Supplementary Material for "High-Fidelity Image Inpainting with GAN Inversion"

Yongsheng Yu^{1,2}, Libo Zhang^{1,2,3}, Heng Fan⁴, and Tiejian Luo²

¹ Institute of Software, Chinese Academy of Sciences

² University of Chinese Academy of Sciences

³ Nanjing Institute of Software Technology

⁴ Department of Computer Science and Engineering, University of North Texas yuyongsheng19@mails.ucas.ac.cn; libo@iscas.ac.cn; heng.fan@unt.edu; tjluo@ucas.ac.cn

1 Implementation Details

In this work, the updating factor τ of soft-update mean latent is set to 0.001. In respect of the overall loss in Eq. 7, we use $\lambda_{\rm msr} = 0.5, \lambda_{\rm fid} = 0.005$. We train the encoder using Adam optimizer and set the batch size to 8 and the initial learning rate to $1e^{-4}$. For more diverse masking, we simply renew the mask generation based on [2] with controllable coverage and random square. Moreover, we practically notice that noise plays a trivial role in this work. To reduce variables, we set noise randomly sampled from a Gaussian distribution for each image generation.

2 Ablation Study

We visualize the comparison between $\mathcal{F}\&\mathcal{W}^+$ and W^+ in the Fig. 1. We can observe that our method with $\mathcal{F}\&\mathcal{W}^+$ settles the "gapping" issue and achieves better both qualitative results.

Fig. 1. Visually comparing $\mathcal{F}\&\mathcal{W}^+$ and \mathcal{W}^+ . Please zoom in.

The role of \mathcal{L}_{msr} is to supervise the generated image from decoder and make final generation close to the original image. We conduct an ablation on λ_{msr} and the results are shown in Tab 1.

Table 1. Ablation of λ_{msr} on Places2.

 0.1
 0.3
 0.5
 0.7

 SSIM \uparrow 0.629
 0.644
 0.652
 0.647

3 Compared with Diffusion-based Method

The score-based diffusion models have recently shown high performance in many image generation tasks, including inpainting. We implement the recent Score-SDE [3] by official code and pre-trained CelebA-HQ weights (256 resolution). We show the comparison results in Figure 2 and Table 2. Noteworthy, Score-SDE takes about 314 seconds (on $1 \times A100$ GPU) to infer an image.

Table 2. Quantitative comparison results on the all and extreme mask settings.

CelebA-HQ		SSIM	FID	LPIPS
all	Score-SDE	0.786	15.43	0.138
	Ours	0.867	7.71	0.089
extreme	Score-SDE	0.428	24.76	0.337
	Ours	0.652	13.21	0.214

Fig. 2. Qualitative comparison with diffusion-based Score-SDE approach.

4 Visual Results

We provide more qualitative results in Fig. 3 (each column arrange by Places2 [5], Metfaces [1], and Scenery [4] datasets from left to right) to evidence the effectiveness of our method.

Fig. 3. More qualitative results. Please zoom in.

References

- 1. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: NeurIPS (2020)
- Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting. In: CVPR. pp. 7757–7765 (2020)
- Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Scorebased generative modeling through stochastic differential equations. In: ICLR (2021)
- Yang, Z., Dong, J., Liu, P., Yang, Y., Yan, S.: Very long natural scenery image prediction by outpainting. In: ICCV. pp. 10560–10569 (2019)
- Zhou, B., Lapedriza, À., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million image database for scene recognition. TPAMI pp. 1452–1464 (2018)