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Abstract. We propose VecGAN, an image-to-image translation frame-
work for facial attribute editing with interpretable latent directions. Fa-
cial attribute editing task faces the challenges of precise attribute editing
with controllable strength and preservation of the other attributes of an
image. For this goal, we design the attribute editing by latent space fac-
torization and for each attribute, we learn a linear direction that is or-
thogonal to the others. The other component is the controllable strength
of the change, a scalar value. In our framework, this scalar can be ei-
ther sampled or encoded from a reference image by projection. Our work
is inspired by the latent space factorization works of fixed pretrained
GANs. However, while those models cannot be trained end-to-end and
struggle to edit encoded images precisely, VecGAN is end-to-end trained
for image translation task and successful at editing an attribute while
preserving the others. Our extensive experiments show that VecGAN
achieves significant improvements over state-of-the-arts for both local
and global edits.

Keywords: Image translation, generative adversarial networks, latent
space manipulation, face attribute editing.

1 Introduction

There has been a significant progress in image-to-image translation methods
[13, 24, 35, 6, 21, 37, 20, 23] especially for facial attribute editing [5, 25, 33, 38, 19]
powered with generative adversarial networks (GANs). A main challenge of facial
attribute editing methods is to be able to change only one attribute of an image
without affecting others such as global lighting parameters of the images, identity
of the persons, background, or their other attributes. The other challenge is the
interpretability of the style codes so that one can control the attribute intensity
of the edit, e.g. increase the intensity of smile or aging.

To achieve the targeted attribute editing while preserving the others, many
works set a separate style encoder and an image editing network where modified
styles are injected into it [5, 19]. During image-to-image translation, a style en-
coded from another image or a newly sampled style latent code can be used to
output diverse images. To disentangle attributes, works focus on style encoding
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Source Smile Bangs Hair colorAgeGender

Fig. 1: Attribute editing results of VecGAN. The first column shows the source
images, and other columns show the results of editing a specific attribute. Each
edited image has an attribute value opposite to that of the source one. For hair
color, sources are translated to brown, black, and blonde hair, respectively.

and progress from a shared style code, SDIT [30], to mixed style codes, Star-
GANv2 [5], to hierarchical disentangled styles, HiSD [19]. Among these works,
HiSD independently learn styles of each attribute, bangs, hair color, glasses and
introduces a local translator which uses attention masks to avoid global manip-
ulations. HiSD showcases successes on those three local attribute editing task
and is not tested for global attribute editing, e.g. age, smile. Furthermore, one
limitation of these works is the uninterpretablity of style codes as one cannot
control the intensity of attribute (e.g. blondness) in a straight-forward manner.

To overcome the challenges of facial attribute editing task, we propose a
novel framework, VecGAN, and image-to-image translation framework with in-
terpretable latent directions. Our framework does not require a separate style
encoder as in the previous works since we achieve the translation in the encoded
latent space directly. The attribute editing directions are learned in the latent
space and regularized to be orthogonal to each other for style disentanglement.
The other component of our framework is the controllable strength of the change,
a scalar value. This scalar can be either sampled from a distribution or encoded
from a reference image by projection in the latent space. Our framework not
only achieves significant improvements over state-of-the-arts for both local and
global edits but also provides a knob to control the editing attribute intensity
via its design.

VecGAN is encouraged by the findings that well-trained generative mod-
els organize their latent space as disentangled representations with meaningful
directions in a completely unsupervised way. Exploring these interpretable di-
rections in latent codes has emerged as an important research endeavor on the
fixed pretrained GANs [26, 28, 9, 27, 32]. These works show that images can be
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mapped to the GANs latent space and edits can be achieved by manipulations
in the latent space. However, since these models are not trained end-to-end, the
results are sub-optimal as will also be shown in our experiments.

To enable VecGAN, different than previous works of image-to-image trans-
lation networks, we use a deeper neural network architecture. Image-to-image
translation methods, such as state-of-the-art HiSD [19] uses a network with small
receptive fields that decreases the image resolution only by four times in the en-
coder. However, we want an organization in a latent space such that we can
take meaningful linear directions. Therefore, images should be encoded to a spa-
tially smaller feature space and a network should have a full understanding of
an image. For that reason, we set a deep encoder and decoder network architec-
ture but then this network faces the challenges of reconstructing all the details
from the input image. To solve this problem, we use a skip connection between
the encoder and decoder but only at lower resolution to find the optimal equilib-
rium of the information flow between with and without dimensionality reduction
bottleneck. In summary, our main contributions are:

– We propose VecGAN, a novel image-to-image translation network that is
trained end to end with interpretable latent directions. Our framework does
not employ a separate style network as in the previous works and translations
are achieved with a single deep encoder-decoder architecture.

– VecGAN enables both reference attribute copy and attribute strength manip-
ulation. Reference style encoding is designed in a novel way by using the same
encoder from the translation pipeline. First, encoder is used to obtain latent
codes of a reference image and it is followed by the projection of the codes
into learned latent directions for different attributes.

– We conduct extensive experiments to show the effectiveness of our framework
and achieve significant improvements over state-of-the-art for both local and
global edits. Qualitative results of our framework can be seen in Fig. 1.

2 Related Works

Image to Image Translation. Image-to-image translation algorithms aim at
preserving a given content while changing targeted attributes. Examples range
from translating semantic maps into RGB images [29], to translating summer
images into winter images [13], to portrait drawing [36] and very popularly to
editing faces [5, 25, 33, 38, 19, 31, 7, 11, 2]. These algorithms powered with GAN
loss [8] set an encoder-decoder architecture. In models that learn a determinis-
tic mapping from one domain to the other, images are processed with encoder
and decoder to output translated images [29, 24]. In multi-modal image-to-image
translation methods, style is encoded separately from an another image or sam-
pled from a distribution [12, 5]. In the generator, style and content are either
combined with concatenation [41], or combined with a mask [19] or fed sepa-
rately through instance normalization blocks [12, 42]. The generator also uses an
encoder-decoder architecture [19, 34] that is seperate than the style encoder. In
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our work, we are interested in designing the attribute as a learnable linear di-
rection in the latent space and we do not employ a separate style encoder which
results in a more intuitive framework.

Learning interpretable latent directions. In another line of research, it
is shown that GANs that are trained to synthesize faces can also be used for face
attribute manipulations [15, 3, 16]. Initially, these networks are not designed or
trained to translate images but rather to synthesize high fidelity images. How-
ever, it is shown that one can embed existing images into the GAN’s embedding
space [1] and further one can find latent directions to edit those images [26, 28, 9,
27, 32]. These directions are explored in supervised [26] and unsupervised ways
[28, 9, 27, 32]. It is quite remarkable when the generative network is only taught
to synthesize realistic images, it organizes the use of latent space such that linear
shifts on them change a specific attribute. Inspired by these findings, we design
our image to image translation such that a linear shift in the encoded features is
expected to change a single attribute of an image. Different than previous works,
our framework is trained end-to-end for translation task and allows for reference
guided attribute manipulation via projection.

3 Method

We follow the hierarchical labels defined by [19]. For a single image, its attribute
for tag i ∈ {1, 2, ..., N} can be defined as j ∈ {1, 2, ...,Mi}, where N is the
number of tags and Mi is the number of attributes for tag i. For example i can
be tag of hair color, and attribute j can take the value of black, brown, or blond.

Our framework has two main objectives. As the main task, we aim to be
able to perform the image-to-image translation task in a feature (tag) specific
manner. While performing this translation, as the second objective, we also want
to obtain an interpretable feature space which allows us to perform tag-specific
feature interpolation.

3.1 Generator Architecture

For image to image translation task, we set an encoder-decoder based architec-
ture and latent space translation in the middle as given in Fig. 2. We perform the
translation in the encoded latent space, e, which is obtained by e = E(x) where
E refers to the encoder. The encoded features go through a transformation T
which is discussed in the next section. The transformed features are then de-
coded by G to reconstruct the translated images. The image generation pipeline
following feature encoding is described in Eq. 1.

e′ = T (e, α, i)

x′ = G(e′) (1)

Previous image-to-image translation networks [19, 34, 5] set a shallow encoder
decoder architecture to translate an image and a separate deep network for style
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Fig. 2: VecGAN pipeline. Our translator is built on the idea of interpretable
latent directions. We encode images with an Encoder to a latent representation
from which we change a selected tag (i), e.g. hair color with a learnable direction
Ai and a scale α. To calculate the scale, we subtract the target style scale from the
source style. This operation corresponds to removing an attribute and adding an
attribute. To remove the image’s attribute, source style is encoded and projected
from the source image. To add the target attribute, target style scale is sampled
from a distribution mapped for the given attribute (j), e.g. blonde, brown or
encoded and projected from a reference image.

encoding. In most cases, the style encoder includes separate branches for each
tag. The shallow architecture that is used to translate images prevents the model
from making drastic changes in the images and this helps preserving the identity
of the persons. Our framework is different as we do not employ a separate style
encoder and instead have a deep encoder-decoder architecture for translation.
That is because to be able to organize the latent space in an interpretable way,
our framework requires a full understanding of the image and therefore a larger
receptive field; deeper network architecture. A deep architecture with decreasing
size of feature size, on the other hand, faces the challenges of reconstructing all
the fine details from the input image.

With the motivation of helping the network to preserve tag independent
features such as the fine details from background, we use skip connections be-
tween our encoder and decoder. However, we observe that the flow of information
should be limited to force the encoder-decoder architecture learn facial attributes
and well-organized latent representations. Because of that reason, we only allow
skip connection at low resolution. This design is extensively justified in our Ab-
lation Studies.

3.2 Translation Module

To achieve a style transformation, we perform the tag-based feature manipula-
tion in a linear fashion in the latent space. First, we set a feature direction matrix
A which contains learnable feature directions for each tag. In our formulation Ai

denotes the learned feature direction for tag i. Direction matrix A is randomly
initialized and learned during the training process.



6 Y. Dalva et al.

Our translation module is formulated in Eq. 2, which adds the desired shift
on top of the encoded features e similar to [28].

T (e, α, i) = e+ α×Ai (2)

We compute the shift by subtracting target style from the source style as
given in Eq 3.

α = αt − αs (3)

Since the attributes are designed as linear steps in the learnable directions, we
find the style shift by subtracting the target attribute scale from source attribute
scale. This way the same target attribute αt can have the same impact on the
translated images no matter what the attributes were of the original images. For
example, if our target scale corresponds to brown hair, the source scale can be
coming from an image with blonde or back hair but since we take a step for
difference of the scales, they can be both translated to an image with the same
shade of brown hair.

To extract the target shifting scale for feature (tag) i, αt, there are two
alternative pathways. The first pathway, named as latent-guided path, samples a
z ∈ U [0, 1) and applies a linear transformation αt = wi,j ·z+bi,j , where αt denotes
sampled shifting scale for tag i and attribute j. Here tag i can be hair color and
attribute j can be blonde, brown, or back hair. For each attribute we learn
a different transformation module which is denoted as Mi,j(z). Since we learn
a single direction for every tag for example for hair color, this transformation
module can put the initially sampled z’s into correct scale in the linear line based
on the target hair color attribute. As the other alternative pathway, we encode
the scalar value αt in a reference-guided manner. We extract αt for tag i from
a provided reference image by first encoding it into the latent space, er, and
projecting er via by Ai as given in Eq. 4.

αt = P (er, Ai) =
er ·Ai

||Ai||
(4)

In the reference guidance set-up, we do not use the information of attribute
j, since it is encoded by the tag i features of the image.

The source scale, αs, is obtained by the same way we obtain αt from ref-
erence image. We perform the projection for the corresponding tag we want to
manipulate, i, by P (e,Ai). We formulate our framework with the intuition that
the scale controls the amount of feature to be added. Therefore, especially when
the attribute is copied over from a reference image, the amount of features that
will be added will be different based on the source image. It is for this reason,
we find the amount of shift by subtraction as given in Eq. 3. Our framework is
intuitive and relies on a single encoder-decoder architecture. Fig. 2 shows the
overall pipeline.
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3.3 Training pathways

Modifying the translation paths defined by [19], we train our network using two
different paths. For each iteration to optimize our model, we sample a tag i for
shift direction, a source attribute j as the current attribute and a target attribute
ĵ.

Non-translation path. To ensure that the encoder-decoder structure pre-
serves details of the images, we perform a reconstruction of the input image
without applying any style shifts. The resulting image is denoted as xn as given
in Eq. 5.

xn = G(E(x)) (5)

Cycle-translation path. We apply a cyclic translation to ensure that we
get a reversible translation from a latent guided scale. In this path, as shown in
Fig. 3, we first apply a style shift by sampling z ∈ U [0, 1) and obtaining target
αt with Mi,ĵ(z) for target attribute ĵ. The translation uses α that is obtained
by subtracting αt from the source style. Decoder generates an image, xt as given
in Eq. 6 where e is encoded features from input image x, e = E(x). xt refers to
the image without glasses in Fig. 3.

xt = G(T (e,Mi,j(z)− P (e, i), i)) (6)

Then by using the original image, x, as a reference image, we aim to recon-
struct the original image by translating xt. Overall, this path attempts to reverse
a latent-guided style shift with a reference-guided shift. The second translation
is given in Eq. 7 where et = E(xt).

xc = G(T (et, P (e, i)− P (et, i), i)) (7)

In our learning objectives, we use xn and xc for reconstruction and xt and xc

for adversarial losses, and Mi,j(z) for the shift reconstruction loss. Details about
the learning objectives are given in the next section.
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3.4 Learning objectives

Given an input image xi,j ∈ Xi,j , where i is the tag to manipulate and j is
the current attribute of the image, we optimize our model with the following
objectives. In our equations, xi,j is shown as x.

Adversarial Objective. During training, our generator performs a style-
shift either in a latent-guided way or a reference-guided way, which results in a
translated image. In our adversarial loss, we receive feedback from the two steps
of cycle-translation path. As the first component of the adversarial loss, we feed
a real image x with tag i and attribute j to the discriminator as the real example.
To give adversarial feedback to latent-guided path, we use the intermediate image
generated in cycle-translation path, xt. Finally, to provide adversarial feedback
to reference-guided path, we use the final outcome of the cycle-translation path
xc. Only x acts as real image, both xt and xc are translated images, and they
are treated as fake images with different attributes. The discriminator aims at
classifying whether an image, given its tag and attribute, is real or not. The
objective is given in Eq 8.

Ladv = 2log(Di,j(x)) + log(1−Di,ĵ(xt)) + log(1−Di,j(xc)) (8)

Shift Reconstruction Objective. As the cycle-consistency loss performs
reference-guided generation followed by latent-guided generation, we utilize a
loss function to make these two methods consistent with each other [17, 12, 18,
19]. Specifically, we would like to obtain the same target scale, αt, both from
the mapping and from the encoded reference image generated by the mapped
αt. The loss function is given in Eq. 9.

Lshift = ||Mi,j(z)− P (et, i)||1 (9)

Those parameters, Mi,j(z) and P (et, i), are calculated for the cycle-translation
path as given in Eq. 6 and 7.

Image Reconstruction Objective. In all of our training paths, the pur-
pose it to be able to re-generate the original image again. To supervise this
desired behavior, we use L1 loss for reconstruction loss. In our formulation xn

and xc are outputs of non-translation path and cycle-translation path, respec-
tively. Formulation of this objective is provided in Eq. 10.

Lrec = ||xn − x||1 + ||xc − x||1 (10)

Orthogonality Objective. To encourage the orthogonality between direc-
tions, we use soft orthogonality regularization based on Frobenius norm, which
is given in Eq. 11. This orthogonality further encourages a disentanglement in
the learned style directions.

Lortho = ∥ATA− I∥F (11)
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Full Objective. Combining all of the loss components described, we reach
to the overall objective for optimization as given in Eq. 12. We additionally add
L1 loss on the matrix A parameters to encourage its sparsity.

min
E,G,M,A

max
D

λaLadv + λsLshift + λrLrec + λoLortho + λspLsparse (12)

To control the dominance of each loss component, we use λa, λs, λr, λo,
and λsp hyperparameters. These hyperparameter values and training details are
given in Supplementary.

4 Experiments

4.1 Dataset and Settings

We train our model on CelebA-HQ dataset [22] which contains 30,000 face
images. To extensively compare with state-of-the-arts, we follow two training-
evaluation protocols as follows:

Setting A. In our first setting, we follow the set-up from HiSD [19]. Fol-
lowing HiSD, we use the first 3000 images of CelebA-HQ dataset as the test set
and 27000 as the training set. These images include annotations for different
attributes from which we use hair color, presence of glass, and bangs attributes
for translation task in this setting. Hair color attribute includes 3 tags, black,
brown, and blonde whereas the other attributes are binary. The images are re-
sized to 128× 128. Following the evaluation protocol proposed by HiSD [19], we
compute FID scores on bangs addition task. For each test image without bangs,
we translate them to images with bangs with latent and reference guidance. In
latent guidance, 5 images are generated for each test image by randomly sam-
pling scale from a uniform distribution. Then this generated set of images are
compared with images that have attribute bangs in terms of their FIDs. FIDs are
calculated for these 5 sets and averaged. For reference guidance, we randomly
pick 5 references images to extract the style scale. FIDs are calculated for these
5 sets separately and averaged.

Setting B. In this setting, we follow the set-up from L2M-GAN [34]. The
training/test split is obtained by re-indexing each image in CelebA-HQ back to
the original CelebA and following the standard split of CelebA. This results in
27,176 training and 2,824 test images. Models are trained for hair color, presence
of glasses, bangs, age, smiling, and gender attributes. Images are resized to 256×
256 resolution. For evaluation, smiling attribute is used following L2M-GAN [34].
It is noted that smiling is one of the most challenging among the CelebA facial
attributes because adding/removing a smile requires high-level understanding of
the input face image for modifying multiple facial components simultaneously.
FIDs are calculated for adding and removing the smile attribute.
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Method Lat. Ref.

SDIT [30] 33.73 33.12
StarGANv2 [5] 26.04 25.49
Elegant [33] - 22.96
HiSD [19] 21.37 21.49

VecGAN (Ours) 20.17 20.72

(a) Quantitative results for Setting
A. Lat: Latent guided, Ref: Reference
guided. FID scores are given. Lower is
better.

Method FID (+) FID (-) Avg

StarGAN [4] 32.6 38.6 35.6
CycleGAN [40] 22.5 24.4 23.5
Elegant [33] 39.7 42.9 41.3
PA-GAN [10] 20.5 21.4 21.0
InterFaceGAN [26] 24.8 24.9 24.9
L2M-GAN [34] 17.9 23.3 20.6

VecGAN (Ours) 17.7 20.3 19.0

(b) Quantitative results for Setting B. FID
(+) (or FID (-)) denotes the FID score for
adding (or removing) a smile.

Table 1: Comparisons with state-of-the-art competing methods. Please refer to
Section 4 for details on training and evaluation protocol of Setting A and B.

Smiling (+) Smiling (-) Smiling (Avg)

Comparisons Quality Fidelity Quality Fidelity Quality Fidelity

VecGAN (Ours) vs L2M-GAN 57.96% 70.94% 60.93% 77.50% 59.45% 74.22%
VecGAN (Ours) vs InterFaceGAN 88.13% 91.56% 77.50% 90.62% 82.82% 91.09%

Table 2: User study results conducted with smiling attribute. Smiling (+) denotes
the results of adding a smile, Smiling (-) refers to the results of removing a
smile, and Smiling (avg) denotes the average of Smiling (+) and Smiling (-).
Percentages show the preference rates of our method versus the other competing
method.

4.2 Results

We extensively compare our results with other competing methods in Table 1.
In Setting A, as given in Table 1a, we compare with SDIT [30], StarGANv2 [5],
Elegant [33], and HiSD [19] models. Among these methods, HiSD learns a hi-
erarchical style disentanglement whereas StarGANv2 learns a mixed style code.
Therefore, StarGANv2 when translating images also does other unnecessary ma-
nipulations and does not strictly preserve the identity. Our work is most similar
to HiSD as we also learn disentangled style directions. However, HiSD learns
feature based local translators which is an approach known to be successful on
local edits, e.g. bangs. Ours results show that VecGAN achieves significantly bet-
ter quantitative results than HiSD both in latent guided and reference guided
evaluations even though they are compared on a local edit task.

Fig. 4 shows reference guided results of our model versus HiSD. We compare
with HiSD since it provides with the best results after ours. As can be seen from
Fig. 4, both methods achieve attribute disentanglement, they do not change
any other attribute of the image than the bangs tag. However, HiSD outputs
artifacts especially for the reference image from the last column. On the other
hand, VecGAN outputs higher quality results. As the second example, we pick
a very challenging example to compare these methods. Even though, our results



VecGAN 11

Input

R
ef
er
en
ce

HiSDVecGAN

Input

R
ef
er
en
ce

Fig. 4: Qualitative results of bangs attribute of our model (VecGAN) and HiSD.
In the second example, we provide a very challenging sample where VecGAN
even though not perfect achieves significantly better results than HiSD.

can be further improved to look more realistic, it achieves significantly better
outputs with no artifacts compared to HiSD.

In our second set-up of evaluation, we compare our method with many state-
of-the-art methods as given in Table 1b. We compare with StarGAN [4], Cy-
cleGAN [40], Elegant [33], PA-GAN [10], InterFaceGAN [26], and L2M-GAN
[34]. For InterFaceGAN, we use the GAN Inversion [39] as the encoder and pre-
trained StyleGAN [15] as the generator backbone. As can be seen from Table
1b, we achieve significantly better scores on both settings and in average.

In our visual comparisons, we mainly focus on L2M-GAN and InterFaceGAN
since L2M-GAN is the second best model after ours and InterFaceGAN shares
the same intuition with our model and performs edits by latent code manipula-
tion. The results are shown in Fig. 5 where the first four examples show smile
addition and the other four examples show smile removal manipulations. The
most prominent limitation of L2M-GAN and InterFaceGAN is that they do not
preserve the other attributes of images, especially on the background whereas
VecGAN does a very good job at that. Smile attribute addition and removal of
L2M-GAN is better than InterFaceGAN, however, worse than ours. VecGAN is
the only method among them that can produce manipulated images with high
fidelity to the originals with only targeted attribute manipulated in a natural
and realistic way.

We also conduct a user study on the first 64 images of validation set among
10 users. We set an A/B test and provide users with input images and transla-
tions obtained by VecGAN and other competing methods. The left-right order
is randomized to ensure fair comparisons. We perform two separate tests. 1)
Quality: We ask users to select the best result according to i) whether the smile
attribute is correctly added, ii) whether irrelevant facial attributes preserved,
iii) and overall whether the output image looks realistic and high quality. 2) Fi-
delity: We ask users to pay attention if details from the input image is preserved
in addition to the quality. When only asked for quality, users pay attention to
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Fig. 5: Qualitative results of smile attribute of our model (VecGAN), L2M-GAN,
and InterFaceGAN. The first four examples show smile addition and the other
four shows smile removal manipulations.

facial attributes and do not pay much attention to the background, ornament,
details of hair of the image, and so on. In this test, we remind the users to pay
attention to those as well. Table 2 shows the results of the user study. Users
preferred our method as opposed to L2M-GAN 59.45% of the time (50% is tie),
and as opposed to InterFaceGAN 82.82% of the time for the quality measure in
average of smile addition and removal results. When users asked to pay atten-
tion to non-facial attributes as well, they preferred our method as opposed to
L2M-GAN 74.22% of the time, and as opposed to InterFaceGAN 91.09% of the
time in average.

4.3 Ablation Study

We conduct ablation studies for network architecture and loss objectives as given
in Table 3. We first experiment with a shallower architecture where encoder
decreases the input dimension of 128× 128 to a spatial dimension of 8× 8. This
version gives reasonable scores, however, we are interested in a better latent
space organization. For that, we use a deeper encoder-decoder architecture where
encoded latent space goes as low as 1×1 which we refer as deep architecture. Deep
architecture without skip connections is not able to minimize the reconstruction
objective and results in a high FID. On the other hand, deep architecture with
a skip connection at each resolution from encoder to decoder can minimize the
reconstruction loss however the latent space is not well organized since the model
tends to pass all the information from the encoder which instabilizes the training.
Our architecture with single skip layer at resolution 32 × 32 provides a good
balance between the information flow from encoder-decoder and the latent space
bottleneck.
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Fig. 6: Qualitative results of ablation
study of orthogonality loss. Bangs tag
transferred from the reference image.

Method Lat. Ref.

Shallow 21.30 20.94
Deep w/o skip 88.62 127.65
Deep all skip 273.80 273.97
Ours 20.17 20.72

w/o Orthogonality 21.98 22.50
w/o Sparsity 24.07 22.43

Table 3: FID results of ablation
study with Setting A. Lat: Latent
guided, Ref: Reference guided.

Fig. 7: Results of changing the strength of a manipulation gradually. Each ex-
ample shows a different attribute manipulation. Rows show bangs, hair color,
gender, smile, glasses, and age manipulations in this order.

Next, we experiment the effect of loss functions. First, we remove the orthogo-
nality loss of A directions. This results in worse FID scores but more importantly
we observe that the styles are not disentangled, e.g. changing bangs attribute
changes the gender as can be seen in Fig. 6. Even without this loss function,
we observe that during training the orthogonality loss of A decreases but to a
higher value than when this loss is added to the final objective. That is because
the framework and other loss objectives also encourage the disentanglement of
attribute manipulations and it shows in the orthogonality of direction vectors.
This also shows the importance of orthogonality in style disentanglement and
this targeted loss helps improve that significantly. We also observe that sparsity
loss applied on the directional vectors stabilizes the training and without that
FIDs are much higher.

4.4 Other Capabilities of VecGAN

Gradually Increased Scale. We translate images with gradually increased
attribute strength as shown in Fig. 7. We plot the manipulation results on six
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Input Smile Age Age + Smile

(a) Multi-attribute editing results. (b) Generalization results.

Fig. 8: Results of multi-attribute editing and cross-dataset generalization results
of VecGAN.

different attributes. These results show that attributes that are designed as linear
transformations are disentangled, and changing one attribute does not affect the
other components. In these results, as scales are gradually increased, the strength
of the tag smoothly increases with the identity of the person preserved.

Multi-tag Edits. We additionally experiment with multi-tag manipulation.
To change two attributes, instead of encoding and decoding the image twice
with a translation in between each time, we perform two translation operations
in the latent code simultaneously. That is we apply Eq. 2 twice for two different
i. Fig. 8a shows results of the multi-tag edits. In the first row, we consider gender
and smile tags, and first edit those attributes individually. In the last coloumn,
we edit the image with these two tags simultaneously. The second row shows a
similar experiment with smile and age tags. We observe that VecGAN provides
with disentangled tag control and can successfully edit tags independently.

Generalization to other domains. We apply VecGAN model to MetFace
dataset [14] without any retraining. The results are provided in Fig. 8b. The
first row shows source images, and the second row shows outputs of our model.
In the first two examples, we increase the smile attribute, and in the other two,
we decrease it. The results show that VecGAN has a good generalization ability
and works reasonably well across datasets.

5 Conclusion

This paper introduces VecGAN, an image-to-image translation framework with
interpretable latent directions. This framework includes a deep encoder and de-
coder architecture with latent space manipulation in between. Latent space ma-
nipulation is designed as vector arithmetic where for each attribute, a linear
direction is learned. This design is encouraged by the finding that well-trained
generative models organize their latent space as disentangled representations
with meaningful directions in a completely unsupervised way. Each change in
the architecture and loss functions is extensively studied and compared with
state-of-the-arts. Experiments show the effectiveness of our framework.
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