations of ImageNet classifier decisions for the exact counterfeits using
GGC (row 4) and LRP (row 5). This is shown as a control experiment to emphasize
the significance of our observations. As one can clearly observe, pixel-wise explanations
of universal detector decisions are not informative to discover T-FF (row 2 and 3) as
the explanations appear to be random and not reveal any meaningful visual features
used for counterfeit detection. Particularly, it remains unknown as to why the universal
detector outputs high detection probability (p >= 95%) for these counterfeits. On the
other hand, pixel-wise explanations of ImageNet classifier decisions produce meaning-
ful results. i.e.: The GGC (row 4) and LRP (row 5) explanation results for car samples
(columns 5, 6) show that ImageNet uses features such as wheels/body to classify cars.
This clearly shows that interpretability techniques such as GGC and LRP are not in-
formative to discover T-FF in universal detectors. In other words, we are unable to
discover any forensic footprints based on pixel-wise explanations of universal detectors.
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Pixel-wise explanations of universal detector decisions [61] using Guided-GradCAM (GGC) [50] and LRP [5]

G
G

C
[5

0
]

L
R

P
[5

]

Pixel-wise explanations of ImageNet classifier decisions using Guided-GradCAM (GGC) [50] and LRP [5]

G
G

C
[5

0
]

L
R

P
[5

]

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66]

Fig. J.2. Additional results showing that pixel-wise explanations of universal detector
decisions are not informative to discover T-FF (EfficientNet-B0): We show pixel-wise
explanations using Guided-GradCAM (GGC) (row 2) [50] and LRP (row 3) [5] for our
version of EfficientNet-B0 universal Detector following the exact training / test strat-
egy proposed in [61] for ProGAN [26], CycleGAN [66], StarGAN [11], BigGAN [6] and
StyleGAN2 [29]. The universal detector predicts probability p >= 95% for all coun-
terfeit images shown above. All these counterfeits are obtained from the ForenSynths
dataset [61]. For LRP [5], we only show the positive relevances. We also show the
pixel-wise explanations of ImageNet classifier decisions for the exact counterfeits using
GGC (row 4) and LRP (row 5). This is shown as a control experiment to emphasize
the significance of our observations. As one can clearly observe, pixel-wise explanations
of universal detector decisions are not informative to discover T-FF (row 2 and 3) as
the explanations appear to be random and not reveal any meaningful visual features
used for counterfeit detection. Particularly, it remains unknown as to why the universal
detector outputs high detection probability (p >= 95%) for these counterfeits. On the
other hand, pixel-wise explanations of ImageNet classifier decisions produce meaning-
ful results. i.e.: The GGC (row 4) and LRP (row 5) explanation results for car samples
(columns 5, 6) show that ImageNet uses features such as wheels / body to classify
cars. This clearly shows that interpretability techniques such as GGC and LRP are not
informative to discover T-FF in universal detectors. In other words, we are unable to
discover any forensic footprints based on pixel-wise explanations of universal detectors.

L Broader Impact

The thesis of our work is to discover and understand T-FF in universal detec-
tors, and we remark that our findings on color as a critical T-FF in univer-
sal detectors is very significant. Our findings suggest that contemporary CNN-
based image synthesis methods may potentially struggle to capture the diverse,
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Fig. J.3. Additional results showing that pixel-wise explanations of universal detector
decisions are not informative to discover T-FF (EfficientNet-B0): We show pixel-wise
explanations using Guided-GradCAM (GGC) (row 2) [50] and LRP (row 3) [5] for our
version of EfficientNet-B0 universal Detector following the exact training / test strat-
egy proposed in [61] for ProGAN [26], CycleGAN [66], StarGAN [11], BigGAN [6] and
StyleGAN2 [29]. The universal detector predicts probability p >= 95% for all coun-
terfeit images shown above. All these counterfeits are obtained from the ForenSynths
dataset [61]. For LRP [5], we only show the positive relevances. We also show the
pixel-wise explanations of ImageNet classifier decisions for the exact counterfeits using
GGC (row 4) and LRP (row 5). This is shown as a control experiment to emphasize
the significance of our observations. As one can clearly observe, pixel-wise explanations
of universal detector decisions are not informative to discover T-FF (row 2 and 3) as
the explanations appear to be random and not reveal any meaningful visual features
used for counterfeit detection. Particularly, it remains unknown as to why the universal
detector outputs high detection probability (p >= 95%) for these counterfeits. On the
other hand, pixel-wise explanations of ImageNet classifier decisions produce meaning-
ful results. i.e.: The GGC (row 4) and LRP (row 5) explanation results for cat samples
(columns 1, 2, 5, 6) show that ImageNet uses features such as eyes and whiskers to
classify cats. This clearly shows that interpretability techniques such as GGC and LRP
are not informative to discover T-FF in universal detectors. In other words, we can not
discover any forensic footprints based on pixel-wise explanations of universal detectors.

multi-modal color distribution of real images thereby leaving detectable forensic
footprints. We remark that this can inspire research to further improve image
synthesis methods to avoid such color-based forensic footprints, making it po-
tentially more difficult to detect visual counterfeits. In our opinion, we believe
that image synthesis methods and our fight against visual disinformation will
continue to parallely evolve in the foreseeable future.
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M Future Work: Can we identify globally relevant
channels for counterfeit detection in a Generator?

Fig.M.1. Left: ResNet-50 universal detector [61] scores before and after masking
the 5% channels in the generator according to highest LRP scores computed for the
generator. Right: ResNet-50 universal detector [61] scores before and after masking the
5% channels selected randomly in the generator. The orange line depicts the median
of the box plot. Higher difference between both box plots within a subplot is better.
Computed over 500 generated images trained over the LSUN Bedrooms class using a
ProGAN [26]. One can see that masking 5% channels found by LRP in the generator
leads to a very strong drop in detector scores (Left) compared to masking 5% randomly
selected channels results in a much smaller score decrease (Right).

This section serves to motivate future directions from an image synthesis per-
spective. Particularly, we ask the question as to whether it’s possible to identify
feature maps in GANs that are responsible for generating forensic features that
are detected by the universal detector.

In this section, we show preliminary results suggesting that it’s possible to
identify such globally relevant channels in a generator. Particularly, we perform
LRP all the way into the Generator to identify the top highest scoring GAN
channels that are responsible for counterfeit detection (i.e.: In the computational
graph, the image is generated from a pre-trained ProGAN [26] model). We show
that ablating these top-scoring GAN channels consequently results in large drop
in probability predicted by the universal detector (We use the publicly released
ResNet-50 in this experiment). This result is shown in Fig. M.1 that propagating
LRP into the generator is able to identify the globally top-5% relevant channels
for images. The box plot on the left shows a strong decrease after ablating these
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high-scoring GAN channels. This can be compared to the right figure where 5%
of randomly selected GAN channels are ablated, which results in a very small
decrease in counterfeit detection scores. These results show promising directions
in understanding image synthesis methods, and we hope to explore this area in
future work.
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