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1 Dataset Details

We consider three unpaired datasets: AFHQ dataset [1], Yosemite dataset [12]
and Portrait dataset [8], and one paired dataset Cityscapes [2]. AFHQ dataset
has three domains: 5153 training and 500 testing images of “cat”, 4739 training
and 500 testing images of “dog”, and 4738 training and 500 testing images
of “wildlife” (e.g. tiger, lion, wolf, etc). Yosemite dataset contains landscape
photos collected from Yosemite National Park with two classes, which are related
to photos of two seasons: 1231 training and 309 testing images of “summer”
and 962 training and 238 testing images of “winter”. Portrait dataset has two
classes (i.e., portraits in photography images and the ones in painting images),
It contains 1711 training and 100 testing images of painting portraits, and 6352
training and 100 testing images of photography portraits. Cityscapes dataset is
pairwise, having 2975 training and 500 testing images of the cityscape and their
corresponding semantic segmentation maps. During the training phase, we resize
all images to the resolution of 256× 256.

2 Implementation Details

We implement the models with Pytorch. The training of our whole proposed
framework is divided into two stages. Firstly, we train our VQ-I2I architecture by
using the objective function summarized in Equation 8 of our main manuscript
to address the diverse image-to-image translation task and build a representa-
tive vector-quantized codebook for the content information, where the details
are provided later in Section 2.1. Then, in the second stage, we go on training
an autoregresssive transformer model based on the content codebook and the
content encoder Ec learnt in the first stage to further address two applications:
unconditional image generation and image extension. The details of the second
stage are provided later in Section 2.2 and 2.3. Moreover, we provide the training
details of the unimodal VQ-I2I (denoted as uni-VQ-I2I) baseline in Section 2.4.

2.1 VQ-I2I

Settings of hyper-parameters. We use the Adam optimizer [3] for model training
with a batch size of 1, a learning rate of 0.00001, and exponential decay rates
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(β1, β2) = (0.5, 0.999). In all experiments, we set the hyper-parameters λ to bal-
ance between different objective functions as follows: λadv = 0.1, λrecon

1 = 5,

λvq = 1, λcontent
1 = 0.2 and λstyle

1 = 1. For the vector-quantized content code-
book, different parameters are set up for each of the datasets used in our exper-
iments, as we assume that the dataset with more multifarious content needs
the larger codebook size. Yosemite dataset contains rich and complex land-
scapes, so we adjust its content codebook with having the number of embedding
set to 512 and the embedding dimensionality set to 512. For both AFHQ and
Photo2Portrait datasets, the number of embeddings is set to 256 and the embed-
ding dimensionality is set to 256. For Cityscapes dataset, we set the number of
embeddings to 64 and the embedding dimensionality to 256 for the content code-
book. The settings of the content codebook for various datasets are summarized
in Table 1.

Table 1. The settings of content codebook for different datasets used in our
experiments, including the codebook size (i.e. the number of codes in a codebook)
and the dimensionality of each code/embedding.

Datasets codebook size code dimensionality

Yosemite 512 512
AFHQ 256 256
Portrait 256 256
Cityscapes 64 256

Network architecture. The shared content encoder Ec, generators {GX , GY } and
discriminators {DX , DY } in our model mostly follow the corresponding archi-
tectures proposed in VQGAN [3] but with two modifications: (1) We addition-
ally concatenate four residual blocks with AdaIN layers (as what proposed in
MUNIT [5]) to the front of generators; (2) We replace the original normaliza-
tion layers in discriminators with Instance normalization, as we train the whole
model with a batch size of 1. For the style encoders {SX , SY }, they are identical
to the one used in MUNIT [5].

Adversarial loss. The adversarial loss is applied on the translated images u and
v (cf. Eq.4) with respect to the real images x ∈ X and y ∈ Y respectively,
where the discriminators (inherited from VQGAN) is used to matching their
distributions (u versus x; v versus y). Specifically, we implement the adversarial
loss as follow:

Ladv = LDX
+ LDY

,

LDX
= −[logDX(x) + log(1−DX(u))],

LDY
= −[logDY (y) + log(1−DY (v))].
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2.2 Transformer

Setting of hyper-parameters and network architecture. For learning the autore-
gressive transformer model on the Yosemite dataset, we use the Adam optimizer
with a batch size of 1, a learning rate of 0.00001, and exponential decay rates
(β1, β2) = (0.5, 0.999). The transformer we use is the same as the one used in
VQGAN [3], which is identical to the GPT2 architecture [10]. When in the test-
ing phase, we set the parameters of sampling as follows: temperature t = 10 and
a top-k cutoff at k = 2.

Ordering difference between training and testing phases. In the training phase,
we simply unfold the 2-dimensional quantized content representation of each
training image on a row-major ordering (as the way VQGAN does) into a form
of a discrete sequence and feed it into the transformer model for learning of
content distribution. In other words, the transformer accesses the complete in-
dex sequence of an image at each time. In the testing phase, where we perform
unconditional image generation and content extension, we design a square slid-
ing window and feed only the indices in the current sliding window into the
transformer (similarly on a row-major ordering as VQGAN). The transformer
predicts a new content index only based on its previous indices within the sliding
window, and the whole generation is done by moving the sliding window (in a
left-to-right, top-to-bottom manner) and repeating this process. Here we use a
sliding window with a size of 16× 16.

2.3 Applications

In addition to the transitional stylization generation described in the main paper,
we further demonstrate several applications that our proposed method is able
to unleash, as described in the following and shown in Figure 1:

– Unconditional content generation followed by stylization with example-
guided styles. We first generate a sequence of content indices uncondition-
ally from the learned transformer model and then modulate it with different
styles from various domains.

– Diverse extension on an existing image. We utilize content indices from
an existing image as the condition for the transformer model and generate the
indices for the extended image region. We are able to produce diverse results
of extension through having multiple samples drawn from the conditional
distribution predicted by our transformer model. Figure 1 (b) demonstrates
the diversity on the results of such content extension.

– Unconditional content generation with both translation/stylization
and extension. We combine both content generation and extension with
translation/stylization to showcase the flexibility on applications enabled by
our proposed method as well as the variability of styles. We perform this
combination in three steps: generate content indices unconditionally, modu-
late content indices with different style vectors, and apply extension.
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(a) Unconditional content gener-
ation followed by stylization with
example-guided styles.

(b) Diverse extension on an existing image.

(c) Unconditional content generation with both translation/stylization and exten-
sion.

Fig. 1. Various applications with VQ-I2I. (a) With generated content indices
produced by the learned transformer model, we can combine some style features to
synthesize diverse images. (b) Given an existing image, we are able to extend the
diverse content on both sides. (c) We can combine unconditional content generation,
diverse stylization, and extension together as a new application, which is easily achieved
by our proposed method.

2.4 Unimodal VQ-I2I baseline (i.e., uni-VQ-I2I)

As described in Section 4 of our main manuscript, we construct a uni-modal
VQ-I2I variant as an additional baseline (denoted as uni-VQI2I), in which its
latent space is not disentangled (i.e. there is no explicit separation between the
content and style latent factors as our VQ-I2I). The architecture of uni-VQ-I2I is
illustrated in Figure 2. Specifically, in such uni-VQ-I2I baseline, we assume that
the domain-specific style information is implicitly modeled by the generators,
thus the domain-specific style features are discarded.
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Fig. 2. Unimodal VQ-I2I. The architecture illustration for the uni-VQ-I2I baseline.

As uni-VQ-I2I does not disentangle the latent space into the content and style
parts, there are three main differences of unimodal VQ-I2I from multimodal VQ-
I2I (i.e. our full model):

– Encoder. uni-VQ-I2I only uses an public encoder E to learn the joint latent
space across domains.

– Generators.We remove the AdaIN normalization layers [4,5] from GX , GY ,
as there is only a single latent vector as input.

– Loss function. uni-VQ-I2I does not contain the style regression loss Lstyle
1

and the content regression loss Lcontent
1 , and we modify the full loss function

to

LD = Ladv,

LE,Z,G = −λadvLadv + λrecon
1 Lrecon

1 + λvqLvq.
(1)

Network architecture Similar to what has been described in Section 2.1, the
encoder, generators and discriminators in the architecture of uni-VQ-I2I are
mostly inherited from VQGAN [3].

Uni-VQ-I2I exploration. To verify whether the generators in uni-VQ-I2I are
able to handle the translation without having the disentangled representations,
we record the total number of embeddings/codes being used in two domains.
Take the training set of AFHQ dataset as an example, Figure 3 reveals that
the used embeddings/codes of cat and dog images are highly overlapped. This
fact indicates that the model tends to learn a general latent representation for
the codebook, rather than using specific codes for specific domains. That is, the
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Fig. 3. Embeddings/codes used by training uni-VQ-I2I model for the trans-
lation between Cats and Dogs in AFHQ dataset. It is observable that the
embeddings/codes used by these two domains are highly overlapped. Noting the nu-
merical range on y-axis has been normalized with respect to total number of training
images of each domain.

translation is implicitly handled by domain-specific generators. Besides, all the
codes in the codebook (number of embeddings = 512) are used.

We provide additional qualitative results in Figure 7 and 8 (from AFHQ and
Yosemite datasets respectively) to make comparison between VQ-I2I and uni-
VQ-I2I, where we can observe that: although uni-VQ-I2I seems to be capable of
addressing the I2I task, the content of the translation results is not consistent
with the corresponding source images.

2.5 Details of compared baselines.

For the I2I baselines, we follow their official code and default settings on training
and hyper-parameters (noting that for U-GAT-IT [7] we adopt its light version
out of consideration for computational cost). As DRIT [8], MUNIT [5] and Bicy-
cleGAN [13] are multi-modal models, we sample one translation result for every
input image for FID computation.

Regarding the baseline of image extension, Boundless [11], we adopt the im-
plementation from https://github.com/recong/Boundless-in-Pytorch, in
which we train the models without modifying any hyperparameters to perform
horizontal extension for 50% and 75% toward the right-hand side as mentioned
in the main paper.

3 Additional Experiments

3.1 Multimodal Translation on Cat→Wild.

In our main manuscript, we have presented the intra- and inter-domain multi-
modal translation. Here we also provide more experimental results on the AFHQ

https://github.com/recong/Boundless-in-Pytorch
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dataset for translating from cats to wildlife animals. The wildlife animals in
AFHQ dataset contains various animals, such as lions, tigers and leopards. We
present the inter-domain multimodal results in Figure 4. The generator is able
to learn a general representation of various styles in the same domain.

Input Multimodal translation

Fig. 4. Multimodal translation on cat→wild. We present the inter-domain trans-
lations on cat→wild. Our VQ-I2I model is able to generate different categories of wide
animals in the target domain.

3.2 Having Different Number of Splits for Transitional Stylization

In Figure 5 we present the results of transitional stylization with using different
numbers of splits (noting that we partition the content map horizontally into
several equal splits and modulate different parts of the content map indepen-
dently with different proportions by mixing the two styles, as described in Sec.
4.3 of the main manuscript). We observe that when the number of splits increase,
the transitional stylization gets more smooth to gradually change from one style
to another.

3.3 Baseline via sequential combination of SOTA methods.

We build a baseline based on a sequential combination of StyleGAN2 (genera-
tion), U-GAT-IT (translation), and Boundless (extension) to make a comparison
between VQ-I2I and a sequential combination of SOTA mothods. With conduct-
ing an experiment of firstly generating 100 landscape images of size 256×256,
translating them to summer styles, and finally extending the width for 128 pixels
toward the right-hand side, our VQ-I2I is able to provide superior performance
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Fig. 5. Experiments to have different number of splits on the content map
to perform transitional stylization. The first row shows the two referenced styles,
and the second to the last rows are the transitional results when using 2, 5, 10 and 20
splits, respectively.

with FID 107.62 than such baseline with FID 128.73 (w.r.t. summer images from
Yosemite dataset).

3.4 More comparisons with recent papers on unconditional
generation and extension tasks.

We include more recent baselines on unconditional generation (i.e. StyleGAN2 [6])
and extension (i.e. InfinityGAN [9]). For unconditional generation, StyleGAN2,
our VQ-I2I, and VQGAN achieve FID 106.35, 127.31, and 127.84 respectively;
For image extension, following InfinityGAN’s setting (i.e. given images of size
256×128 and extending them to 256×256), InfinityGAN, our VQ-I2I, and Bound-
less achieve FID 143.97, 109.86, and 101.68 respectively (Noting FID scroes
above are all evaluated on 100 generated/extended images w.r.t. Yosemite dataset).
Though the main focus of our VQ-I2I is to handle multiple tasks in a unified
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framework instead of targeting the state-of-the-art performance, it still provides
comparable performance with the recent works on generation or extension.

4 Additional Results

4.1 Image-to-Image Translation

In Figure 6, we present additional results for dog→cat, winter→summer, and
photo→portrait, obtained by various methods. Besides, we show the translation
results of VQ-I2I and uni-VQ-I2I for both directions on shape-variant (AFHQ)
and shape-invariant (Yosemite) datasets in Figure 7 and 8, respectively.

4.2 Applications

We demonstrate more application results. We show the combination of uncondi-
tional image generation, image translation, and image extension in Figure 9. In
Figure 10, we show the extension on both summer and winter images in Yosemite
dataset. Since the content indices are sampled from the content distribution, the
transformer model is able to generate diverse extension results.
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Input Ours uni-VQ-I2I CycleGAN DRIT MUNIT U-GAT-IT CUT

Fig. 6. More qualitative comparisons with conventional image-to-image
translation methods. We provide qualitative examples of the translation results pro-
duced by various methods, trained on unpaired datasets. The left-most column shows
the input images in the source domain. The other seven columns show the correspond-
ing translated images in the target domain. Every three rows from top to bottom are:
dog→cat, winter→summer, and photo→portrait.
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Input Ours uni-VQ-I2I

(a)

Input Ours uni-VQ-I2I

(b)

Fig. 7. Qualitative comparison between our VQ-I2I and uni-VQ-I2I baseline
on AFHQ dataset. Three columns on the left show the translation cat→dog, while
three columns on the right show the translation dog→cat.

input Ours uni-VQ-I2I

(a)

input Ours uni-VQ-I2I

(b)

Fig. 8. Qualitative comparison between our VQ-I2I and uni-VQ-I2I base-
line on Yosemite dataset. Three columns on the left show the transla-
tion summer→winter, while three columns on the right show the translation
winter→summer.



12 F. Author et al.

Uncond. generation translation translation + extension

Fig. 9. Unconditional image generation combined with translation and ex-
tension. From top to bottom: summer→winter, winter→summer and intra-domain
extension.



Abbreviated paper title 13

Input Diverse extensions

Fig. 10. Diverse image extension. The transformer is able to generate diverse ex-
tension results given an existing image.
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