
Supplementary Material: Contrastive Learning
for Diverse Disentangled Foreground Generation

Yuheng Li1,2, Yijun Li2, Jingwan Lu2, Eli Shechtman2, Yong Jae Lee1, and
Krishna Kumar Singh2

1University of Wisconsin-Madison 2Adobe Research

In this supplementary material, we first introduce our model architecture and
implementation details in Section 1, followed by the dataset details in Section 2.
In Section 3, we provide a visual example to better understand our approach in
the main paper. Next, we give details about disentanglement study conducted
in the main paper and also show this study on vanilla StyleGAN in Section 4.
Finally, we show more studies and qualitative results in Section 5.

1 Architecture and implementation details

Our model is an encoder and decoder architecture. Figure 1 shows the encoder
(left) and decoder (right) details. The input is the masked image of size 256×256.
It consists of a bunch of Bi-modulated convolution and leaky relu activation
functions. Inspired by [9] to preserve better spatial alignment information with
the input inpainting mask, once the feature reaches to 4×4 we upsample it to 16×
16 with lateral connections. In decoder, we have two bi-modulated convolution
for each resolution and one to rgb layer as output skip connection since it is
beneficial for gradient update [5, 6]. Note we do not show two input codes for bi-
modulated convolution block in both encoder and decoder for simplicity. Please
refer Figure 3 in the main paper for details about bi-modulation.

We train our model for 200k iterations with learning rate of 0.002 using
Adam optimizer. We set the weight of known factor loss λ1 as 1, and weight of
unknown factor loss λ2 as 0.1 (for face and bird) and 5 (for car) for the initial
100k iterations. We decrease both λ1 and λ2 by 10 times for the next 100k
iterations.

2 Dataset details

For face dataset, we use the official face parsing annotations from CelebA-
HQ[8] to define our face region. Specifically, the following officially defined se-
mantic regions are merged: ’skin’, ’nose’, ’eye glass’, ’l eye’, ’r eye’, ’l eyebrow’,
’r eyebrow’, ’l ear’, ’r ear’, ’mouth’, ’u lip’, ’l lip’. The union of these region is
defined as face mask in all our experiments. We convert mask to box when we
mask out inpatining region in the main paper. For the extra training data from
FFHQ [5], we do the same process.

For bird and car which are obtained from the LSUN dataset [14], we first
only choose images whose both sides are greater than 400 resolution and at least
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Fig. 1. Architecture details.

one side is greater than 512 resolution. Then we use a pretrained MaskRCNN [4]
from Detectron2 [13] to select images. Specifically, the most confident detected
object needs to be our target object (’bird’ for our bird dataset, ’truck’ or ’car’
for our car dataset) and the most confident object also needs to be the biggest
mask in its image.

We use the pretrained ArcFace [2] as the known factor encoder for face
dataset, and train a classifier [3] on CUB dataset for bird known factor encoder.
For car, we first group images in the Stanford car dataset [7] into 8 classes based
on their shape and then train a classifier [3]. We choose the following shapes:
’SUV’, ’Sedan’, ’Hatchback’, ’Coupe’, ’Convertible’, ’Wagon’, ’Cab’, ’Van’ from
their annotation names.

3 Visual explanations of our approach

To understand our approach more clearly, we use a visual example to demon-
strate key notations and equations defined in the main paper. Note Figure 2 to
Figure 5 are describing different terms in the same example.

Suppose we only have 4 known codes (warm colors: red yellow, pink and
orange) and 4 unknowns codes (cold colors: blue green, purple and cyan) as
shown in Figure 2. Like mentioned in the main paper, we ignore the input context
image I as it is irrelevant to our contrastive learning, then each combination (in
the middle of Figure 2) represents one resulting image S. And each parenthesis
at the bottom means image pair (Eq1 in the main paper). In this case, there are(
16
2

)
image pairs in total.
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Fig. 2. 4 warm/cold colors represent known/unknown codes. Totally, there are 16 code
combinations in the middle. Bottoms shows any two different combinations can be form
as an image pair (Eq1 in the main paper).

Again we only consider the case in the known space for simplicity. The posi-
tive pair refers to two images sharing the same known code (e.g., top part color
in the code combination should be same). In the main paper, we define Pk,u

as a set of all positive pairs associated with the code combination (k, u) in the
known space. Here is how to understand our notation: P means positiveness,
(k, u) indicates which code combination (or image), the bold letter defines we
are considering from known space perspective. In Figure 3, we show one example
of Pk,u for the image whose known code is red and unknown code is blue.

In the main paper, PK is defined as all the positive pairs in the known
space. In this visual example, there are 4 ∗

(
4
2

)
pairs in total. Here is how to

break it down: consider only one color in the known space, say red, and there
are four images with red code. Among these four, we can choose

(
4
2

)
pairs that

are positive. With the same strategy applied to the other three colors, |PK | is
4 ∗

(
4
2

)
in this case. To emphasize their differences: the Pk,u is associated with

one particular code combinations (or image) we are considering, whereas PK

consists of all positive pairs in the known space.

For the negative pair, we consider two images not sharing the same known
code (top part color is different). Similarly, we also define Nk,u as a set of all
negative pairs associated with the code combination (k, u) in the known space.
Figure 4 demonstrate 12 negative pairs for the image with red known code and
blue unknown code. Among those 12 negative pairs, there are 3 hard negative
pairs (parentheses are highlighted) which has the same unknown codes. Since
in the hard negative pairs, features in the unknown space is the same, thus
the network has to synthesize different factors according to the different known
codes such that they can be recognized differently by the known factor encoder
(orange one in the main paper Figure 2).

We show one example of loss function defined in the main paper Eq3. The
Eq3 in the main paper is defined for one positive pair. Suppose we consider
the image (red+blue) and image (red+green), the loss function calculated for
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Fig. 3. This is an example for the notation Pk,u: among 16 code combinations (or
image), for the given image (red code + blue code), we have three positive pairs for it.
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Fig. 4. This is an example for the notation Nk,u: among 16 code combinations (or
image), for the given image (red code + blue code), we have 12 negative pairs for it.
Parentheses of hard negative pairs are highlighted.
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Fig. 5. Visual example of one case of Eq3 in the main paper.

this pair is visually shown in Figure 5. The f(·, ·) means the similarity between
two images defined as in Eq2 in the main paper. Conceptually, we push the
numerator high and FN in the denominator low. Since we have 4 ∗

(
16
2

)
positive

pairs in this visual example, the final known space loss (Eq4 in the main paper)
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subsample

Fig. 6. Subsample 8 code combinations from 16.

is averaged across all positive pairs. Situation in the unknown space is the same
which only requires viewing codes from a different perspective.

As mentioned in the main paper, in practice, we subsample code combinations
(or images) such that each image has one hard negative pair in both spaces due
to GPU memory constraint. Figure 6 shows the subsample result for our visual
example. In practice, to increase code diversity in each space, we use 8 known and
8 unknown codes in our implementation, which will have 64 code combinations
(or images) in total. We use the same subsample strategy as shown in Figure 6
resulting batch size of 16 during training.

In the main paper, we also evaluate one variant of our approach: ContrasFill-
1 which only has unknown code. We apply contrastive loss for this model to
increase the general diversity. This variant can be served as a baseline, which
can be used to evaluate the effectiveness of contrastive loss on the diversity. And
our final model, ContrasFill can be used to compare with it to study the benefit
of two explicit disentangled spaces. To train such variant model, we only need
to: (1) sample one set of code from unknown space each time (images with the
same/different codes defined as positive/negative pairs), and apply contrastive
loss in this space only. (2) replace all bi-modulated convolution in our model
with normal modulated convolution proposed in the StyleGAN2 [6]. It is worth
mentioning that although in this case we only have one set of code from unknown
space, images with the same code do not mean that they are identical, since we
always randomly sample the input image I during training as mentioned in the
main paper.

4 Known factor direction study

In this section, we first provide more details about section 4.3 of the main paper
and then discuss identity direction in unconditional StyleGAN.

4.1 Details about Section 4.3 in the main paper

In the main paper Section 4.3, we study the disentanglement of known factor di-
rection in the latent spaces of baselines (CoModGAN, CollageGAN, ContrasFill-
1). Here we describe more details.

Following [11], we train a linear regressor based on latent codes and their
identity labels. Specially, we first randomly sample 100k images using 100k latent
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codes; and then use the pretrained known factor classifier to get penultimate
features of these images. Then we try to group these 100k features into 1k clusters
using K-means. For each cluster, we choose top 10 features which are closest to
their clustering center. Since each image feature is associated with its latent
code, after doing so, we have 10k codes with their group labels. We then train
a linear regressor, which predicts a scalar value for each code. The objective for
this regressor is to predict same/different value if codes belonging/not belonging
to the same cluster. We use the contrastive loss [1] to train this regressor. After
training, the weight of this regressor should indicate the latent direction for the
known factor. For example, in the case of face, if one moves along this discovered
direction, then the ideal change in the image should be related with identity.

After discovering the known factor directions for baselines. We randomly
sample 1k images and for each image we sample 10 different results for the
same mask by moving along the discovered known direction d. Since it is hard
to define how far one should move along this direction, thus we use the trained
discriminator to monitor this process. Specifically, for each image, we first sample
1 result and denote its latent as wo. We obtain its realness score r (between 0
to 1) base on the trained discriminator, and then we define a lower bound l
as r − 0.1. To sample along this direction, we randomly sample a step s from
U[−R,R], where R is a scalar. Then the new image will be synthesized by the
latent code wo + s ∗ d. We only choose the image whose realness score is above
than lower bound l. Otherwise, it indicates we step too far such that the image
is not in the distribution anymore. If this happens (e.g., realness is lower than
lower bound) we call it a miss. We empirically set R such that the chance of
missing is around 10%, and this is to make sure we do not have a too small step
in the direction d.

As the results shown in the main paper, the postprocessing method is not as
good as having explicit disentangled latent space even if they all access to the
same supervision.

4.2 Identity direction in StyleGAN

The experiment in the main paper section 4.3 shows that directions for certain
factors such as human identity can not be easily disentangled in the StyleGAN
based inpainting model. For completeness, we find that this is also true for the
unconditional StyleGAN.

Starting with CelebA-HQ dataset where we know identity labels and a pre-
trained StyleGAN, we first use PSP [10], the state-of-the-art StyleGAN face
inversion encoder, to encode these images into the StyleGAN latent space. Then
we treat latent codes and their corresponding identity labels as training data.
Similarly, following the supervised method [12], we train a linear regressor to
group all latent codes. Once it is trained, its weight should indicate the direction
for identity in the vanilla StyleGAN latent space.

Figure 7 shows the results where we move along the discovered identity direc-
tion for three samples (middle one in each row). This direction is able to change
identity, however, the resulting images still resemble images in the middle. Also



ContrasFill 7

StyleGAN Identity direction- +

Fig. 7. Moving along the discovered identity direction in the StyleGAN latent space.

Known direction (color)

Fig. 8. Each column has the same known factor (color), and each column has the same
unknown factor which controls the object shape and pose.

certain attributes change as well such as eyes open more and makeup become
heavier when moving to the right. This shows that the identity direction can not
be easily disentangled even in the unconditional StyleGAN.

5 Additional qualitative results and studies

Here we provide additional qualitative and quantitative studies about our method.
Generalization across different known factors. To demonstrate the gen-
eralization of our approach on the known factor, we train a car color classifier
as our known factor feature extractor. We use the Stanford car dataset [7] as
training data, and average pixels of foreground object in each image and run
k-means to group all averaged colors into 8 classes. Then we train our model on
the same car data we have. Figure 8 shows the disentanglement results, where
each column has the same known code controlling the color, and each row has
the same unknown code which controls object pose and shape. Please compare
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Fig. 9. We can achieve diverse samples when filling region is object semantic mask.

Fig. 10. If masked region allows diversity (row 1, 3), our model still can generate diverse
results. Our model generate almost deterministic results when partially masked region
is strongly correlated with the context regions (row,2,4)

this result with the car result in Figure 6 of the main paper where the known
factor is the car shape.

Other mask regions instead of box. In the main paper figure 8, we show
results where the foreground region is the object semantic mask, instead of box,
for face dataset. Here we show more results on all three datasets in Figure 9. For
face, we can still generate diverse identities and expressions. For bird, we can
generate different textures. For car, we can generate different color, headlights
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Face Bird Car

FID LPIPS KFFA FID LPIPS KFFA FID LPIPS KFFA

CoModGAN 5.73 0.029 51.19 7.92 0.030 27.35 5.77 0.146 57.53
CollageGAN 6.07 0.029 59.73 8.99 0.023 24.70 6.02 0.171 58.88
BAT-Fill 11.97 0.050 72.48 31.25 0.080 55.36 19.88 0.200 60.44

ContrasFill (Ours) 5.95 0.048 83.39 7.74 0.101 72.23 5.95 0.201 77.86
Table 1. Our method has comparable image quality with the state-of-the-art, but with
more diversity.

and car grills. Note that we set known code as color in car dataset as shape can
not be changed when the foreground region is object semantic mask. We also
quantitatively measure our generation quality (FID), overall diversity (LPIPS)
and known factor diversity (KFFA) with other baselines in three datasets when
the missing region is object mask, and we report numbers in Table 1. Overall,
we have comparable image quality with CoModGAN [15] and CollageGAN [9]
as reflected by FID, but we can generate much more diverse results, especially in
terms of known factors. Although BAT-Fill has high diversity also, they suffer
from image quality as reflected by the FID.

Our problem setting is foreground object generation where the entire fore-
ground region should be masked, but we also tried to study how does our model
behave if object is masked partially. As shown in the Figure 10, if there is loose
correlation between masked region and context, we can still generate diverse re-
sults. E.g., if we masked both eyes (1st row) and car headlights and grills (3rd
row), our model can still generate diverse results. But if masked regions have
strong correlation with the context and can be inferred only in a fixed way, then
our generated results are deterministic with limited variations. E.g., if we only
mask one eye (2nd row) or part of the bird (4th row), then results are almost
deterministic with only small variation (such as texture patterns of the birds in
the 4th row if check closely). Our model behaviour is actually expected; since
if a missing region is heavily dependent on the context, then results should be
almost the same. Nevertheless, in our problem setting of foreground generation,
we generate diverse results as entire object is masked and missing regions are
not strongly correlated with the context.

Importance of context. Although in our setting the entire object is gener-
ated, the model still needs to use context for a correct generation. To study
the importance of context, one naive baseline is to treat this as a pure gener-
ation problem: generating a foreground object without considering context and
then pasting the result back. Thus we design a baseline where the model is only
conditioned on the mask to confine the generation region, and after generation
we copy and paste the generated result back to the masked context image. As
Figure 11 shows that if we generate a foreground object without considering
context information, the generated objects may not be compatible with original
surroundings in terms of lighting, pose and other factors.
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w/o context Oursinput

Fig. 11. A model will generate inconsistent foreground without considering context.

More qualitative results. Finally, we show more results of comparisons with
baselines in Figure 12, Figure 13 and Figure 14. Note that for CoModGAN [15]
and CollageGAN [9], they have difficulties in changing object shape and pose
for bird and car datasets. Figure 15 shows disentanglement results.
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Fig. 12. Random samples on the face dataset.
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Fig. 13. Random samples on the bird dataset.
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Fig. 14. Random samples on the car dataset.
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Fig. 15. Disentanglement results on three different datasets.
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