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Abstract. We introduce layered controllable video generation, where
we, without any supervision, decompose the initial frame of a video into
foreground and background layers, with which the user can control the
video generation process by simply manipulating the foreground mask.
The key challenges are the unsupervised foreground-background separa-
tion, which is ambiguous, and ability to anticipate user manipulations
with access to only raw video sequences. We address these challenges by
proposing a two-stage learning procedure. In the first stage, with the rich
set of losses and dynamic foreground size prior, we learn how to separate
the frame into foreground and background layers and, conditioned on
these layers, how to generate the next frame using VQ-VAE generator.
In the second stage, we fine-tune this network to anticipate edits to the
mask, by fitting (parameterized) control to the mask from future frame.
We demonstrate the e↵ectiveness of this learning and the more gran-
ular control mechanism, while illustrating state-of-the-art performance
on two benchmark datasets. Our project website/code can be found at
gabriel-huang.github.io/layered controllable video generation.

1 Introduction

Advances in deep generative models have led to impressive results in image and
video synthesis. Typical forms of such models, including Variational Autoencoder
(VAE) [32], Generative Adversarial (GAN) [19] and recurrent (RNN) [43] for-
mulations, can produce complex and highly realistic content. However, synthesis
of realistic images/videos, without the ability to control the depicted content
in them, has limited practical utility. This has led to a variety of conditional
generative tasks and formulations.

In the image domain, both coarse- (e.g., sentence [70]) and fine-level (e.g.,
layout [72] and instance attribute [18]) control signals have been explored. The
progress on the video side, on the other hand, has generally been more modest,
in part due to an added challenge of synthesizing temporally coherent content.
Future frame prediction [12,16,17,34,38,56,55,57,64] conditions the future gener-
ated frames on one (or a couple) seed frame(s). But this provides very limited
control as the object(s), or person(s), depicted in the conditioned frame can
move in a multitude of ways, particularly as predictions are made longer into
the future. To address this, a number of methods condition future frames on the
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Fig. 1. Layered Controllable Video Generation. Illustration of the proposed task,
where a frame at time t is first decomposed into a foreground/background layers, using
the learned mask network M, and then the user is allowed to modify this mask with
control signals ✓ (e.g., by shifting it by �t) to control the next generated frame realized
by generator G. The foreground source and target mask are illustrated in red and blue.

action [22,52] and object [40] label. Still, they only provide very coarse global
video-level control.

More recent approaches focus on the ability to control the video content
on-the-fly at the frame-level. Typically, these methods are formulated as condi-
tional auto-regressive (or recurrent) models that generate one frame at a time,
conditioned, for example, on the discrete action label [30] or keypoint-based hu-
man pose specification [54,58,68] (e.g., obtained from a target video source [69]).
Such methods, however, require dense per-frame annotation of actions or poses
at training time, which are costly to obtain and make it challenging to employ
such approaches in realistic environments. The task of playable video genera-
tion [39], has been introduced to address these limitations. In playable video
generation, the discrete action space is discovered in an unsupervised manner
and can then be used as a conditioning signal in an auto-regressive probabilis-
tic generative model. While obtaining impressive results, with no intermediate
supervision and allowing frame-level control over the generative process, [39] is
inherently limited to a single subject and a small set of discrete action controls.

Thus, in this work, we aim to allow richer and more granular control over the
generated video content, while similarly requiring no supervision of any kind –
i.e., having only raw videos as training input, as in [39]. To do so, we make an
observation (inspired by early works in vision [59,28,33]) that a video can be e↵ec-
tively decomposed into foreground / background layers. The background layer
corresponds to static (or slowly changing) parts of the scene. The foreground
layer, on the other hand, evolves as the dominant objects move. Importantly,
the foreground mask itself contains position, size and shape information neces-
sary to both characterize and render the moving objects appropriately. Hence,
this foreground mask can in itself be leveraged as a useful level of abstraction
that allows both intuitive and simple control over the generative process.

With the above intuition, we therefore propose an approach that automat-
ically learns to segment video frames into foreground and background, and at
the same time generates future frames conditioned on the segmentation and the
past frame, iteratively. To allow on-the-fly control of video generation, we ex-
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pose the foreground mask to the user for manipulation – e.g., translations of the
mask leads to corresponding in-plane motion of the object, resizing it would lead
to the depth away/towards motion, and changes in the shape of the mask can
control the object pose.

From the technical perspective, the challenge of formulating such a method
is two fold. First, unsupervised foreground/background layer segmentation is
highly ambiguous, particularly if the background is not assumed to be static and
the foreground motions can be small. Second, user input needs to be anticipated
to ensure model learns how to react to changes in the mask, without explicit ac-
cess to such information. To this end, we propose a two-stage learning procedure.
In the first stage, the network learns how to perform foreground/background sep-
aration and, conditioned on this layered representation, future frame prediction.
Specifically, we introduce a set of sophisticated losses and a dynamic prior to
learn how to predict a foreground mask and leverage VQ-VAE [44] to predict
foreground and background latent content which is then fused and decoded to
the next frame. In the second stage, we simulate user input and fine-tune the
generative model such that this user input can be appropriately handled.

Contributions: Our contributions are multi-fold.
– From raw video data, our model learns to generate foreground/background

separation masks in an unsupervised manner. We then leverage the foreground
layer as a flexible (parametric) user control mechanism for the generative
process. This provides both richer and more intuitive control compared to
action vectors [39] or sparse trajectories [21].

– To e↵ectively train our model we introduce two-stage training: the first stage
tasked with learning how to separate layers and perform future frame predic-
tion; the second, to adopting and anticipating user control.

– To prevent over-/under-segmentation, we regularize layer separation with spar-
sity loss and dynamic mask size prior.

– Finally, we validate our approach on multiple datasets and show that we are
able to generate state-of-the-art results and, at the same time, allow higher
level of control over the generated content without any supervision.

2 Related works

Video generation. Early video generation techniques proposed to generate a
video as a whole. Most of these convert a noise vector, sampled from simple dis-
tribution or a prior, to a video, using a GAN [55,2,61] or VAE [6,12] formulation.
More recent architectures leveraged transformer-based formulations [67,41,46,64]
that have generally resulted in higher quality video outputs. As an alternative
to 3D (transposed) convolution techniques, that generate all frames at once, re-
current auto-regressive variants [29] have also been explored. While these early
works largely focused on the video quality and resolution, more recently, the
focus has shifted to conditioned or controlled video generation.

Video generation with global control. Future frame prediction considers the
task of generating a video conditioned on a few starting seed frames. Early ap-
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Fig. 2. Illustration of the Proposed Two-stage Training. The flow of Stage I
is represented in orange and Stage II in green. M denotes the mask network, which
estimates the foreground/background mask, and G denotes the generator network that
takes the current frame and a mask to produce the next frame. O(·) is the optimization
procedure described in Eq.(12). T (·) is a di↵erentiable function that transforms a mask
to a target shape using user control signal ✓t.

proaches to future prediction employed deterministic models [16,38,56,65] that
failed to model uncertainty in the future induced by variability of unfolding
events. To overcome this limitation, later methods, based on VAE [6,12], GAN
[36,35], and probabilistic formulations [66], attempted to introduce real-world
stochasticity into the generative process. Action label conditioning, in combina-
tion with seed frames or not, where a video sequence is generated conditioned on
an input action label [31,62] is also popular; some such approaches leverage disen-
tangled factored representations (e.g., of subject identity and action [22]). Other
types of global conditioning signals include action-object tuples [40]. However,
these methods, collectively, require action annotations for training, and, more
importantly, do not allow control at the frame-level.

Video generation with frame-level control. More granular control, at the
frame-level, has also been explored. Pose-guided generative models first generate
a sequence sparse [58,54,68] or dense [69] keypoint human poses, either predic-
tively [54,58] or from a source video [69], and then use these for conditional gen-
eration of respective video frames. However, these methods are only applicable
to videos of human subjects and require either pose annotations or a pre-trained
pose detector. Alternatively, individual frames can be conditioned on action la-
bels [30,11,42]. However, these methods require dense frame-level annotations,
which are only available in limited environments such as video games. Closest
to our work, Menapace et al. proposed Playable Video Generation [39], which,
in an unsupervised manner, discovers semantically consistent actions meanwhile
generating the next frame conditioned on the past frames and an input action,
thus providing user control to the generation process. However, their method is
limited to a small set of discrete action controls and explicitly assumes a single
moving object. In contrast, our method allows richer and more granular control,
and can be used to generate, and control, videos with multiple objects.

Video generation with pixel-level control. It is worth mentioning that
some prior works attempted to use dense semantic segmentation [45,60] and
sparse trajectories [21] to control video generation. While such approaches allow
granular control at a pixel-level, these representations are incredibly di�cult for
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a user to produce or modify. We also use a form of (foreground) segmentation for
control, however, it is unsupervised, class-agnostic, and can be easily controlled
either parametrically or non-parametrically.

Unsupervised object segmentation. Layered representations have long his-
tory in computer vision [59,28,33], and are supported by neuroscience evidence
[63]. Traditional techniques for this rely on feature clustering [1,5,24] and statis-
tical background modeling and subtraction [9,14,50]. Such techniques work best
for videos where the background is (mostly) static, lighting fixed and the fore-
ground is fast moving; we refer readers to [20] for an extensive analysis and dis-
cussion. More recent techniques have focused on generative formulations for the
task. In particular, Bielski et al. proposed the PerturbGAN [8], their model gen-
erates the foreground and background layers separately, and uses a perturbation
strategy to enforce the generation of semantically meaningful masks. Related,
MarioNette [49] learns to decompose scenes into a background and a learned dic-
tionary of sprites. Other approaches focus on separation of videos into natural
layers (e.g., to factorize secondary e↵ects such as shadows and reflections [4]) and
to control which layer to attend to [3]. Similar to [55], we decompose frames and
separately model foreground/background content that is then composed/fused
together to produce video. However, unlike [55] and others, we allow the user to
have frame-level control over the foreground mask using both intuitive paramet-
ric and nonparametric controls.

3 Method

Our fundamental goal is frame-level controllable video generation. We address
this by proposing a model that first segments the input image into foreground /
background layers using a mask and then allows user to control the generative
process by applying (parameterized) modifications to this mask. While it is pos-
sible to train such a model directly, we find that it is di�cult in such a case to
learn to disentangle foreground/background mask prediction and the controlled
generation process (see our ablation study in Section 4.2 for details).

We address this by separating the training into two stages (see Figure 2).
Similar to other vision domains (e.g., recognition [7,10], multi-modal learning
[37,51]), where it was shown that pre-training was helpful for a number of down-
stream tasks, we introduce a related pre-training (Stage I) task and formulation,
which ultimately helps in our final controllable video generation (Stage II).

Intuitively, Stage I pre-training, which we describe in Section 3.1, learns
how to preform foreground/background separation, usingM(·), and, conditioned
on this layered representation, is optimized for future frame prediction. This
stage does not consider controlability within the generation process. Instead, it
is designed to predict the most likely future frame(s) given a single input frame.
Note that the task is e↵ectively one of forecasting, but without attempting to
model full distribution over potential futures, rather just a single most likely
video trajectory exemplified by the observed video itself.
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Given the pre-trained foreground/background mask predictor M(·) and gen-
erator G(·), learned in Stage I, in Stage II (see Section 3.2) we e↵ectively fine-
tune this model to take into account user control. Notably, Stage I and Stage
II share foreground/background separation, but in Stage I the generator G(·)
learns the expected dynamics as part of its generative process. The main goal of
Stage II then is to fine-tune G(·) in such a way as to allow direct conditioning of
said dynamics based on user controlled edits to the mask.

3.1 Stage I: Pre-training for mask-based generation

We first train our method with the focus of generating high-quality foreground-
background segmentation masks, without introducing controlability into the
generation process. Doing so requires two main objectives: (1) high-quality es-
timation of the current frame’s segmentation mask m

t; and (2) pretraining a
frame generator for mask-based future frame prediction and generation. Writing
the two objectives as loss terms Lmask and Limg, respectively, the total loss for
the first stage training of our method Ltotal can be written as:

Ltotal = Lmask + Limg. (1)

We detail each loss term in the following.

Regularizing the mask. To train our method to generate proper masks with-
out any supervision, we regularize the mask with three losses: (1) Lbg – the
contents of the background should not change; (2) Lfg – there should be as little
amount of foreground as possible since classifying all pixels as foreground pro-
vides a trivial solution for Lbg; and (3) Lbin – the masking should be binary for
e↵ective separation. We therefore write the mask regularization loss Lmask as

Lmask = �bgLbg + �fgLfg + �binLbin, (2)

where �bg, �fg, and �bin are the hyperparameters controlling how much each loss
term a↵ects the mask regularization.

— Lbg. We aim to ensure that the mask correctly identifies the background,
i.e., non-moving parts of the scene. Hence, we simply define it as the amount of
change in the masked out (background) region between two consecutive frames.
We write

Lbg =
��(1�m

t)� f
t � (1�m

t)� f
t+1

��
1
, (3)

where � denotes the elementwise multiplication. Note that we define this loss
using the `1 norm, as changes in the scene are not strictly restricted to the mask
– e.g. shadows of moving objects can occur in the background, or other scenic
changes, such as a global illumination change can happen – and the `1 norm
leaves room for the method to incorporate these changes if necessary.

— Lfg. As mentioned earlier, Lbg alone, leaves room for a trivial solution—
assigning m

t=1 results in Lbg=0 regardless of the values of f t and f
t+1. This
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could be avoided by enforcing an additional loss term that penalizes having
too many foreground pixels, but a näıve regularization is not su�cient, as the
amount of the actual foreground pixels may drastically change from frame to
frame – e.g., robot arm moving close to the camera vs. further away.

We thus propose to regularize based on the amount of evident change between
f
t and f

t+1, approximated using simple background subtraction. Specifically, for
a pixel index (i, j), if we denote whether the pixel changed between the two
consecutive frames f t and f

t+1 as

µt

ij
=

(
1, if

��f t+1
ij

� f
t

ij

��
1
> ⌧

0, otherwise
, (4)

where ⌧ is a threshold for controlling the sensitivity, we can use the average
of µt

ij
as a rough estimate for how much of the pixels should be foreground,

dynamically for each consecutive frame. We thus write

Lfg = max
n
0,
��Eij

⇥
m

t

ij

⇤
� Eij

⇥
µt

ij

⇤��
1

o
, (5)

where m
t

ij
is the generated mask value at pixel index (i, j) at frame t, and

µt

ij
is the variation between adjacent frames exceeds the threshold. We note

that the balance between the hyperparameter settings related to Lfg and Lbg is
important since they govern how the loss behaves—e.g. a wider mask that covers
all potential changes in the scene, or a tight mask that only focuses on the actual
changing locations. We empirically set the ratio between �bg and �fg to be 100:1,
and we gradually decrease this ratio in training for faster convergence.

— Lbin. Finally, there is one last loophole for the network to cheat its way
through the two mask regularizors – by producing intermediate values in the
range [0, 1]. In fact, we found in our early experiments that soft masks allows
the deep network to encode information of the image in the mask alone, and
any modification on the mask will result in degenerated frames (see Supp. Mat.
Section D). Therefore, we encourage the mask to be binary [8]:

Lbin = min{mt, (1�m
t)}. (6)

At test time we clip these pseudo-binary masks to 0/1 with a 0.5 threshold.

Learning to predict the next frame. To pretrain the generator for next
frame prediction, we follow the VQGAN [15] framework. The choice of VQGAN
is motivated by two factors: (1) its ability to preserve spatial information in
the latent space, allowing e↵ective masking that we need, and (2) its illustrated
high-quality image generation performance. We note that VQGAN itself, or its
use in this context, is not a contribution we claim. We therefore write

Limg = �VQLVQ + �GANLGAN + �perceptLpercept, (7)

where �VQ, �GAN, �percept are hyperparameters controlling influence of terms.
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— LVQ. Following the original VQ-VAE[44] formulation we write

LVQ =
���f t+1 � f̂

t+1
���
1
+
��sg

⇥
E(f t)

⇤
� zq

��2
2

+
��sg [zq]� E(f t)

��2
2

, (8)

where f
t+1 and f̂

t+1 are true and estimated next frame, sg[·] denotes the stop
gradient operation, and zq is the quantized latent variable of the VQ-VAE. Note
that we use the `1 norm, instead of the `2, for the reconstruction part of the
loss, as we emprically found it to be more stable in training.

— LGAN. We train a discriminator C with the architecture from [25] and aim to
improve the generation quality. We therefore write

LGAN = log
�
C
�
f
t+1

��
+ log

⇣
1� C

⇣
f̂
t+1

⌘⌘
. (9)

For the hyperparameter for this loss �GAN, we follow [15] and apply a dynamic
weighing strategy, which stabilizes training.

— Lpercept. We use a pretrained VGG-16 network [48] to extract deep features
and compute the perceptual loss. Denoting the deep feature extraction process
as V we write

Lpercept =
���V(f̂ t+1)� V(f t+1)

���
2
. (10)

3.2 Stage II: Fine-tuning for controllability

While the model trained in Section 3.1 is a generative model conditioned on the
latent mask m

t, it cannot be immediately used with any arbitrary mask – the
generator G would expect a mask that aligns perfectly with f

t, whereas our user
edited mask m

t

c
will not. In other words, we need a way to simulate user input,

in terms of mask modifications, and incorporate it into the training. Therefore,
we now discuss the second stage of our training setup, where we shift our focus
to imbue our method with controllability.

We turn our attention to the assumption that the changes between the masks
of two consecutive frames mt and m

t+1 can be approximated by a di↵erentiable
transformation function T (·):

m
t+1 ⇡ T

�
m

t,✓t
�
. (11)

In the crudest form, T (·) can simply be shifting the mask m
t by �x and �y

in horizontal and vertical directions, respectively, or for example, be an a�ne
transformation. Both can be implemented di↵erentiably as a parametric coor-
dinate transformation on m

t [26,27]. We utilize this di↵erentiabilty to find the

“ground-truth” control signal ✓̂
t

(a.k.a., the pseudo user control) using the fol-
lowing optimization procedure:

✓̂
t

⌘ argmin
✓

��mt+1 � T
�
m

t,✓t
��� . (12)
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Now, we can apply this control signal ✓̂
t

to the current mask m
t to obtain

the pseudo user-edited mask using T (·), and finetune the network which results
in now controllable video generation:

f̃
t+1 = G

⇣
f
t,
j
T
⇣
m

t, ✓̂
t
⌘k

0.5

⌘
. (13)

Where G denotes the frame generator, and b·c0.5 denoting the binarization op-
eration. We then use f̃

t+1 in our loss functions to fine-tune.
One noteworthy aspect of this second stage training is that, because we

binarize the mask, no gradient flows through to M. this leads to Lbg, Lfg, and
Lbin not a↵ecting training. While the latter two can be dropped since they are
purely on how the mask network M behaves, completely dropping Lbg now has
the danger of the generated image ignoring the mask. Hence, we replace f

t+1 in
Eq. (3) with f̃

t+1, so that the generated image still obeys the mask conditioning.
Hence, for the second stage training, instead of Lbg, we utilize L0

bg where

L0
bg =

���(1�m
t)� f

t � (1�m
t)� f̃

t+1
���
1
, (14)

which now enforces our fine-tuned generator G to still obey the provided mask.

3.3 Framework

As illustrated in Figure 2, our method is composed of mainly two components:
the mask network and the generator network. The mask network M takes as
input an image frame f

t 2 R3⇥W⇥H at time t and outputs a mask:

m
t = M

�
f
t
�
, (15)

where m
t 2 RW⇥H , segmenting the foreground layer and the background layer.

Then, our generator network G takes the mask and the frame as input to generate
the next frame:

f̂
t+1 = G

�
f
t,mt

�
. (16)

As shown in Figure 3, the generator G can be written as a composite function
of an encoder E , a decoder D, and a learnable discrete code book Z = {zk}Kk=1 ⇢
Rnz , where nz is the dimension of each code, we encode the foreground layer
and the background layer separately in our pipeline, and then merge them in
the latent space before feeding them into the decoder:

z
t

fg
= E

�
f
t �m

t
�

z
t

bg
= E

�
f
t � (1�m

t)
�

f̂
t+1 = D

�
q
�
z
t

fg

�
+ q

�
z
t

bg

��
, (17)

where � is the element-wise product and q is the element-wise quantization
function defined as:

q(z)ij := argmin
zk2Z

kzij � zkk , (18)
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Fig. 3. Frame Generator G. We employ VQGAN framework for the generator G,
comprising of an encoder E , decoder D, a learnable discrete codebook Z and a discrim-
inator C. We encode the foreground and the background layers separately and then
merge them in the latent space before feeding them to the decoder D which generates
the next frame in the sequence.

where i and j are the row and column indices. G andM are then used to generate
the video via auto-regression.

With the above pipeline, during testing time, we enable on-the-fly user con-
trol by modifying the current frame mask m

t to create m
t

c
and using it in place

of mt in Eq. (16). Mathematically, we write

m
t

c
= T

�
m

t,✓t
�
, (19)

where T (·) is the mask controlling operation described in Section 3.2. Other
forms of control are also possible, including more granular non-parametric ma-
nipulation of the mask (see section “Action Mimicking” on our project website).

4 Experiments

While our method is not limited to a “single-agent” assumption, i.e., single
dominant moving agent in the scene, previous work, and notably [39] which is
the closest and the most competitive baseline, are. Hence, for fair comparison,
we adopt the single-agent setup for the majority of our experiments. We train /
test on the following datasets:

BAIR Robot Pushing Dataset [13]. This dataset contains 44K video clips
(256⇥ 256 resolution) of a single robot arm agent pushing toys on a flat surface.

Tennis Dataset [39]. This dataset contains 900 clips extracted from two full
tennis matches on YouTube. These clips are cropped such that only the half of
the court is visible. The resolution of each frame is (96⇥ 256).

4.1 Results

Evaluation Protocol. We compare our model against other conditional gener-
ative methods, focusing on quality of reconstructed sequences and controlability.
We evaluate our model under three control protocols: two parametric (position,
a�ne) and one non-parametric (direct non-di↵erentiable control over mask):

– Ours /w position control: We first use our trained mask network M to
extract masks from the ground truth test sequences, then we use Eq. (19) to

https://gabriel-huang.github.io/layered_controllable_video_generation/
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approximate those masks with control for generation, where ✓ is restricted to
positional parameters, i.e., x and y translation.

– Ours /w affine control: Similar to above, here our ✓ employs full affine
transformation parameters, i.e., translation, rotation, scaling and shearing.

– Ours /w non-param control: We use masks predicted from ground truth test
sequences themselves to condition our generation. These masks can change at
a pixel-level, hence constituting non-parametric control.

For testing, we generate video sequences conditioned on the first frame f0 and
the user input ⇥ = {✓t

u
}T
t=1 in all cases.

Metrics. To quantitatively evaluate our results, we consider standard metrics:

– Learned Perceptual Image Patch Similarity (LPIPS) [71]: LPIPS measures the
perceptual distance between generated and ground truth frames.

– Fréchet Inception Distance (FID) [23]: FID calculates the Fréchet distance
between multivariate Gaussians fitted to the feature space of the Inception-v3
network of generated and ground truth frames.

– Fréchet Video Distance (FVD) [53]: FVD extends FID to the video domain.
In addition to the quality of each frame, FVD also evaluates the temporal
coherence between generated and ground truth sequences.

– Average Detection Distance (ADD) [39]: ADD first uses Faster-RCNN [47]
to detect the target object in both generated and ground truth frames, then
calculates the Euclidean distance between the bound box centers.

– Missing Detection Rate (MDR) [39]: MDR reports percentage of unsuccessful
detections in generated vs. successful detections in ground truth sequences.

– Rooted Mean Square Error of Displacement (RMSED) [39]: RMSED, which
we define, reports the RMSE of the displacement of ground truth locations
vs. generated locations. See Figure 4 for more details.

LIPIPS, FID and FVD measure the quality of generated videos. ADD and MDR
measure how the action label conditions the generated video, and RMSED mea-
sures the precision of control.

Baselines. CADDY [39] is the only unsupervised video generation method that
allows frame-level user conditioning, thus we use it as our main baseline. We also
include results of other frame-level conditioned methods: MoCoGAN [52], SAVP
[36], and their high-resolution adaptations MoCoGAN+ and SAVP+ from [39].

Table 1. Results on the BAIR Dataset
Method LPIPS # FID # FVD # RMSED #

MoCoGAN [52] 0.466 198 1380 -
MoCoGAN+ (from [39]) 0.201 66.1 849 0.211
SAVP [36] 0.433 220 1720 -
SAVP+ (from [39]) 0.154 27.2 303 0.109

CADDY [39] 0.202 35.9 423 0.132
Ours /w position control 0.202 28.5 333 0.059
Ours /w affine control 0.201 30.1 292 0.035
Ours /w non-param control 0.176 29.3 293 0.021

Table 2. Results on the Tennis Dataset
Method LPIPS # FID # FVD # ADD # MDR #

MoCoGAN [52] 0.266 132 3400 28.5 20.2
MoCoGAN+ (from [39]) 0.166 56.8 1410 48.2 27.0
SAVP [36] 0.245 156 3270 10.7 19.7
SAVP+ (from [39]) 0.104 25.2 223 13.4 19.2

CADDY [39] 0.102 13.7 239 8.85 1.01
Ours /w position control 0.122 10.1 215 4.30 0.300

Ours /w affine control 0.115 11.2 207 3.40 0.317
Ours /w non-param control 0.100 8.68 204 1.76 0.306

Quantitative Results. We report the results on the BAIR dataset in Table 1.
We highlight that in terms of RMSED score, our method achieved the highest
precision of control (more than ⇥5 improvement compared to other baselines).
In terms of generation quality, with similar level of abstraction of ground truth
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information (ours: 6 continuous affine control parameters, CADDY: 7 discrete
action labels), our model outperformed CADDY on all three evaluated metrics
by a large margin, demonstrating that our model is of better generation quality.
With non-param control, our generation quality is comparable to the SAVP+.

Table 2 shows the results on the Tennis dataset. In terms of generation qual-
ity (LPIPS, FID, FVD), all our adaptations outperformed all other comparing
methods. Specifically, in terms of FID score, our model is up to 37% better than
the closest baseline ([39]). Further, in terms of control precision, our method
achieves the lowest error on ADD and MDR (improvement of 80% & 70% re-
spectively), indicating our method is able to generate consistent players with
accurate control. One can see that simple positional control works much better
here compared to the BAIR dataset. This can be attributed to largely in plane
motion of the subject.

*7 2XUV &$''< 0R&R� 6$93�

W� ��

W� ����

Fig. 4. Qualitative Results On the BAIR Dataset. We labelled the robot arm
positions for half of the testing sequences (128 videos out of 256) from both generated
videos and ground truth videos. As illustrated on the figure: GT location is marked
green and generated locations are marked red. We calculate RMSE of the displacement
between GT locations and generated locations to arrive at the RMSED score.
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Fig. 5. Qualitative Results On the Tennis dataset.

Qualitative Results. In Figure 4 and Figure 5, we show generated sequences on
the BAIR and Tennis dataset (we used our model with affine control for both
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Fig. 6. E↵ectiveness of Control. Illustrated is how our model precisely reacts to
di↵erent controlling signals starting from the same initial frame. We illustrate position
parameters; however, other a�ne control parameters are also possible (e.g., scale, ro-
tation and shear).

cases shown). In terms of image quality, our method is superior to competitors.
In terms of control accuracy, unlike other competing methods, our method is able
to precisely place the robot arm and the tennis player in the correct position.

In Figure 6, we show the results of our model reacting to di↵erent user control
signals. On the Tennis dataset, our method not only moves the player in the
correct direction, it’s also able to generate plausible motions of the player itself.
On the BAIR dataset, our model is able to “hullcinate” what’s missing in the
original frame and generate frames with respect to the control signal, i.e., in the
“down, 35 pixels” example, our model successfully generates the upper part of
the robot arm, not available on the input frame.

Fig. 7. Control of Multiple Agents.
Our method is able to generate videos
with multiple moving objects that can be
controlled individually by their respective
masks.

In Figure 7, we show that our
method is capable of generating and
controlling videos with multiple mov-
ing objects by simply overlaying
two individually controlled mask se-
quences together, i.e., producing 2
and 3 players in this example. As far
as we know, our method is the only
video generation method that allows
frame-level control of multiple objects
acting in the same scene. We provide
more visual results in the Supp. Mat.

4.2 Ablation Study

Mask losses. Here we explore impact of our key design choices have on the
quality of generated results and the foreground mask. We show quantitative and
qualitative results in Figure 8. The background loss Lbg enforces the network
to generate meaningful masks, without it, the mask network fails to generate a
reasonable mask (all zeros). The foreground constraint Lfg shrinks the mask as
much as possible. Without this term the network learns a travail solution, where
Lbg in Eq.(3) becomes 0 – labeling everything as the foreground (all ones). When
computing the foreground loss Lfg, we introduce a dynamic mask size prior. We
ablate this choice by instead using a fixed global prior of 0.15 as in [8]. Visuals
show that if we do not use dynamic prior, the network tends to generate masks
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with a fixed size, which leads to hollow masks for samples with larger foreground.
To prevent information leaking from soft masks, we binarize the masks with
thresholding the mask value, without the binary loss Lbin, some pixels on the
mask fails to pass the threshold and leave some defects on the binarized mask.
Overall, the ablations show that all our design choices are important.

Method LPIPS # FID # FVD #
w/o Lfg 0.333 60.1 816
w/o Lbg 0.306 97.1 796
w/o Lbin 0.222 59.2 398
w/o mask prior 0.208 55.0 279

single-stage training 0.608 302.3 6614
full 0.176 29.3 293

,QSXW

� � ��

IXOO

Fig. 8. Ablation of Design Choices. We
ablate various loss terms, the use of dy-
namic mask prior and the two-stage train-
ing design. Thumbnails below illustrate the
e↵ect these components have on the esti-
mated mask itself; full model producing the
most coherent mask.

One-stage training VS. Two-

stage training. Breaking our train-
ing procedure into two stages is a cru-
cial design for the performance of our
method. As described in Eq. (12), a
well-trained mask generator is a pre-
requisite for finding the pseudo user
control ✓̂, which we use to introduce
controllability to our model. Never-
theless, we still experimented with
training the model with one single
shot (training Stage II directly by re-
placing f

t with f
t+1). This leads to

vastly poorer performance during test
time (Figure 8, “single-stage train-
ing”).

5 Conclusions

We have introduced layered controllable video generation, an unsupervised method
that decomposes frames into foreground and background, with which the user
can control the generative process at a frame-level by altering the foreground
mask. Our core contributions are the framework itself, and the two-stage train-
ing strategy that allows our model to learn to both separate and control on
its own. We show that various degrees of control can be implemented with our
method, from parametric (position, a�ne) to complete non-parametric control
with the mask. Our results on BAIR and Tennis datasets show that our method
outperforms the state-of-the-art in both quality and control.
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