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Abstract. Generative adversarial networks (GANs) have achieved great
success in image translation and manipulation. However, high-fidelity
image generation with faithful style control remains a grand challenge
in computer vision. This paper presents a versatile image translation
and manipulation framework that achieves accurate semantic and style
guidance in image generation by explicitly building a correspondence.
To handle the quadratic complexity incurred by building the dense cor-
respondences, we introduce a bi-level feature alignment strategy that
adopts a top-k operation to rank block-wise features followed by dense
attention between block features which reduces memory cost substan-
tially. As the top-k operation involves index swapping which precludes
the gradient propagation, we approximate the non-differentiable top-k
operation with a regularized earth mover’s problem so that its gradient
can be effectively back-propagated. In addition, we design a novel se-
mantic position encoding mechanism that builds up coordinate for each
individual semantic region to preserve texture structures while building
correspondences. Further, we design a novel confidence feature injection
module which mitigates mismatch problem by fusing features adaptively
according to the reliability of built correspondences. Extensive experi-
ments show that our method achieves superior performance qualitatively
and quantitatively as compared with the state-of-the-art.

1 Introduction

Image translation and manipulation aim to generate and edit photo-realistic
images conditioning on certain inputs such as semantic segmentation [32,43],
key points [39,5] and layout [19]. It has been studied intensively in recent years
thanks to its wide spectrum of applications in various tasks [35,30,42]. However,
achieving high fidelity image translation and manipulation with faithful style
control remains a grand challenge due to the high complexity of natural image
styles. A typical approach to control image styles is to encode image features
into a latent space with certain regularization (e.g., Gaussian distribution) on
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Fig. 1. Bi-level feature alignment via
ranking and attention scheme: With a
query block from the Conditional In-
put, we first retrieve the top-k most
similar blocks from the Exemplar Im-
age through a differentiable ranking
operation, and then compute dense
attention between features in query
block and features in retrieved top-
k blocks. Such bi-level alignment re-
duces the computational cost greatly,
and allows to build high-resolution cor-
respondences.

the latent feature distribution. For example, Park et al.[32] utilize VAE [4] to
regularize the distribution of encoded features for faithful style control. However,
VAE struggles to encode the complex distribution of natural image styles and
often suffers from posterior collapse [25] which leads to degraded style control
performance. Another strategy is to encode reference images into style codes
[3,65] to provide style guidance in image generation, while style codes often cap-
ture the global or regional style without an explicit style guidance for generating
texture details.

To achieve more accurate style guidance and preserve details from exemplar,
Zhang et al. [59] explore to build cross-domain correspondences with Cosine sim-
ilarity to achieve exemplar-based image translation. Zhou et al. [63] propose a
GRU-assisted Patch-Match [1] method to build high-resolution correspondences
efficiently. Since the textures within a semantic region share identical semantic
information, the existing methods tend to build correspondences based on the
semantic coherence without considering the structure coherence within each se-
mantic region. Warping exemplars with such pure semantic correspondence may
cause destroyed texture patterns in the warped exemplars, and consequently
result in inaccurate guidance for image generation.

This paper presents RABIT, a Ranking and Attention scheme with Bi-
level feature alignment for versatile Image Translation and manipulation. To
mitigate the quadratic computational complexity issue of building the dense
correspondence between conditional inputs (semantic guidance) and exemplars
(style guidance), we design a bi-level alignment strategy with a Ranking and
Attention Scheme (RAS) which builds feature correspondences efficiently at two
levels: 1) a top-k ranking operation for dynamically generating block-wise rank-
ing matrices; 2) a dense attention module that achieves dense correspondences
between features within blocks as illustrated in Fig. 1. RAS enables to build
high-resolution correspondences and reduces the memory cost from O(L2) to
O(N2 + b2) (L is the number of features for alignment, b is block size, and
N = L

b ). However, the top-k operation involves index swapping whose gradient
cannot be back-propagated in networks. To address this issue, we approximate
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the top-k ranking operation with a regularized Earth Mover’s problem [34] which
enables gradient back-propagation effectively.

As in [59,63], building correspondences based on semantic information only
often leads to the losing of texture structures and patterns in warped exemplars.
Thus, spatial information should also be incorporated to preserve the texture
structures and patterns and yield more accurate feature correspondences. A
vanilla method to encode the position information is concatenating the semantic
features with the corresponding feature coordinates via coordconv [22]. However,
the vanilla position encoding builds a single coordinate system for the whole im-
age which ignores the position information within each semantic region. Instead,
we design a semantic position encoding (SPE) mechanism that builds a dedi-
cated coordinate system for each semantic region which outperforms the vanilla
position encoding significantly.

In addition, conditional inputs and exemplars are seldom perfectly matched,
e.g., conditional inputs could contain several semantic classes that do not exist
in exemplar images. Under such circumstances, the built correspondences often
contain errors which lead to inaccurate exemplar warping and further deteri-
orated image generation. We tackle this problem by designing a CONfidence
Feature Injection (CONFI) module that fuses the features of conditional inputs
and warped exemplars according to the reliability of the built correspondences.
Although the warped exemplar may not be reliable, the conditional input always
provides accurate semantic guidance in image generation. The CONFI module
thus assigns higher weights to the conditional input when the built correspon-
dence (or warped exemplar) is unreliable. Experiments show that CONFI helps
to generate faithful yet high-fidelity images consistently.

The contributions of this work can be summarized in three aspects. First, we
propose a versatile image translation and manipulation framework which intro-
duces a ranking and attention Scheme for bi-level feature alignment that greatly
reduces the memory cost while building the correspondence between conditional
inputs and exemplars. Second, we introduce a semantic position encoding mech-
anism that encodes region-level position information to preserve texture struc-
tures and patterns. Third, we design a confidence feature injection module that
provides reliable feature guidance in image translation and manipulation.

2 Related Work

2.1 Image-to-Image Translation

Image translation has achieved remarkable progress in learning the mapping
between images of different domains. It could be applied in different tasks such as
style transfer [10,7,20], image super-resolution [16,21,15,58], domain adaptation
[36,30,8,41,49], image composition [57,48,55,51,54] etc. To achieve high-fidelity
and flexible translation, existing work uses different conditional inputs such as
semantic segmentation [12,43,32,53,56], scene layouts [38,60,19,52], key points
[27,29,5,50], edge maps [12,6], etc. However, effective style control remains a
challenging task in image translation.



4 F. Zhan et al.

Style control has attracted increasing attention in image translation and gen-
eration. Earlier works such as [14] regularize the latent feature distribution to
control the generation outcome. However, they struggle to capture the complex
textures of natural images. Style encoding has been studied to address this issue.
For example, [11] and [26] transfer style codes from exemplars to source images
via adaptive instance normalization (AdaIN) [10]. [3] employs a style encoder for
style consistency between exemplars and translated images. [65] designs semantic
region-adaptive normalization (SEAN) to control the style of each semantic re-
gion individually. However, encoding style exemplars tends to capture the overall
image style and ignores the texture details in local regions. To achieve accurate
style guidance for each local region, Zhang et al. [59] build dense semantic corre-
spondences between conditional inputs and exemplars with Cosine similarity to
capture accurate exemplar details. To mitigate the quadratic complexity issue
and enable high-resolution correspondence building, Zhou et al. [63] introduce
the GRU-assisted Patch-Match to efficiently establish the high-resolution corre-
spondence.

2.2 Semantic Image Editing

The arise of generative adversarial network (GANs) brings revolutionary ad-
vances to image editing [64,9,31,2,33,45,44,46]. As one of the most intuitive rep-
resentation in image editing, semantic information has been extensively inves-
tigated in conditional image synthesis. For example, Park et al. [32] introduce
spatially-adaptive normalization (SPADE) to inject guided features in image
generation. MaskGAN [17] exploits a dual-editing consistency as auxiliary su-
pervision for robust face image manipulation. Instead of directly learning a label-
to-pixel mapping, Hong et al. [9] propose a semantic manipulation framework
HIM that generates images guided by a predicted semantic layout. Upon this
work, Ntavelis et al. [31] propose SESAME which requires only local seman-
tic maps to achieve image manipulation. However, the aforementioned methods
either only learn a global feature without local focus (e.g., MaskGAN [17]) or
ignore the features in the editing regions of the original image (e.g., HIM [9],
SESAME [31]). To better utilize the fine features in the original image, Zheng
et al. [61] adapt exemplar-based image synthesis framework CoCosNet [59] for
semantic image manipulation by building a high-resolution correspondence be-
tween the original image and the edited semantic map.

3 Proposed Method

The proposed RABIT consists of an alignment network and a generation net-
work that are inter-connected as shown in Fig. 2. The alignment network learns
the correspondence between a conditional input and an exemplar for warping
the exemplar to be aligned with the conditional input. The generation network
produces the final generation under the guidance of the warped exemplar and
the conditional input. RABIT is typically applicable in the task of conditional
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Fig. 2. The framework of the proposed RABIT: Conditional Input and Exemplar
are fed to feature extractors FX and FZ to extract feature vectors X and Z where b
local features form a feature block. In the first level, each block from the conditional
input serves as the query to retrieve top-k similar blocks from the exemplar through
a differentiable ranking operation. In the second level, Dense Attention is then built
between the b features in query block and b ∗ k features in the retrieved blocks. The
built Ranking Matrices and Attention Matrices are combined to warp the exemplar to
be aligned with the conditional input as in Warped Exemplar, which serves as a style
guidance to generate the final result through a generation network.

image translation with extra exemplar as style guidance. It is also applicable to
the task of image manipulation by treating the exemplars as the original images
for editing and the conditional inputs as the edited semantic. The detailed loss
functions can be found in the supplementary materials.

3.1 Alignment Network

The alignment network aims to build the correspondence between conditional in-
puts and exemplars, and accordingly provide accurate style guidance by warping
the exemplars to be aligned with the conditional inputs. As shown in Fig. 2, con-
ditional input and exemplar are fed to feature extractors FX and FZ to extract
two sets of feature vectors X = [x1, · · · , xL] ∈ Rd and Z = [z1, · · · , zL] ∈ Rd,
where L and d denote the number and dimension of feature vectors, respectively.
Then X and Z can be aligned by building a L × L dense correspondence ma-
trix where each entry denotes the Cosine similarity between the corresponding
feature vectors in X and Z.

Semantic Position Encoding. Existing works [59,63] mainly rely on se-
mantic features to establish the correspondences. However, as textures within a
semantic region share the same semantic feature, the pure semantic correspon-
dence fails to preserve the texture structures or patterns within each semantic
region. Thus, the position information of features can be facilitated to preserve
the texture structures and patterns. A vanilla method to encode the position
information is employing a simple coordconv [22] to build a global coordinate
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for the full image. However, this vanilla position encoding mechanism builds a
single coordinate system for the whole image, ignoring region-wise semantic dif-
ferences. To preserve the fine texture pattern within each semantic region, we
design a semantic position encoding (SPE) mechanism that builds a dedicated
coordinate for each semantic region as shown in Fig. 3. Specifically, SPE treats
the center of each semantic region as the origin of coordinate, and the coordi-
nates within each semantic region are normalized to [-1, 1]. The proposed SPE
outperforms the vanilla position encoding significantly as shown in Fig. 6 and
to be evaluated in experiments.

Vanilla Position Encoding Semantic Position Encoding

Fig. 3. The comparison of vanilla posi-
tion encoding and the proposed seman-
tic position encoding (SPE). Red dots
denote the coordinate origin.

Bi-level Feature Alignment. On
the other hand, building correspondence
has quadratic complexity which incurs
large memory and computation costs.
Most existing studies thus work with low-
resolution exemplar images (e.g. 64 × 64
in CoCosNet [59]) which often struggle
in generating realistic images with fine
texture details. In this work, we propose
a bi-level alignment strategy via a novel
ranking and attention scheme (RAS) that
greatly reduces computational costs and
allows to build correspondences with high-
resolution images as shown in Fig. 6.
Instead of building correspondences be-
tween features directly, the bi-level align-
ment strategy builds correspondences at
two levels, including the first level that introduces top-k ranking to generate
block-wise ranking matrices dynamically and the second level that achieves dense
attention between the features within blocks. As Fig. 2 shows, b local features
are grouped into a block, thus the features of conditional input and exemplar are
partitioned intoN blocks (N = L/b) as denoted byX = [X1, · · · , XN ] ∈ Rbd and
Z = [Z1, · · · , ZN ] ∈ Rbd. In the first level of top-k ranking, each block feature
of the conditional input serves as a query to retrieve top-k block features from
the exemplar according to the Cosine similarity between blocks. In the second
level of local attention, the features in each query block further attends to the
features in the top-k retrieved blocks to build up local attention matrices within
the block features. The correspondence between the exemplar and conditional
input can thus be built much more efficiently by combining such inter-block
ranking and inner-block attention.

The ranking and attention scheme employs a top-k operation that ranks the
correlative blocks. However, the original top-k operation involves index swapping
whose gradient cannot be computed and so cannot be integrated into end-to-
end network training. Inspired by Xie et al. [47], we tackle this issue by formu-
lating the top-k ranking as a regularized earth mover’s problem which allows
gradient computation via implicit differentiation. Earth mover’s problem aims
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Fig. 4. Illustration of the earth mover’s
problem in top-k retrieval. Earth mover’s
problem is conducted between distribu-
tions U and V which is defined on sup-
ports A = [a1, · · · , aN ] and B = [b1, b2].
Transport Plan Ti2 indicates the retrieved
top-k elements.
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Fig. 5. Illustration of confidence feature
injection: Conditional input and warped
exemplar are initially fused with a confi-
dence map (CMAP) of size 1 ×H ×W .
A multi-channel confidence map (Multi-
CMAP) of size C × H × W is then
obtained from the initial fusion which
further fuses the conditional input and
warped exemplar in multiple channels.

to find a transport plan that minimizes the total cost to transform one distri-
bution to another. Consider two discrete distributions U = [µ1, . . . , µN ]⊤ and
V = [ν1, . . . , νM ]⊤ defined on supports A = [a1, · · · , aN ] and B = [b1, · · · , bM ],
with probability (or amount of earth) P(ai) = µi and P(bj) = νj . We define
C ∈ RN×M as the cost matrix where Cij denotes the cost of transportation
between ai and bj , and T as a transport plan where Tij denotes the amount of
earth transported between µi and νj . An earth mover’s (EM) problem can be

formulated by: EM = min
T

⟨C, T ⟩, s.t. T 1⃗M = U, T⊤1⃗N = V where 1⃗ denotes a

vector of ones, ⟨⟩ denotes inner product. By treating a correlation scores between
a query block and N key blocks as A = [a1, · · · , aN ], ai ∈ [−1, 1] and defining
B = {−1, 1}, U = [µ1, · · · , µN ] and V = [ν1, ν2], it can be proved that solving
the Earth Mover’s problem is equivalent to select the largest K elements from
A = [a1, · · · , aN ]. The detailed proof and optimization of the earth mover’s prob-
lem is provided in supplementary material. Fig. 4 illustrates the earth mover’s
problem and transport plan T which indicates the top-k elements.

Complexity Analysis. The vanilla dense correspondence has a self-attention
memory complexity O(L2) where L is the input sequence length. For our bi-level
alignment strategy, the memory complexity of building block ranking matrices
and local attention matrices are O(N2) and O(b ∗ (kb)), where b, N (N = L/b)
and k are block size, block number and the number of top-k selection. Thus, the
overall memory complexity is O(N2 + b ∗ (kb)).
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Conditional Input Exemplar CoCosNet (64) SPE (64) SPE+RAS (128)CoCosNet v2 (128)CoCosNet v2 (64) Baseline (64) RAS (128)

Fig. 6. Warped exemplars with different methods: ‘64’ and ‘128’ mean to build corre-
spondences at resolutions 64× 64 and 128× 128. CoCosNet [59] tends to lose texture
details and structures, while CoCosNet v2 [63] tends to generate messy warping. The
Baseline denotes building correspondences with Cosine similarity, which tends to lose
textures details and structures. The proposed ranking and attention scheme (RAS)
allows efficient image warping at high resolutions, the proposed semantic position en-
coding (SPE) can better preserve texture structures. The combination of the two as
denoted by SPE+RAS achieves the best warping performance with high resolution and
preserved texture structures.

3.2 Generation Network

The generation network aims to synthesize images under the semantic guidance
of conditional inputs and style guidance of exemplars. The overall architecture of
the generation network is similar to SPADE [32]. Please refer to supplementary
material for details of the network structure.

State-of-the-art approach [59] simply concatenates the warped exemplar and
conditional input to guide the image generation process. However, the warped
input image and edited semantic map could be structurally aligned but seman-
tically different especially when they have severe semantic discrepancy. Such
unreliably warped exemplars could serve as false guidance and heavily deterio-
rate the generation performance. Therefore, a mechanism is required to identify
the semantic reliability of warped exemplar to provide reliable guidance for the
generation network. To this end, we propose a CONfidence Feature Injection
(CONFI) module that adaptively weights the features of conditional input and
warped exemplar according to the reliability of feature matching.

Confidence Feature Injection. Intuitively, in the case of lower reliability
of the feature correspondence, we should assign a relatively lower weight to the
warped exemplar which provides unreliable style guidance and a higher weight
to the conditional input which consistently provides accurate semantic guidance.

As illustrated in Fig. 5, the proposed CONFI fuses the features of the con-
ditional input and warped exemplar based on a confidence map (CMAP) that
captures the reliability of the feature correspondence. To derive the confidence
map, we first obtain a block-wise correlation map of size N ×N by computing
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element-wise Cosine distance between X = [Xi, · · · , XN ] and Z = [Zi, · · · , ZN ].
For a block Xi, the correlation score with Z is denoted by A = [a1, · · · , aN ]. As
higher correlation scores indicate more reliable feature matching, we treat the
peak value of A as the confidence score of Xi. Similar for other blocks, we can
obtain the confidence map (CMAP) of size 1 × H × W (N = H ∗ W ) which
captures the semantic reliability of all blocks. The features of the conditional
input and exemplar (both of size C ×H ×W after passing through convolution
layers) can thus be fused via weighted sum based on the confidence map CMAP:
F = X∗(1−CMAP)+(T ·Z)∗CMAP where T is the built correspondence matrix.
As the confidence map contains only one channel (1×H×W ), the above feature
fusion is conducted in H×W but ignores that in C channel. To achieve thorough
feature fusion in all channels, we feed the initial fusion F to convolution layers
to generate a multi-channel confidence map (Multi-CMAP) of size C ×H ×W .
The conditional input and warped exemplar are then thoroughly fused via a
full channel-weighted summation according to the Multi-CMAP. The final fused
feature is further injected to the generation process via spatial de-normalization
[32] to provide accurate semantic and style guidance.

4 Loss Functions

The alignment network and generation network are jointly optimized. For clarity,
we still denote the conditional input and exemplar as X and Z, the ground truth
as X ′, the generated image as Y , the feature extractors for conditional input
and exemplar as EX and EZ , the generator and discriminator in the generation
network as G and D.

Alignment Network. First, the warping should be cycle consistent, i.e.
the exemplar should be recoverable from the warped warped. We thus employ a
cycle-consistency loss as follows:

Lcyc = ||T⊤ · T · Z − Z||1

where T is the correspondence matrix. The feature extractors FX and FZ aim to
extract invariant semantic information across domains, i.e. the extracted features
from X and X ′ should be consistent. A feature consistency loss can thus be
formulated as follows:

Lcst = ||FX(X)− FZ(X
′)||1

Generation Network. The generation network employs several losses for
high-fidelity synthesis with consistent style with the exemplar and consistent
semantic with the conditional input. As the generated image Y should be se-
mantically consistent with the ground truth X ′, we employ a perceptual loss
Lperc [13] to penalize their semantic discrepancy as below:

Lperc = ||ϕl(Y )− ϕ(X ′)||1 (1)
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where ϕl is the activation of layer l in pre-trained VGG-19 [37] model. To ensure
the statistical consistency between the generated image Y and the exemplar Z,
a contextual loss [28] is adopted:

Lcxt = − log(
∑
i

max
j

CXij(ϕ
i
l(Z), ϕj

l (Y ))) (2)

where i and j are the indexes of the feature map in layer ϕl. Besides, a pseudo
pairs loss Lpse as described in [59] is included in training.

The discriminator D is employed to drive adversarial generation with an
adversarial loss Ladv [12]. The full network is thus optimized with the following
objective:

L = min
FX ,FZ ,G

max
D

(λ1Lcyc + λ2Lcst + λ3Lperc

+ λ4Lcxt + λ5Lpse + λ6Ladv)
(3)

where the weights λ balance the losses in the objective.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate and benchmark our method over multiple datasets for
image translation & manipulation tasks.

• ADE20K [62] is adopted for image translation conditioned on semantic seg-
mentation. For image manipulation, we apply object-level affine transformations
on the test set to acquire paired data (150 images) for evaluations as in [61].

• CelebA-HQ [24] is used for two translation tasks by using face semantics
and face edges as conditional inputs. We use 2993 face images for translation
evaluations as in [59], and manually edit 100 semantic maps which is randomly
selected for image manipulation evaluations.

• DeepFashion [23] is used for image translation conditioned key points.
Implementation Details: The default size for our correspondence computation
is 128× 128 with a block size of 2× 2. The number k in top-k ranking is set at 3
by default in our experiments. The default size of generated images is 256×256.

5.2 Image Translation Experiments

We compare RABIT with several state-of-the-art image translation methods.
Quantitative Results. In quantitative experiments, all methods translate

images with the same exemplars except Pix2PixHD [43] which doesn’t support
style injection from exemplars. LPIPS is calculated by comparing the gener-
ated images with randomly selected exemplars. All compared methods adopt
three exemplars for each conditional input and the final LPIPS is obtained by
averaging the LPIPS between any two generated images.
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Table 1. Comparing RABIT with state-of-the-art image translation methods over
four translation tasks with FID, SWD and LPIPS as the evaluation metrics.

ADE20K CelebA-HQ (Semantic) DeepFashion CelebA-HQ (Edge)
Methods

FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑
Pix2pixHD[43] 81.80 35.70 N/A 43.69 34.82 N/A 25.20 16.40 N/A 42.70 33.30 N/A

StarGAN v2[3] 98.72 65.47 0.551 53.20 41.87 0.324 43.29 30.87 0.296 48.63 41.96 0.214

SPADE[32] 33.90 19.70 0.344 39.17 29.78 0.254 36.20 27.80 0.231 31.50 26.90 0.207

SelectionGAN[40] 35.10 21.82 0.382 42.41 30.32 0.277 38.31 28.21 0.223 34.67 27.34 0.191

SMIS[66] 42.17 22.67 0.476 28.21 24.65 0.301 22.23 23.73 0.240 23.71 22.23 0.201

SEAN[65] 24.84 10.42 0.499 17.66 14.13 0.285 16.28 17.52 0.251 16.84 14.94 0.203

CoCosNet[59] 26.40 10.50 0.580 21.83 12.13 0.292 14.40 17.20 0.272 14.30 15.30 0.208

RABIT 24.35 9.893 0.571 20.44 11.18 0.307 12.58 16.03 0.284 11.67 14.22 0.209

Condition OursSMISSelectionGANPix2pixHD SEANSPADEStarGANv2 CoCosNet CoCosNet v2Exemplar

Fig. 7. Qualitative comparison of the proposed RABIT and state-of-the-art methods
over four types of conditional image translation tasks.

Table 1 shows experimental results. It can be seen that RABIT outperforms
all compared methods over most metrics and tasks consistently. By building ex-
plicit yet accurate correspondences between conditional inputs and exemplars,
RABIT enables direct and accurate guidance from the exemplar and achieves
better translation quality (in FID and SWD) and diversity (in LPIPS) as com-
pared with the regularization-based methods such as SPADE [32] and SMIS
[66], and style-encoding methods such as StarGAN v2 [3] and SEAN [65]. Com-
pared with correspondence-based method CoCosNet [59], the proposed bi-level
alignment allows RABIT to build correspondences and warp exemplars at higher
resolutions (e.g. 128×128) which offers more detailed guidance in the generation
process and helps to achieve better FID and SWD. While compared with Co-
CosNet v2 [63], the proposed semantic position encoding enables to preserve the
texture structures and patterns, thus yielding more accurate warped exemplars
as guidance. Besides generation quality, RABIT achieves the best generation di-
versity in LPIPS except StarGAN v2 [3] which sacrifices the generation quality
with much lower FID and SWD.

Qualitative Evaluations. Fig. 7 shows qualitative comparisons on various
conditional image translation tasks. It can be seen that RABIT achieves the
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Fig. 8. Illustration of generation diversity of RABIT: With the same conditional input,
RABIT can generate a variety of images that have consistent styles with the provided
exemplars. It works for different types of conditional inputs consistently.

Table 2. Comparing RABIT with state-of-the art image manipulation methods on
ADE20K [62] and CelebA-HQ [24].

ADE20K [62] CelebA-HQ [24]

Models FID ↓ PSNR ↑ SSIM ↑ Models FID ↓ SWD ↓ LPIPS ↓
SPADE [32] 120.2 13.11 0.334 SPADE [32] 105.1 41.90 0.376

HIM [9] 59.89 18.23 0.667 SEAN [65] 96.31 35.90 0.351

SESAME [31] 52.51 18.67 0.691 MaskGAN [17] 80.89 23.86 0.271

CoCosNet [59] 41.03 20.30 0.744 CoCosNet [59] 68.70 22.90 0.224

RABIT 26.61 23.08 0.823 RABIT 60.87 21.07 0.176

best visual quality with faithful styles as exemplars. RABIT also demonstrates
superior diversity in image translation as illustrated in Fig. 8.

5.3 Image Manipulation Experiment

RABIT manipulates images by treating input images as exemplars and edited
semantic guidance as conditional inputs. We compare RABIT with several state-
of-the-art image manipulation methods including 1) SPADE [32], 2) SEAN [65],
3) MaskGAN [18], 4) Hierarchical Image Manipulation (HIM) [9], 5) SESAME
[31], 6) CoCosNet [59].

Quantitative Results: In quantitative experiments, all compared methods
manipulate images with the same input image and edited semantic label map.
Left side of Table 2 shows experimental results over the synthesized test set
of ADE20K [62]. It can be observed that RABIT outperforms state-of-the-art
methods over all evaluation metrics consistently. Right side of Table 2 shows
experimental results over the CelebA-HQ dataset with manually edited semantic
maps. It can be observed that RABIT outperforms the state-of-the-art methods
by large margins in all perceptual quality metrics.

Qualitative Evaluation: Fig. 9 shows visual comparisons with state-of-art
manipulation methods on ADE20K. Fig. 10 shows the editing capacity of RABIT
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Ground TruthInput Image OursCoCosNetSESAMEEdited Semantic HIMInput Semantic CoCosNet v2

Fig. 9. Qualitative illustration of RABIT and SOTA image manipulation methods on
the augmented test set of ADE20K with ground truth as described in [61].

Input Scene Add Tower Remove Tower Move Tower

Input Face Remove HairAdd Hair Move Eyes Input Face Remove HairAdd Hair Move Eyes

Input Scene Add Sea Remove Rock Move Island

Fig. 10. Various image editing by the proposed RABIT: With input images as the
exemplars and edited semantic maps as the conditional input, RABIT generates new
images with faithful semantics and high-fidelity textures with little artifacts.

with various types of manipulation on semantic labels. We also compare RABIT
with MaskGAN [17] on CelebA-HQ [18] in Fig. 12.

6 User Study

We conduct crowdsourcing user studies through Amazon Mechanical Turk (AMT)
to evaluate the image translation & manipulation in terms of generation quality
and style consistency. Specifically, each compared method generates 100 images
with the same conditional inputs and exemplars. Then the generated images
together with the conditional inputs and exemplars were presented to 10 users
for assessment. For the evaluation of image quality, the users were instructed to
pick the best-quality images. For the evaluation of style consistency, the users
were instructed to select the images with best style relevance to the exemplar.
The final AMT score is the averaged number of the methods to be selected as
the best quality and the best style relevance.
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Fig. 11. AMT (Amazon Mechanical Turk) user studies of different image translation
and image manipulation methods in terms of the visual quality and style consistency
of the generated images.

Fig. 11 shows AMT results on multiple datasets. It can be observed that
RABIT outperforms state-of-the-art methods consistently in image quality and
style consistency on both image translation & image manipulation tasks.

7 Conclusions

Input Image Input Semantic Edited Semantic MaskGAN Ours

Fig. 12. The comparison of image manip-
ulation by MaskGAN [17] and the proposed
RABIT over dataset CelebA-HQ [24].

This paper presents RABIT, a versa-
tile conditional image translation &
manipulation framework that adopts
a novel bi-level alignment strategy
with a ranking and attention scheme
(RAS) to align the features between
conditional inputs and exemplars ef-
ficiently. A semantic position encod-
ing mechanism is designed to facili-
tate semantic-level position informa-
tion and preserve the texture pat-
terns in the exemplars. To handle the
semantic mismatching between the
conditional inputs and warped exem-
plars, a novel confidence feature in-
jection module is proposed to achieve
multi-channel feature fusion based on
the matching reliability of warped ex-
emplars. Quantitative and qualitative experiments over multiple datasets show
that RABIT is capable of achieving high-fidelity image translation and manip-
ulation while preserving consistent semantics with the conditional input and
faithful styles with the exemplar.
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