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Fig. 1. Detailed architecture of the sphere-based view synthesis network. The feature
extractor F first use three convolution layers with stride 1 to extract the features of
the input view. We then infer the radius of each sphere by passing the learned features
through another convolution layer and the sigmoid activation function. The green and
red convolution layers of G module scale up and down the feature maps respectively.

In this supplementary material we provide additional details regarding our
network designs (Sec. A), as well as implementation details (Sec. B). Additional
qualitative evaluations and results are shown in the supplemental video. Finally,
we discuss the limitation of our approach (Sec. C).

A Network Designs

In this section, we describe the technical details of two sub-networks of our
proposed HVS-Net: a sphere-based view synthesis S and a enhancer model E.

A.1 Sphere-based view synthesis model S

Sphere-based feature warping. The architecture of the sphere-based view
synthesis model S is shown in Fig. 1. Instead of directly rendering novel views
using the RGB input image, we first passed it through a feature extractor F

*This work was conducted during an internship at Meta Reality Labs Research.

https://www.phongnhhn.info/HVS_Net
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(a) Point-based rendering (b) Sphere-based rendering

Fig. 2. Visualization of the rendered features between (a) point and (b) sphere-based
rendering methods. Point-based method [11] can only render pixels (orange boxes) that
have valid 3D coordinates. In contrast, sphere-based method [5] uses learned radius ri
of each point pi to render neighboring pixels which leads to a denser feature map.

which consists of three convolution layers with stride 1 to maintain the spa-
tial resolution. We choose the features fi as the values of M where there is a
valid depth value. We estimate per-sphere radius ri by passing M to another
convolution layer with sigmoid activation function. In Fig. 2, we show the visu-
alization of rendered feature maps from a set of sparse points using point and
sphere-based renderers. In case of point-based rendering [11], each 3D point pi
can render a single pixel. Therefore, a large amount of pixels can not be ren-
dered because there is no ray connecting those pixels with valid 3D points. In
contrast, the sphere-based neural renderer [5] Ω renders a pixel by blending the
colors of any intersected spheres with the given ray. Since we estimate radius ri
of each sphere (dashed circle) using a shallow network, this allows us to render
pixels that do not have a valid 3D coordinates. As a result, we obtain a much
denser feature maps as can be seen in the Fig. 2 of the main paper. Note that,
Ω is fully-differentiable and renders target feature maps very efficiently using
PyTorch3D [4].

Global context inpainting model. We render the novel view using a global
context inpainting model G. We design the architecture of the G module based
on the encoder-decoder structure with skip connections and nine residual blocks
are also utilized in the bottleneck.

In each residual block, we replace the regular convolution layers with the re-
cently proposed Fast Fourier Convolution(FFC) [3] which possesses the non-local
receptive fields. According to the spectral convolution theorem in Fourier theory,
point-wise update in the spectral domain globally affects all features involved
in the Fourier transform. The FFC layer splits the input features into local and
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global branches. The local branch utilizes conventional convolution layers to ob-
tain local features. In contrast, the global branch includes a Spectral Transform
block [9] which uses channel-wise Fast Fourier Transform [2] to enable image-
wide receptive field. The output of both branches are then summed, aggregated
before adding to the residuals.
Outputs. The view synthesis model S not only predicts an RGB image Ip of the
target view but also a foreground mask Im and a confidence map Ic. We employ
three different 3×3 convolution layers to predict those outputs using the output
of the final layer of the G module. Thus, we apply the predicted foreground mask
and confidence map to the predicted novel image as follow: Ip = Ip × Im × Ic.
We train the model S using the photometric loss Lphoto as defined in the main
paper.

A.2 Enhancer model E

Ground-truth Data: We use the RenderPeople dataset [8] to train all our
models; which comprises of 1000 watertight raw meshes. To obtain IUV ground-
truth we first fit an SMPL-like parametric body model to the scans and then
perform non-rigid registration for all meshes and rig them for animation. In that
way we obtain 1000 rigged models to which we can apply the same IUV map
during rendering with an emission shader in Blender Cycles and thus obtain per-
pixel perfect IUV ground-truth given an RGB input. This process is depicted in
Fig. 3.
HD-IUV predictor D: Now that we have generated pairs of RGB images
and ground-truth IUV maps the next step is to train a network that given
an RGB image of a human, can establish accurate per-pixel correspondences
for each pixel corresponding to the clothed human (see Fig.4). Note that the
key difference between this approach and what methods such as DensePose [1]
or CSE [6] are doing which is dense correspondence estimates to the unclothed
human body. In addition because most approaches are trained on the DensePose-
COCO dataset [1] which comprises sparse (only ∼100 discrete points per human)
and noisy annotations such predictions are usually inaccurate and not applicable
to our application that targets clothed humans. This is also depicted in Fig. 5 of
the main paper where its clear that DensePose IUV estimates result into poor
texture warpings.

To train our model which we term as HD-IUV (that stands for High-Definition
IUV) we employed an encoder-decoder architecture with four downsampling and
upsampling convolution layers along with skip connections between them while
the bottleneck comprises 3 residual blocks. This design is justified by the fact that
our input-output pairs are always well aligned due to the dense correspondences
established by HD-IUV which is not the case with prior work. For HD-IUV, we
utilize instance normalization [10] and the ReLU activation function in all layers
of the network besides the 3 output branches for each task (I, U , V outputs).
The UV branches have 256 output channels (since the UV predictions can take
any possible value), whereas the I channel has 25 channels which correspond to
24 body parts and background. In all branches a 1× 1 convolution is applied and
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its output is an unnormalized logit that is then fed to the cross-entropy losses.
Each task’s scores are fed to their respective classification losses which are used
to train the network as:

LIUV = λI ∗ LI + λU ∗ LU + λV ∗ LV (1)

where λi, Li are the respective weighting parameters and loss functions for the
I, U, V channels. Framing this problem as a multi-task learning problem (3 tasks)
where the U, V and I tasks are (256D, 256D, 25D) per-pixel classification prob-
lems respectively, ended up being a very effective approach to enforce strong
supervisions for the surface correspondences that other losses we experimented
with could not achieve. In addition we employed a silhouette loss to ensure that
dense correspondence estimates are provided for each pixel of the foreground
clothed human. Finally, using the predicted IUV, we can warp the occlusion-free
input image to the target camera using the texture transfer technique3 from
DensePose [1].
Refinement module In this section, we utilize the warped image Iw from
previous step to enhance the initially estimated target view Ip using a refinement
module R. Based on the predicted confidence of the view synthesis network, we
combine both images as follows: Î = Ip + (1 − Ic) ∗ Iw where Î is fed to a
encoder-decoder network for the refinement purposes. In this work, we try to
generate humans at the novel viewpoints so rendering realistic human body
parts is required. We observe that the predicted semantic I contains valuable
information about the semantic information of the human in the target camera.
Therefore, we use the SPADE normalization [7] to inject the semantics I to the
decoder of the refinement module. As can be seen in the qualitative results, the
refined image is photo-realistic compared to the ground-truth image. Note that,
we use the same discriminator with [7] to perform adversarial training between
both before and after refined images and the ground-truth novel views.
Discussion Here we discuss the effectiveness of our proposed HD-IUV over
DensePose [1] representations to refine the target views. As can be seen in the
Fig. 8 of the main paper, our Enhancer model can handle heavy occlusions using
just a single photo. We emphasize that the HD-IUV representation is crucial for
this refinement step because we can obtain pixel-aligned warped images at the
target viewpoints compared to the ground-truth data. Therefore our warped
images have higher quality compared to those produced by DensePose.

B Implementation Details

The models were trained with the Adam optimizer using a 0.004 learning rate for
the discriminator, 0.001 for both the view synthesis model R and the enhancer
module E and momentum parameters (0, 0.9). The input/output of our method
are 1024 × 1024. We implement HVS-Net in PyTorch and the training across
our large-scale dataset with all identities and views took 2 days to converge on
4 NVIDIA V100 GPUs.
3 Texture Transfer Using Estimated Dense Coordinates

https://github.com/facebookresearch/DensePose/blob/main/notebooks/DensePose-RCNN-Texture-Transfer.ipynb
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C Limitations

Despite producing appealing results on real-world data, the proposed method
is trained solely on synthetic data. It manages to bridge the domain gap re-
markably well, however we believe its performance could be further improved by
integrating real-world data into the training set.

However, gathering such data is not trivial: generating (close to) noise-free
point clouds for training requires elaborate multi-view capture systems, possibly
enhanced with controlled lighting to simulate varying lighting conditions. A way
to circumvent this partially is to train on a large-scale synthetic dataset [12] and
then fine-tuning on a smaller-scale real-world dataset. This, at least, reduces the
amount of data that has to be captured.

Another limitation we identified is that the warped image used as input to
the enhancer model has lower quality compared to the initial estimated novel
view. This is independent of the quality of the IUV mapping and is an inherent
problem of the differentiable warping operation. Improving this operation could
be a promising direction for future work that could increase the upper bound in
quality for the novel view synthesis of fine structures in occlusion scenarios.
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Fig. 3. Process for IUV ground-truth generation Given a raw synthetic scan of a clothed
human (top left) we perform non-rigid registration with 2D keypoints as additional
constraints (top-middle) and obtain the registered scan to the body template (bottom
left) and the rigged scan (top right) which is animation ready. Using the corresponding
UV map we can now obtain accurate IUV ground-truth (bottom right) that we use to
train the proposed HD-IUV model. We provide the corresponding DensePose estimate
to demonstrate the stark difference between the two in terms of quality as well as
coverage.
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Fig. 4. IUV-based image refinement. Using an additional occlusion-free input, we refine
the initial estimated novel view by training the Enhancer E network. We infer the dense
correspondences of both predicted novel view and occlusion-free image using a novel
HD-IUV module. The occlusion-free image is warped to the target view and then
refined by an auto-encoder. The refined novel view shows better result on the occluded
area compared to the initial estimated.


