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Abstract. Due to the lack of space in the main paper, we provide more
details of the proposed method and experimental results in the supple-
mentary material. Specifically, in Sec.1, the detailed architectures and
loss functions proposed in our BIPS framework are described. Sec.2 pro-
vides implementation details. Sec.3 provides more details about GT lay-
out and residual depth generation. Sec.4 shows verification of FAED
score. Sec.5 provides more experimental results with 3D indoor models.

1 Detailed Architecture and Losses

1.1 Generator and Discriminator

As mentioned in Sec. 3.2 of the main paper, we provide the enlarged versions of
our proposed network architectures for generator G in Fig. 1 and discriminator
D in Fig. 3.

1.2 Losses

For training G, we define pixel-wise loss Lpixel along with Ladv:

Lpixel = E [||Itotalout − Itotalin ||1]. (1)

The D is trained once before every iteration of training G, by minimizing LD:

LD =
1

2
E [(D(Itotalin )− 1)2] +

1

2
E [(D(Itotalout ))2]. (2)

1.3 Auto-Encoder Network

As mentioned in Sec. 3.3 of the main paper, we provide the enlarged versions of
our proposed network architectures for auto-encoder A in Fig. 2.
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2 Implementation Details

When using Matterport3D and 2D-3D-S datasets, we excluded data that has
more than 1% of invalid pixels among 5121024 pixels for both RGB and depth.
In the experiments, we first clip the incorrectly stored depth value. We scale
the depth values such that the maximum depth value to be Dmax = 10, as we
find this balances the magnitudes of RGB and D well (note that most depth
values lie near 0 than Dmax). All the RGB-D panorama, either ground truths,
generated samples, or the ones being evaluated, have a 512× 1024 resolution.

We train the generator G using the Adam optimizer with parameters α =
0.001, β1 = 0.9, and β2 = 0.999. Here, α is fixed until half of the maximum
epochs, and then linearly decayed to zero. We set λ as 20 and maximum epochs
as 100. The batch size is set to 2 for all the cases. We trained our model for
100 epochs with a single A6000 GPU which took 7 days. The inference time
of G is 15ms. We train the auto-encoder A using the Adam optimizer [2] with
parameters α = 0.0001 with 0.99 decay, β1 = 0.9, and β2 = 0.999. The training
is done for 60 epochs with batch size of 8. The effectiveness of FAED is validated
on the whole dataset.

3 GT layout and residual depth generation

Residual Depth-aided Adversarial Learning (RDAL) uses layout depth data

I
d,lay
gt , and residual depth data I

d,res
gt simultaneously. Therefore, we generate GT

layout and residual depth data. Using corner coordinate, plane equation and
camera coordinate, we propose the method to estimate layout depth mathemat-
ically. The detailed procedure of the method is as follows: (1) Calculate line
equation of ceiling layout. (2) Draw a ray in a 360 degree direction around the
camera center. (3) Find the line where the rays first meet and calculate the dis-
tance from camera center to line. (4) Repeat on the floor layout and fill the rest
part. Finally, we generate layout depth and estimate residual depth by simple
subtraction.

4 Verification of FAED

4.1 Perceptual quality

In this section, we provide implementation details of experiments for the verifica-
tion of FAED described in Sec. 4.1 of the main paper. When X denotes the data
to be corrupted (either RGB image or depth map), we generate the corrupted
data as follows:
Gaussian Blur We apply the convolution with Gaussian kernel with standard
deviation α ∈ {0, 1, 2, 4} to X.
Gaussian Noise For RGB images, we normalize the Gaussian noiseN to [−1, 1],
and for depth maps, we normalize N to [−0.1, 0.1]. Then, we linearly combine
N and X with a factor α, as (1 − α)X + αN for α ∈ {0, 0.25, 0.5, 0.75}. Note
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that, as mentioned in the paper, we normalize the RGB values to lie in [−1, 1]
and depth values to lie in [0, Dmax] (Dmax=10).

Uniform Patches We replace five random regions of X with uniform-valued
rectangular patches. The size of each patch is randomly set, such that the sum of
the areas of replaced patches covers α portion of X, with α ∈ {0, 0.25, 0.5, 0.75}.
For RGB images, the uniform value of a patch is set to be −1, and for depth
maps, the value is set to be 0.

Swirl We apply swirl transformation to X. That is, for a center location (x0, y0)
of X, we compute the angle,θ, from the center and radius, r, of a pixel at (x, y)
as:

θ = tan−1

(

y − y0

x− x0

)

, r =
√

(x− x0)2 + (y − y0)2.

Then, we normalize r and transform θ as:

r′ =
6r

√

x2
0 + y20

, θ′ = θ + αe−5r′/(ln 2ρ).

Finally, the pixel at (x′, y′) in the transformed X ′ has the value of X at (x0 +
r′ cos(θ′), y0 + r′ sin(θ′)). We set ρ = 25, and α ∈ {0, 1, 2, 4}.

Salt and Pepper We change the pixel values to either 1 or −1 for RGB images,
and 1 or 0 for depth maps, where the value is randomly chosen for each pixel.
We control the number of changed pixels as α × (512 × 1024) out of the whole
512× 1024 pixels, with α ∈ {0, 0.1, 0.2, 0.3}.

Discrete Cosine Transform (DCT) We apply discrete cosine transformation
and remove high-frequency components of X. Specifically, a ratio α of high-
frequency DCT coefficients on each spatial dimension (width and height) are set
to zero, resulting in only using (1−α)2 of the whole coefficients. Since most of the
high-frequency components do not contribute to creating noticeable artifacts, we
set α to be rather high: α ∈ {0, 0.80, 0.85, 0.90}. This effectively mimics GAN-
like, tiled artifacts by only preserving a few low-frequency components of the
data.

In Fig. 5, we show the experimental results for the verification of FAED score.
We also include the enlarged version of the Fig. 5 of the main paper.

4.2 Semantic Alignment

In Fig. 4, the visual results of the semantic inconsistency are provided. When
the RGB panorama and the depth panorama are not aligned, the 3D indoor
model has inconsistent semantic information, e.g., misaligned corner of indoor
room and distorted furniture, which makes the 3D indoor model unrealistic
and higher FAED score. Consequently, it indicates that the higher FAED score
denotes poorer semantic alignment between RGB and depth panorama.
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5 RGB-D Panorama Synthesis

5.1 Evaluation on RGB Panorama Synthesis

In Fig. 6-7, we show more qualitative results of RGB panorama evaluation as
mentioned in Sec. 4.2 of the main paper. It can be seen that our method out-
performs the image inpainting, outpainting, and panorama synthesis methods.

5.2 Evaluation on Depth Panorama Synthesis

In Fig. 8, we show more qualitative results of depth panorama evaluation as men-
tioned in Sec. 4.2 of the main paper. It can be seen that our method outperforms
the image-guided depth synthesis methods.
Details of 2D layout IoU and the results. Similar to [1], we used the top
view of the predicted room layout to compute 2D IoU. The difference is that
we got the top view of the room layout from a fully generated depth map by
projecting 3D points on the XY plane while [1] directly used predicted room
boundaries and corners for evaluation. The visual comparison of our method
and ‘ours without RDAL’ with 2D layout IoU is shown in Fig. 9.

5.3 Evaluation on RGB-D Panorama Synthesis

In Fig. 10-11, we show more results of synthesized RGB-D panorama and their
3D indoor models using our proposed method. It can be seen that our method can
handle various sensor configurations and generate realistic outputs via mutual
gain between RGB and depth information.

In Fig. 12, we show the input RGB-D data and our RGB-D panorama syn-
thesis results intuitively. We visualize the input RGB-D data by converting the
partial depth map into partial 3D indoor model and color the partial 3D indoor
model if the corresponding RGB value is given. Our method successfully synthe-
sizes highly perceptual 3D indoor model with precise indoor layout and realistic
interiors.

5.4 Evaluation on Real Dataset

In Fig. 13, we show more qualitative results of our synthesized RGB-D panorama
on real indoor scenes in Matterport3D and 2D-3D-S dataset, as mentioned in Sec.
4.2 of the main paper. Our method synthesizes high-quality RGB-D panorama
on real indoor scenes, which are unseen during training.

5.5 Analysis on Robustness of BIPS.

Results with Different Input Data for the Same Scene. We analyzed the
effect of different sensor configurations in the same scene. As shown in Fig. 14,
various layouts and interiors can be generated conditioned on different sensor
configurations. It can be seen that as the input sensor configuration changes,
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the generated result also changes correspondingly. Given a complex and visually
heterogeneous input, the output panorama results in corresponding complexity.
On the other hand, if a homogeneous input (containing a single planar compo-
nent) is given, simple layout and residuals are generated accordingly. Note that
in both cases, our method produces realistic panorama, regardless of the amount
of input information.

Generalization for Unseen Input Configurations. To show the robust-
ness against unseen configurations of sensors, we tested our model with cases
not covered during training. To this end, we sample unused sensor parameters:
{δH , δV } ∼ U [30◦, 60◦] & U [90◦, 120◦], for RGB and perspective depth sensors,
and {δL, δU} ∼ U [4η, 5η, 6η] & U [0.25η, 0.5η, 0.75η] for LiDARs. Also, we con-
sider various intervals between inputs. Examples of unseen configuration are
shown in Fig. 15. The FAED under unseen input configurations is 157.4, while
the FAED under the preset input configuration used in training is 198.0. This
means that the preset input configuration is practical and sufficient to generalize

the model. The reason that under unseen input configurations case shows the
better FAED is that larger FoV inputs provide more amount of information.

Robustness against Noisy Input Data. To show the effectiveness of our
model in real-world data, which has sensor noise or invalid pixels, we further
constructed test data with noisy inputs. Three sensor noises are randomly ap-
plied to the dataset: (1) Gaussian noise of 10% of pixel value, (2) Gaussian blur
with standard deviation 1, (3) Pepper noise to 10% of entire pixels in depth
data to mimic invalid pixel in depth measurement. The FAED score of the out-
put data is 202.9, which is comparable with 198.0 of results without noisy inputs.
It shows that our model is robust against noisy RGB-D input and can be easily
applied to real-world data.



6 Oh et al.

C

D
ow

nB
lo

ck
, 

12
8

D
ow

nB
lo

ck
, 

12
8

D
ow

nB
lo

ck
, 

25
6

D
ow

nB
lo

ck
, 

25
6

(x
6)

 c
on

v 
3x

3

U
pB

lo
ck

, 
25

6

U
pB

lo
ck

, 
12

8

U
pB

lo
ck

, 
12

8

U
pB

lo
ck

, 
64

Gfuse

Stride 1 Stride 2

U
ps

am
pl

e 
(x

2)

co
nv

 7
x7

, 
32

co
nv

 7
x7

, 
32

co
nv

 3
x3

, 
32

co
nv

 3
x3

, 
32

co
nv

 4
x4

, 
16

co
nv

 4
x4

, 
16

(x
3)

 c
on

v 
3x

3
(x

3)
 c

on
v 

3x
3

(x
4)

 c
on

v 
3x

3

U
ps

am
pl

e 
(x

2)

(x
4)

 c
on

v 
3x

3

co
nv

 1
x1

, 
3

co
nv

 1
x1

, 
1

   Element-wise Addition

Gout
rgbGin

rgb

Gout
depth_res

Gin
depth

conv 4x4, 2C

(x3) conv 3x3, 2C
conv 3x3, C/2

(x3) conv 3x3, C/2

Upsample (x2)

DownBlock, C UpBlock, C

D
ow

nB
lo

ck
, 

12
8

D
ow

nB
lo

ck
, 

12
8

D
ow

nB
lo

ck
, 

25
6

D
ow

nB
lo

ck
, 

25
6

(x
6)

 c
on

v 
3x

3

U
pB

lo
ck

, 
25

6

U
pB

lo
ck

, 
12

8

U
pB

lo
ck

, 
12

8

U
pB

lo
ck

, 
64

C C C

C concatenate 

U
ps

am
pl

e 
(x

2)

(x
4)

 c
on

v 
3x

3

co
nv

 1
x1

, 
1

Gout
depth_ini

Fig. 1. The proposed generator network architecture.
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Fig. 2. The proposed auto-encoder network architecture.
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Fig. 4. Visual results of the semantic inconsistency. Depth (1) is well-aligned with
RGB. Depth (2) is misaligned with RGB.
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Fig. 5. Verification of FAED on Structured3D dataset.
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GT RGB ImageMasked GT RGB Image 
(Input)

OursCoModGANLaMa

Masked GT
RGB Image

(Input)

Boundless

CoModGAN

LaMa

BRGM

GT RGB ImageMasked GT RGB Image (Input) OursCoModGANLaMa

(a)

(b)

GT Depth MapGT RGB Image (Input) OursCSPNMasked GT Depth Map (Input)

(b)

GT Depth MapGT RGB Image (Input) OursCSPNMasked GT Depth Map (Input)

Ours

GT RGB
Image

Fig. 6. More qualitative results for RGB panorama synthesis on Structured3D dataset.

Sumantri et. al.GT RGB Image OursMasked GT RGB Image (Input)

Fig. 7. More qualitative comparison to [3]. Since [3] uses 4 identical perspective RGB
masks on horizontal central line, we report our qualitative results in same setting.
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GT RGB ImageMasked GT RGB Image (Input) OursCoModGANLaMa

GT Depth MapGT RGB Image (Input) OursCSPNMasked GT Depth Map (Input)

GT Depth 
Map

GT RGB 
Image 
(Input)

Ours

CSPN

Masked GT 
Depth Map 

(Input)

NLSPN

PENet

MSG-CHN

Fig. 8. More qualitative results for image-guided depth panorama synthesis on Struc-
tured3D dataset.

3D Indoor Model

GT Ours w/o RDAL Ours

2D Layout IoU 0.738 0.9591

Top View

Fig. 9. Visual comparison with 2D layout IoU.
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Ground Truth Input Output 3D Indoor Model
(GT)

3D Indoor Model
(Ours - Inside)

3D Indoor Model
(Ours)

RGB only

(b) Depth only

(c) NFoV RGB & NFoV Depth 

NFov RGB & LiDAR

(a) RGB only

(b) NFov RGB (Bottom) & LiDAR

(c) NFov RGB (Up) & LiDAR

Ground Truth Input Output 3D Indoor Model
(GT)

3D Indoor Model
(Ours - Inside)

3D Indoor Model
(Ours)

(a) NFov RGB (Center) & LiDAR

(b) NFov RGB (Bottom) & LiDAR

(c) NFov RGB (Up) & LiDAR

Fig. 10. More qualitative results of synthesized RGB-D panorama and its 3D indoor
model using our proposed method on Structured3D dataset. (a) Top 2 rows use only
masked RGB image as input. (b) Middle 2 rows use only masked depth map as input.
(c) Last 2 rows use NFoV RGB images and NFoV depth maps.
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Ground Truth Input Output 3D Indoor Model
(GT)

3D Indoor Model
(Ours - Inside)

3D Indoor Model
(Ours)

(b) Depth only

(c) NFoV RGB & NFoV Depth 

(a) RGB only

Ground Truth Input Output 3D Indoor Model
(GT)

3D Indoor Model
(Ours - Inside)

3D Indoor Model
(Ours)

(a) NFoV RGB (Center) & LiDAR

(b) NFoV RGB (Bottom) & LiDAR

(c) NFoV RGB (Up) & LiDAR

Fig. 11. More qualitative results of synthesized RGB-D panorama and its 3D indoor
model using our proposed method on Structured3D dataset. (a) Top 4 rows use NFoV
RGB image (center) and LiDAR as input. (b) Fifth row uses NFoV RGB image (bot-
tom) and LiDAR as input. (c) Sixth row uses NFoV RGB image (up) and LiDAR as
input.
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InputGround Truth Output 3D Indoor Model
(Input)

3D Indoor Model
(Output)

3D Indoor Model
(Output w/o ceiling)

Fig. 12. More qualitative results of synthesized RGB-D panorama and in-
put/output/output without ceiling 3D indoor model using our proposed method. Best
viewed in color.

Ground Truth Input Output 3D Indoor Model
(GT)

3D Indoor Model
(Ours - Inside)

3D Indoor Model
(Ours)

Fig. 13. More qualitative results of synthesized RGB-D panorama and its 3D indoor
model using our method on Real dataset.
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Ground Truth Input (1) Output (1) Input (2) Output (2)

Fig. 14. Results showing the effect of different sensor configurations for the same scene.
For each row, from left to right: ground truth, first input, first output, second input,
and second output. Best viewed in color.
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Ground Truth Input Output 3D Indoor Model
(Ours)

3D Indoor Model
(GT)

3D Indoor Model
(Ours-Inside)

Fig. 15. More qualitative results of synthesized RGB-D panorama and its 3D indoor
model under unseen input configuration.
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