
Supplementary for DeltaGAN: Towards Diverse
Few-shot Image Generation with

Sample-Specific Delta

Yan Hong , Li Niu⋆ , Jianfu Zhang , and Liqing Zhang

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, China
yanhong.sjtu@gmail.com, {ustcnewly,c.sis}@sjtu.edu.cn,

zhang-lq@cs.sjtu.edu.cn

In this document, we provide additional material to support our main sub-
mission. In Section 1, we detail the split setting of datasets used in our paper.
In Section 2, we describe the structure of our reconstruction subnetwork, gen-
eration subnetwork, and discriminators. In Section 3, we visualize more images
generated from our DeltaGAN. In Section 4, we report the results of low-data
classification augmented by generated images. In Section 5, we show the inter-
polation results of our DeltaGAN on three datasets. In Section 6, we show some
reconstructed images from our reconstruction subnetwork. In Section 7, we show
some images by exchanging deltas. In Section 8, we compare our DeltaGAN with
baselines in K-shot setting with different K. In Section 9, we report compari-
son results between our method and other few-shot image generation methods
relying on finetuning in the test phase. In Section 10, we compare our Delta-
GAN with few-shot image translation method FUNIT. In Section 11, we further
analyze the limitation of our DeltaGAN.

1 Datasets and Implementation Details

Datasets We conduct experiments on six few-shot image datasets: EMNIST [5],
VGGFace [3], Flowers [17], Animal Faces [6], NABirds [20], and Foods [11].
Following the split setting of MatchingGAN [9] (resp., FUNIT [15]), we split
VGGFace and EMNIST (resp., Animal Faces, Flowers, NABirds, and Foods) into
seen categories and unseen categories. In detail, for VGGFace (resp., EMNIST)
dataset, we randomly select 1802 (resp., 28) categories from all categories as seen
training categories and select 96 (resp.,10) categories from remaining categories
as unseen testing categories. On Flowers (resp., Animal Faces, NABirds, and
Foods) dataset, a total of 102 (resp., 149, 555, and 256) categories are split into
85 (resp., 119, 444, and 224) seen categories and 17 (resp., 30, 111, and 32) unseen
categories. In Table 1, we summarize the number of seen/unseen categories and
the number of seen/unseen images.
Baselines We compare our DeltaGAN with FIGR [4], DAWSON [14], GMN [2],
DAGAN [1], MatchingGAN [9], F2GAN [10], and LoFGAN [7]. For fair com-
parison, we conduct evaluation experiments for these methods using the same
conditional images for each dataset.

⋆ Corresponding author.

https://orcid.org/0000-0001-6401-0812
https://orcid.org/0000-0003-1970-8634
https://orcid.org/0000-0002-2673-5860
https://orcid.org/0000-0001-7597-8503


2 Y. Hong et al.

Table 1. The splits of seen/unseen images (“img”) and categories (“cat”) on six
datasets

Dataset
Seen Unseen

#img #cat #img #cat

EMNIST [5] 78400 28 28000 10
VGGFace [3] 180200 1802 9600 96
Flowers [17] 7121 85 1068 17
Animal Faces [6] 96621 119 20863 30
NABirds [20] 38306 444 10221 111
Foods [11] 27471 224 3924 32

Table 2. Comparison of the number of model parameters (Million) and test time
(second) among different few-shot image generation methods

Method
Model parameters

Test time
Training phase Testing phase

FIGR [4] 23.9M 6.7M 0.0083s
GMN [2] 25.1M 18.5M 0.0324s
DAWSON [14] 26.6M 7.1M 0.0091s
DAGAN [1] 28.1M 8.7M 0.0104s
MatchingGAN [9] 28.9M 9.3M 0.0113s
F2GAN [10] 29.6M 9.5M 0.0121s
LoFGAN [7] 39.2M 7.9M 0.0149S

DeltaGAN 31.5M 7.7M 0.0098s

Implementation We implement our model using the TensorFlow 1.13.1 envi-
ronment on Ubuntu 16.04 LTS equipped by GEFORCE RTX 2080 Ti GPU and
Intel(R) Xeon(R) CPU E5− 2660 v3 @ 2.60GHz CPU.

2 Details of Network Architecture

Generator Our generator consists of a reconstruction subnetwork and a genera-
tion subnetwork. Our reconstruction subnetwork (resp., generation subnetwork)
is constructed by 3 encoders including E∆, Ec, and Er (resp., Ef ) and 1 decoder
G. Encoder E∆ has 5 residual blocks (ResBlks), which consists of 4 encoder
blocks and 1 intermediate block. Each encoder block contains 3 convolutional
layers with leaky ReLU and batch normalization followed by one downsampling
layer, while the intermediate block contains 3 convolutional layers with leaky
ReLU and batch normalization. The structure of encoder Ec is the same as en-
coder E∆ without parameters sharing. Encoder Er consists of two Conv-LRelu-
BN blocks, in which each block contains 1 convolutional layer with leaky ReLU
and batch normalization. Encoder Ef also has two Conv-LRelu-BN blocks. The
decoder G consists of 4 residual blocks (ResBlks), in which each block contains 3
convolutional layers with leaky ReLU and batch normalization followed by one
upsampling layer.



DeltaGAN 3

Table 3. Accuracy(%) of different methods on two datasets in low-data setting. Among
few-shot image generation methods, only DAGAN and our DeltaGAN are applicable
in 1-sample setting

Method
EMNIST VGGFace

1 5 10 15 1 5 10 15

Standard 50.14 83.64 88.64 91.14 5.08 8.82 20.29 39.12
Traditional 52.82 84.62 89.63 92.07 8.87 9.12 22.83 41.63
FIGR [4] - 85.91 90.08 92.18 - 6.12 18.84 32.13
GMN [2] - 84.12 91.21 92.09 - 5.23 15.61 35.48
DAWSON [14] - 83.63 90.72 91.83 - 5.27 16.92 30.61
DAGAN [1] 57.84 87.45 94.18 95.58 13.27 19.23 35.12 44.36
MatchingGAN [9] - 91.75 95.91 96.29 - 21.12 40.95 50.12
F2GAN [10] - 93.18 97.01 97.82 - 24.76 43.21 53.42
LoFGAN [7] - 93.56 97.35 97.94 - 24.56 43.89 54.02

DeltaGAN 84.56 96.02 98.12 98.87 22.91 28.91 50.19 58.72

Discriminator Our discriminator DI is analogous to that in [15], which consists
of one convolutional layer followed by four groups of ResBlk. Each group of
ResBlk is as follows: ResBlk-k → ResBlk-k → AvePool2x2, where ResBlk-k is
a ReLU first residual block [16] with the number of channels k set as 64, 128,
256, 512 in four groups. We use one fully connected (FC) layer with 1 output
following global average pooling (GAP) to obtain the discriminator score. Our
discriminator DM is constructed by four FC layers following GAP. The classifier
shares the feature extractor with the discriminator DI and only replaces the last
FC layer with another FC layer with the number of outputs being the number
of seen categories.

The number of model parameters We compare the number of model param-
eters of our DeltaGAN with MatchingGAN [9] and F2GAN [10] in the training
stage and testing stage, respectively. In the training stage, the model parameters
of generator and discriminator are trainable to complete two-player adversarial
learning with seen categories, while only generator is used to generate new im-
ages for each unseen category in the testing stage. In particular, our DeltaGAN
only uses generation subnetwork to generate new images without reconstruction
subnetwork. In Table 2, we can see that our DeltaGAN uses fewer model pa-
rameters to generate images of better quality compared with MatchingGAN and
F2GAN in the testing stage.

3 More Visualization Results

In this section, we visualize some example images generated by our DeltaGAN
on EMNIST, VGGFace, Flowers, Animal Faces, NABirds, and Foods datasets in
Fig. 1 and Fig. 2. On all datasets, our DeltaGAN can generally generate diverse
and plausible images based on a single conditional image from unseen category.



4 Y. Hong et al.

Fig. 1. Images generated by our DeltaGAN in 1-shot setting on three datasets. From
top to bottom: EMNIST, VGGFace, and Flowers. The conditional images are in the
leftmost column.



DeltaGAN 5

Fig. 2. Images generated by our DeltaGAN in 1-shot setting on three datasets. From
top to bottom: Foods, Animal Faces, and NABirds. The conditional images are in the
leftmost column.



6 Y. Hong et al.

Fig. 3. Images generated by our DeltaGAN by interpolating random vectors between
z1 and z2 on three datasets (from top to bottom: VGGFace, Flowers, and Animal
Faces)

4 Low-data Classification

To further evaluate the quality of our generated images, we conduct downstream
classification tasks in low-data setting by using generated images to augment un-
seen categories. Following F2GAN [10], for each unseen category, we randomly
select a few (e.g., K = 1, 5, 10, 15) training images and use the remaining im-
ages as test images, which is referred to as K-sample in Table 3. We initialize
ResNet18 [8] backbone based on seen categories, then finetune the whole net-
work with the training images of unseen categories, and finally apply the trained
classifier to the test images of unseen categories. This setting is referred to as
“Standard” in Table 3.

Then, we augment unseen training images with new images generated by dif-
ferent few-shot image generation methods. For each unseen category, one method
generates 512 images by randomly sampling conditional images from the training
set of this unseen category. Then, we augment the original training set of un-
seen categories with generated images, which are used to finetune the ResNet18
classifier. In addition, we compare with traditional data augmentation (e.g., flip,
crop, color jittering), which also generates 512 new images for each unseen cate-
gory. The setting of traditional data augmentation is referred to as “Traditional”
in Table 3. The results of different methods are reported in Table 3. We can see
that our DeltaGAN achieves better results than traditional data augmentation
methods as well as few-shot image generation baselines, which shows the effec-



DeltaGAN 7

Fig. 4. Reconstruction results of our DeltaGAN on Animal Faces (left) and NABirds
(right) datasets. The conditional images x1 are in the first row, the target images x2

are in the second row, and the reconstructed images x̂2 are in the third row

tiveness of using augmented images produced by our DeltaGAN for low-shot
classification task.

5 Delta Interpolation

To evaluate whether the delta space of DeltaGAN is densely populated, we
perform linear interpolation based on two random vectors z1 and z2. In detail,
we calculate the interpolated random vector z = a1z1 + a2z2 (a1 + a2 = 1)
by gradually decreasing (resp., increasing) a1 (resp., a2) from 1 (resp., 0) to
0 (resp., 1) with step size 0.1. We use one conditional image and interpolated
z to generate sample-specific deltas, which are used to produce interpolation
results in Fig. 3. We can see that our DeltaGAN can generate diverse images
with smooth transition between two random vectors z1 and z2, including the
transition between different colors, shapes, and poses.

6 Image Reconstruction Results

In the training stage, our reconstruction network can reconstruct x2 based on
x1 and ∆r

x1
. To demonstrate that the reconstruction ability of reconstruction

subnetwork can be transferred from seen categories to unseen categories, we vi-
sualize the reconstructed unseen images on Animal Faces and NABirds datasets
in Fig. 4. To be exact, we randomly sample same-category unseen image pairs
{x1,x2}, which pass through our reconstruction network to yield x̂2. From
Fig. 4, we can see that the reconstructed images x̂2 are quite close to the target
images x2.

7 Visualization of Exchanging Delta

Note that our learnt delta is sample-specific delta. To check whether the delta
is transferable across different images, we first show some generated images af-
ter exchanging delta in the reconstruction subnetwork. As shown in Fig. 5, we



8 Y. Hong et al.

Fig. 5. Visualization results of exchanging delta in the reconstruction subnetwork on
Animal Faces. From top to bottom: conditional image x1, a pair of x2 and x3 providing
real delta, x̃ generated based on x1 and the real delta

extract real delta ∆r
23 from one pair of images {x2,x3} from the same category

as x1, after which ∆r
23 is applied to the conditional image x1 to generate a new

image x̃. In column 1-2, we investigate a special case x2 = x3. In this case, the
delta is vacuous and thus the generated image is close to the conditional image
x1. Recall that the real delta ∆r

23 between x2 and x3 contains the necessary
information required to transform x2 to x3. In column 3-6, we show some cases,
in which the delta appearance information or delta pose information encoded in
∆r

23 influences x1 to some degree. For example, in column 3, the fur color of x3

is lighter than x2, so the fur color of generated image x̃ is also lighter than x1.
In column 5, x3 turns face to the left compared with x2, so x̃ also turns face to
the left compared with x1. However, the generated images are generally of low
quality. In column 7-8, the generated images x̃ are corrupted when there is huge
difference between x2 and x3 in appearance and pose.

Additionally, we show the visualization results of exchanging delta in the
generation subnetwork in Fig. 6, in which we apply the delta provided by x2

to the conditional image x1 to generate a new image x̃. The left (resp., right)
four columns correspond to “SC delta” (resp., “DC delta”) in Table 3 in main
paper, in which x2 is from the same (resp., different) category of x1. We can
see that exchanging delta usually leads to severely degraded quality of gener-
ated images compared with DeltaGAN. Another observation is that “DC delta”
is more inclined to generated unreasonable images compared with “SC delta”.
These observations coincide with the quantitative results of “DC delta” and “SC
delta” in Table 3 in main paper.

As shown in Fig. 5 and Fig. 6, a plausible delta for one conditional image may
be unsuitable for another conditional image, so we target at learning sample-
specific delta. The learnt sample-specific delta has weak transferability across
images and weaker transferability across categories. Hence, it is not suggested



DeltaGAN 9

Fig. 6. Visualization results of exchanging delta in the generation subnetwork on An-
imal Faces. From top to bottom: conditional image x1, x2 providing the delta, x̃
generated based on x1 and the delta of x2

Fig. 7. FID and LPIPS comparison between F2GAN and our DeltaGAN with different
numbers (K) of conditional images on Animal Faces

to generate new images by exchangeably applying delta. However, the ability
of generating effective sample-specific delta is transferable from seen categories
to unseen categories, so our DeltaGAN is effective in producing new realistic
images based on a conditional unseen image.

8 Few-shot Generation Ability

Here, we repeat the experiments in Section 4.1 in the main paper except tuning
K in a wide range. Recall that K in K-shot setting means that K real images
are provided for each unseen category. We use our DeltaGAN and competitive
baseline F2GAN to generate 128 new images for each unseen category in K-
shot setting. We also adopt the same quantitative evaluation metrics (FID and
LPIPS) to measure image quality and diversity as in Section 4.1 in the main
paper. We plot the FID curve and LPIPS curve of two methods with increasing
K in Fig. 7. It can be seen that our DeltaGAN outperforms F2GAN by a large



10 Y. Hong et al.

Setting FID ↓ LPIPS ↑
[18] 109.89 0.2879

Ours 109.78 0.3912

Table 4. FID (↓) and LPIPS (↑) of images generated by [18] and our method on
Flowers dataset

margin with all values of K, especially when K is very small. These results
demonstrate that our DeltaGAN can generate abundant diverse and realistic
images even if only a few (e.g., 10) real images are provided.

9 Comparison with Other Few-shot Image Generation

As discussed in Section 2 in the main paper, our setting is quite different from re-
cent works [18,13,19,21]. Our method can achieve instant adaptation to multiple
unseen categories without finetuning, while the abovementioned methods need
to finetune the trained model for each unseen category, which is very resource-
consuming and time-consuming. We compare the performance of [18] with our
method on Flowers dataset. For [18], we train a source model on all seen images
during training. At test stage, we finetune the source model on each selected
unseen category with one image (1-shot setting in Section 4.1 in main paper)
and produce 128 images by sampling random vectors for evaluation. We report
the results in Table 4. We can see that our method slightly outperforms [18] and
produces more diverse and realistic images. However, [18] requires finetuning
for each unseen category, while our model can be instantly adapted to unseen
categories without finetuning.

10 Comparison with Few-shot Image Translation

Recently, few-shot image translation methods like FUNIT [15] have been pro-
posed to translate seen images to unseen categories, which can also generate new
images for unseen categories given a few images. However, the motivations of few-
shot image generation and few-shot image translation are considerably different.
Specifically, the former can generate new unseen images without touching seen
images, while the latter relies on seen images to generate new unseen images.
In particular, FUNIT disentangles the latent representation of an image into
category-relevant representation (i.e., class code) and category-irrelevant repre-
sentation (i.e., content code), in which appearance belongs to class code and
pose belongs to content code [15]. In the testing stage, given a few images from
one unseen category, FUNIT generates new images for this unseen category by
combining the content codes of seen images with the class codes of these unseen
images. However, in reality, the disentanglement in FUNIT is not perfect and
the content code may also contain appearance information. So when translating
seen images to unseen categories, the appearance information of seen images



DeltaGAN 11

Table 5. Accuracy(%) of different methods on Animal Faces in few-shot classification
setting. Note that MatchingGAN, F2GAN, and LoFGAN are not applicable in 1-shot
setting

Method 10-way 1-shot 10-way 5-shot

DPGN [22] 57.18 72.02
DeepEMD [23] 58.01 72.71
MatchingGAN [9] - 70.89
F2GAN [10] - 73.19
LoFGAN [7] - 73.43

FUNIT-1 56.61 69.12
FUNIT-2 53.38 67.87

DeltaGAN 60.31 74.59

Fig. 8. Images generated by FUNIT [15] in 1-shot setting on Animal Faces. Unseen
(resp., seen) images are shown in the first (resp., second) row. In each column, the new
image is generated by combining the class code of unseen image and the content code
of seen image

may be leaked to the generated new images. To corroborate this point, we visu-
alize some example images generated by FUNIT. As shown in Fig. 8, in column
1-4, the generated new images contain the appearance of seen images, which is
against our expectation that the generated new images should be from unseen
categories. In column 5-8, the generated images are even corrupted, probably
due to incompatible content codes and class codes.

We also compare our DeltaGAN with FUNIT quantitatively for few-shot
classification. By using the released model of FUNIT [15] trained on Animal
Faces [6], we combine the content codes of seen images and the class codes of
unseen images to produce 512 new images for each unseen category. Then, the
generated images are used to facilitate few-shot classification, which is recorded
as “FUNIT-1” in Table 5. However, “FUNIT-1” leverages seen images, which
are not used in our DeltaGAN when generating new unseen images. For fair
comparison, we also exchange content codes within the images from the same
unseen category to produce new images, which is recorded as “FUNIT-2” in



12 Y. Hong et al.

Table 6. Significance test between DeltaGAN and F2GAN on Animal Faces dataset
in 3-shot setting

Setting Accuracy(%) ↑ FID ↓ LPIPS ↑
F2GAN 75.65±0.32 117.12±0.29 0.1903±0.17

DeltaGAN 77.13±0.21 87.12±0.06 0.4661±0.11

Fig. 9. Failure cases of our DeltaGAN on Animal Faces dataset. The conditional images
are shown in the top row and the generated images are shown in the bottom row

Table 5. In this case, we can only generate (C−1)×C new images for each unseen
category in N -way C-shot setting. Based on Table 5, we observe that “FUNIT-2”
is much worse than “FUNIT-1”, because “FUNIT-1” resorts to a large number
of extra seen images to generate more unseen images than “FUNIT-2”. We also
observe that “FUNIT-1” underperforms some few-shot classification methods
and some few-shot image generation methods (e.g., F2GAN, DeltaGAN), which
may be attributed to the appearance information leakage or image corruption
as shown in Fig. 8.

11 Limitation

Failure cases: Although our model achieves promising results both qualita-
tively and quantitatively on six datasets, some generated deltas are applied to
the conditional images to produce distorted images due to the complexity of
transformations between intra-category pairs. We show some failure cases of our
DeltaGAN on Animal Faces dataset in Fig. 9.
Generation ability on coarse-grained datasets: Our method can transfer
knowledge learned from seen categories to unseen categories to produce com-
pelling results for unseen categories on fine-grained datasets. However, like other
competitive few-shot image generation method F2GAN [10] and few-shot image
translation method FUNIT [15], our method cannot achieve satisfactory results
on coarse-grained datasets, such as CIFAR-100 [12] with large inter-category
variance. We randomly divide a total of 100 categories into 80 seen training
categories and 20 unseen testing categories to conduct experiments for F2GAN,
FUNIT, and our DeltaGAN. Similar to Section 4.1 in main paper, we visual-
ize some example images generated by different methods in 3-shot setting in
Fig. 10. For FUNIT in 3-shot setting, we randomly select two seen images as
content images to combine with each conditional image to produce new images.



DeltaGAN 13

Fig. 10. Images generated by F2GAN, FUNIT and our DeltaGAN in 3-shot setting
on CIFAR-100 dataset. The conditional images are in the left three column. The first
row is category “turtle”, the second row is category “plate”.

Fig. 11. Failure cases of our DeltaGAN trained on Animal Faces dataset and tested
on Flowers dataset.The conditional images are in the leftmost column.

We can observe that the structures of images generated by F2GAN are similar
to conditional images. The generated images are vague and lacking local details.
For FUNIT, the generated images do not have clear shape or overall structure.
In contrast, the images produced by our DeltaGAN are relatively more diverse
with clearer shape. We have to acknowledge that the quality of images generated
by all three methods is poor, because it is difficult to achieve instant adaptation
on coarse-grained datasets with large inter-category variance.
Adaptation ability between different datasets: We also explore the adap-
tation ability of our DeltaGAN on Animal Faces dataset and Flowers dataset. In
detail, we train DeltaGAN on Animals dataset, and test on Flowers dataset. Sim-
ilar to Section 4.1 in main paper, we show some example images in Fig. 11. We
can see that the generated images belong to the different animal face categories,
although the given conditional images are from Flowers dataset. The distribu-
tions of sample-specific deltas on different datasets are considerably different,
so DeltaGAN trained on Animal Faces dataset fails in capturing sample-specific
deltas for Flowers dataset.

References

1. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340 (2017)

2. Bartunov, S., Vetrov, D.: Few-shot generative modelling with generative matching
networks. In: AISTATS (2018)



14 Y. Hong et al.

3. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for
recognising faces across pose and age. In: FG (2018)

4. Clouâtre, L., Demers, M.: Figr: Few-shot image generation with reptile. arXiv
preprint arXiv:1901.02199 (2019)

5. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST
to handwritten letters. In: IJCNN (2017)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

7. Gu, Z., Li, W., Huo, J., Wang, L., Gao, Y.: Lofgan: Fusing local representations
for few-shot image generation. In: ICCV (2021)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

9. Hong, Y., Niu, L., Zhang, J., Zhang, L.: Matchinggan: Matching-based few-shot
image generation. In: ICME (2020)

10. Hong, Y., Niu, L., Zhang, J., Zhao, W., Fu, C., Zhang, L.: F2gan: Fusing-and-filling
gan for few-shot image generation. In: ACM MM (2020)

11. Kawano, Y., Yanai, K.: Automatic expansion of a food image dataset leveraging
existing categories with domain adaptation. In: ECCV (2014)

12. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)
13. Li, Y., Zhang, R., Lu, J., Shechtman, E.: Few-shot image generation with elastic

weight consolidation. In: NeurIPS (2020)
14. Liang, W., Liu, Z., Liu, C.: Dawson: A domain adaptive few shot generation frame-

work. arXiv preprint arXiv:2001.00576 (2020)
15. Liu, M., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.: Few-

shot unsupervised image-to-image translation. In: ICCV (2019)
16. Mescheder, L.M., Geiger, A., Nowozin, S.: Which training methods for gans do

actually converge? In: ICML (2018)
17. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number

of classes. In: CVGIP (2008)
18. Ojha, U., Li, Y., Lu, J., Efros, A.A., Lee, Y.J., Shechtman, E., Zhang, R.: Few-shot

image generation via cross-domain correspondence. In: CVPR (2021)
19. Robb, E., Chu, W.S., Kumar, A., Huang, J.B.: Few-shot adaptation of generative

adversarial networks. arXiv preprint arXiv:2010.11943 (2020)
20. Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona,

P., Belongie, S.: Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In: CVPR (2015)

21. Wang, Y., Gonzalez-Garcia, A., Berga, D., Herranz, L., Khan, F.S., van de Weijer,
J.: Minegan: Effective knowledge transfer from gans to target domains with few
images. In: CVPR (2020)

22. Yang, L., Li, L., Zhang, Z., Zhou, X., Zhou, E., Liu, Y.: Dpgn: Distribution prop-
agation graph network for few-shot learning. In: CVPR (2020)

23. Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: Few-shot image classification with
differentiable earth mover’s distance and structured classifiers. In: CVPR (2020)


	Supplementary for DeltaGAN: Towards Diverse Few-shot Image Generation with Sample-Specific Delta

