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A More comparisons
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Fig. 1: Qualitative results of smile attribute of our model (VecGAN) and other
StyleGAN based models.

In Fig. 1, we compare our method with other methods that are proposed
to invert images to StyleGANv2 space and perform edits via the pretrained
StyleGANv2. We compare with e4e [4], HyperStyle [2], and HFGI [5]. Same
input examples are used from Fig. 5 main paper. e4e as also stated in their
paper outputs results with worse distortion (input-output similarity) but better
edits. HyperStyle and HFGI are concurrent works with improved fidelity to the
input image but still significantly worse than our method both in edit quality
and reconstruction quality of the input details.
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Fig. 2: Qualitative results of smile attribute of our model (VecGAN) and other
StyleGAN based editing models.

We additionally compare with StyleFlow [1] and StyleSpace [6] in Fig. 2. For
both examples, we take their real image editing example from their papers and
feed the input crops to VecGAN for comparison. As can be seen from Fig. 2,
both methods suffer from the limitations of the projection method as inputs are
not faithfully reconstructed. Additionally, the edit is not perfectly disentangled
in StyleFlow example as the strap of the top changes when smile is modified.
VecGAN achieves significantly better results in these examples.

B Additional Quantitative Results

Method KID(+) KID(-) KID (Avg)

L2M-GAN 0.01010 0.00942 0.00976
InterfaceGAN 0.00603 0.00671 0.00637
VecGAN 0.00188 0.00328 0.00258

Table 1: Quantitative results for Setting B - Smile attribute.

In Table 1, we compare VecGAN and other competing methods with KID
metric [3]. Same as in FID evaluation, VecGAN achieves significantly better
results.

C Model Architecture

In this section, we provide architectural details of VecGAN.

Generator. Our generator is composed of an encoder and decoder. For encoder,
we use 8 successive blocks that perform downsampling which reduce feature
map dimensions to 1x1. In our decoder, we have an architecture symmetric to
encoder, which is composed of 8 successive upsampling blocks. Except the last
downsampling block and the first upsampling block, we use instance normaliza-
tion denoted as (+IN). The channels increase as {64, 64, 128, 256, 512, 512, 512,
1024, 2048} (for output resolution 256x256) in the encoder and decrease in a
symmetric way in the decoder. In addition to these building blocks, we use a
skip connection between the encoder and decoder as shown in Fig. 3.
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Fig. 3: Generator architecture. Numbers correspond to the output channels of
each block.
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Fig. 4: Architecture for the residual blocks.
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Residual Blocks. Each DownBlock and UpBlock has a residual block with 3x3
convolutional filters followed by a downsampling and upsampling layer, respec-
tively. For downsampling, we use average pooling and for upsampling, we use
nearest-neighbor. We use LeakyReLU activation layer and instance normaliza-
tion layer in each convolutional module.

Discriminator. Discriminator also employs an architecture with decreasing res-
olution and increasing channel size as given in Fig. 5. Just like the generator,
we build our discriminator with channel sizes of {64, 64, 128, 256, 512, 512, 512,
1024, 2048}, that reduces the feature map dimensions to 1x1. At the end, we
concatenate the extracted style αt from the input image to this latent code and
apply a 1x1 convolution. This final convolution is specific to each tag-attribute
pair so that the model can use this information.
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Fig. 5: Architecture of the discriminator. Discriminator takes an input image
and processes it with downsampling blocks with increased number of channels.
Towards the end, the extracted feature map with 1x1 feature dimensions is
concatenated with the scale of the input image. As we perform scale extraction
for the image in the cycle-translation path, no additional scale extraction is
needed.

Hyperparameters. For training our framework, we set the following parameters;
λa = 1, λrec = 1.5, λs = 1, λo = 1 and λsp = 0.05. We use a learning rate
of 10−4 and train our model for 500K iterations with a batch size of 8 on a
single GPU. For the feature encoding and feature directions in matrix A, we use
a 2048 dimensional vector representation same as the channel size of the last
convolutional layer from the encoder.

D Additional Results

We provide additional qualitative results of our method in Fig. 6, 7, 8, 9, 10,
and 11.
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Fig. 6: Smile tag manipulation results. First and third rows show input images.
Second and forth rows show image translation results.

Fig. 7: Glasses tag manipulation results. First and third rows show input images.
Second and forth rows show image translation results.
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Fig. 8: Gender tag manipulation results. First and third rows show input images.
Second and forth rows show image translation results.

Fig. 9: Bangs tag manipulation results. First and third rows show input images.
Second and forth rows show image translation results.
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Fig. 10: Age tag manipulation results. First and third rows show input images.
Second and forth rows show image translation results.

Fig. 11: Hair tag manipulation results. First and third rows show input images.
Second and forth rows shows image translation results.
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