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A Analysis: Progressive Layering

The progressive layering module forms one of the key components of the intelli-
paint pipeline, wherein much like a human artist, it allows for a multi-layered
evolution of the painted canvas. In this section, we provide a discussion on dif-
ferent aspects of the progressive layering module in order to aid a more in-depth
understanding of the proposed approach. First, we analyse the use of progressive
layering for achieving artistic painting evolution for different domains in Ap-
pendix A.1. We then discuss a formulation for extending the proposed layering
mechanism for L ą 2 layers and show its application to achieve a more detailed
layering on images with multiple foreground objects (refer Appendix A.2).

A.1 Artistic Painting Evolution

By allowing the final painting agent to draw a given scene in multiple successive
layers, the progressive layering strategy facilitates for a more human-relatable
evolution of the painted canvas [6]. We next illustrate the use of progressive lay-
ering on different domains and analyse some intermediate canvas representations
achieved during the painting process.
Facial domain. Results are shown in Fig. 1a. We observe that instead of di-
rectly trying to minimize the pixel-wise distance between the painted canvas and
the target image (as is done in previous works), our method takes a much more
human-like approach to portrait generation. For instance, consider the second
example (row-2) for the painting sequence in the right column. Instead of directly
painting based on low-level features (e.g. white brushstrokes for the mouth re-
gion), our method first draws a rough outline for the facial shape. It then refines
this outline whilst indicating (but not drawing) the potential locations of im-
portant focalpoints (eyes, nose, lips) through appropriate facial shading. Only
after the intermediate sketch has been set up, does it then proceed to add the
fine-grain details on the exact facial features (eyes, nose, mouth, etc).
General images. Illustrations of progressive layering applied to general object
images are shown in Fig. 1b. Mimicking the layering approach often observed
among human artists [6], the intelli-paint agent first begins by drawing a natural
background scene, before adding in the foreground objects in the second layer.
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(b) Progressive layering in a more general context.

Fig. 1. Analysing progressive painting evolution for different domains. In contrast with
previous works which directly try to minimize the Lpixel distance between the painted
canvas and the original image, our method allows for a more human-like evolution of
the painted canvas across different domains. For instance, for facial domain (a) it first
begins with a rough face outline shown in Col-1. It then refines this outline further to
paint the artistic intermediate representation in Col-2, before finally adding all facial
details (eyes, nose, lips) in the final painting (Col-3).

A.2 Extending Progressive Layering for Multiple Layers

The progressive layering formulation discussed in the main paper primarily di-
vides the painting process into two broad layers (background and foreground).
In this section, we show that the original two layered formulation can be easily
extended to L ą 2 layers by using ranked saliency maps [8] for target image I.
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Fig. 2. Progressive layering for L ą 2 layers. The agent first begins by painting a
realistic background scene (layer 1 in column-b). Once the background layer is drawn,
the painting agent in each successive layer (layers 2-3) then proceeds to add different
foreground objects in decreasing order of saliency.

In particular, consider a ranked saliency map SI , such that tSI rksuLk“1 in-
dicate the salient regions for the target image I, ranked in increasing order
of saliency. The progressive layering strategy can then be trivially extended to
L ą 2 layers by using the following layered-mask MIplq (refer Eq. 4, 5 in the
main paper) for each layer l,

MIplq “ 1 ´

L´l
ď

k“1

SI rks. (1)

Results for progressive painting sequences while using L ą 2 layers are shown
in Fig. 2. For instance consider the first example (refer row-1, Fig. 2). The
painting process is divided in three layers. We observe that in the first layer,
the painting agent begins by drawing a realistic background scene (describing
road, grass) on the canvas. In the second layer, it then proceeds to add the most
salient object (white car) on to the canvas. Finally, in the third layer it shifts its
attention to the least salient object (cow) in order to complete the final painting.

B Ablation Studies

The Intelli-paint pipeline utilizes three main modules for mimicking the human
painting style: 1) progressive layering, 2) sequential brushstroke guidance and 3)
brushstroke regularization. In this section, we aim to understand the contribution
of each of these modules in the development of a more human-relatable painting
process. However, since the main focus of our method is the recreation of the
human artistic creation process, we argue that the effect of each module is best
understood by visualizing the corresponding painting sequences. We thus refer
the readers to the official project webpage for detailed visualizations on the
importance of each module in the human-like painting process.

https://1jsingh.github.io/intelli-paint
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Method Intelli-Paint Preference
Ours (w/o prog. layering) 89.20 %
Ours (w/o seq. guidance) 77.39 %
Ours (w/o stroke reg.) 84.54 %

Table 1. User-Study Results for Ablation Study: Showing % of painting samples for
which human users prefer full intelli-paint system over its different ablations.

Additionally, we also report quantitative results by performing a human-user
study wherein participants are asked to compare the full intelli-paint pipeline
and its different ablations. Results are reported in Table 1. Please note that
in order to aid easy comparison, user study tw{o sequential guidanceu was per-
formed while indicating a bounding box for the current brushstroke, in order to
clearly highlight the area under focus by the painting agent. We clearly observe
that all three modules form a key component of the overall intelli-paint pipeline,
and, the removal of any of these modules leads to reduced performance for the
overall painting algorithm. Also, please note that due to the pair-wise nature of
comparisons performed during the user-study the final results are not directly
comparable to those of other painting methods (Table 2 of main paper). This
is because while previous methods possess a significantly different painting style
as compared to intelli-paint, the removal of a single component (as evident from
included videos) makes the inefficiencies of an ablated version (as compared to
the full intelli-paint pipeline) quite evident to a careful human user.

C Algorithm Details

In this section, we further elaborate on some algorithm details which could not
be included (or fully explained) due to space constraints in the main paper.

C.1 Sequential Brushstroke Guidance

Algorithm 1 Foreground Object Selection
Input: Foreground selection convex coefficients αt; In-image bounding box detections
Bi P R4, i P r1, N s.
Output: Coarse object attention window Gt.
Defaults: Bounding box over the entire image B0.
1: function ObjectSelect(αt, tB0, . . .BNu)
2: tαt

0, . . . αt
Nu “ αt

P RN`1;
3: Gt “

řN
i“0 α

t
i Bi;

4: return Gt.
5: end function

The sequential brushstroke guidance strategy (discussed in Sec. 4.1.3 of main
paper), allows the reinforcement learning based sequential planner agent to shift
its attention between different image regions through a sequence of coarse-to-fine
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Algorithm 2 Markov Updates for Local Attention Window
Input: Current coarse, local attention windows pGt,Wtq; Markovian bounding box
refinements ∆Wt.
Output: Updated local attention window Wt`1.
Defaults: wmin “ hmin “ 0.2.
1: function MarkovUpdate(Wt,Gt,∆Wt)
2:
3: xG

t , y
G
t , w

G
t , h

G
t “ Gt;

4: xL
t , y

L
t , w

L
t , h

L
t “ Wt;

5: ∆xt,∆yt,∆wt,∆ht “ ∆Wt;
6:
7: xL

t`1 “ xG
t`1 ` pxL

t ` ∆xtq wG
t`1;

8: yL
t`1 “ yG

t`1 ` pyL
t ` ∆ytq hG

t`1;
9: wL

t`1 “ pmaxp1 ´ t̃, wminq ` ∆wtq wG
t`1;

10: hL
t`1 “ pmaxp1 ´ t̃, hminq ` ∆htq hG

t`1;
11:
12: Wt`1 “ xL

t`1, y
L
t`1, w

L
t`1, h

L
t`1;

13: return Wt`1.
14:
15: end function

attention windows tW0,W1 . . .WT u. The computation of the localized attention
window Wt at any timestep t is done in the following broad steps.
Foreground object selection. The RL agent first selects the in-focus fore-
ground object by predicting coordinates of a coarse global attention window
Gt. Given an input image I with N foreground objects, the computation of the
coarse attention window Gt can be expressed through Algorithm 1.
Local attention window selection. Within each object window Gt, the agent
further learns to sequentially shift its focus on different in-object features through
a sequence of coarse-to-fine local attention windows Wt. In particular, given
the coarse object window coordinates xG

t , y
G
t , w

G
t , h

G
t , the coordinates Wt “

xL
t , y

L
t , w

L
t , h

L
t for the finer localized attention windows are computed using the

Markov update function in Algorithm 2.
Brushstroke parameter adjustment. Finally, the coordinates of local atten-
tion window are used to modify the predicted brushstroke parameters alt, so as
constrain the painting agent to only draw within the localized attention window.
This procedure can be expressed as,

alt Ð ParamAdjustpalt,Wtq. (2)

Assuming that alt at each timestep t, depicts a 13 dimensional vector that rep-
resents the parameters of a quadratic Bézier curve [2, 7] as follows,

alt “ px0, y0, x1, y1, x2, y2, z0, z2, w0, w2, r, g, bq, (3)

where the first 10 parameters depict stroke position, shape and transparency,
while the last 3 parameters form the rgb representation for the stroke color. The
parameter adjustment function is then implemented as per Algorithm 3.
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Algorithm 3 Parameter Adjustment Function
Input: Initial brushstroke prediction al

t; current attention window coordinates Wt.
Output: Modified brushstroke prediction vector al

t.
1: function ParamAdjust(al

t,Wt)
2:
3: x0, y0, x1, y1, x2, y2, z0, z2, w0, w2, r, g, b “ al

t;
4: xL

t , y
L
t , w

L
t , h

L
t “ Wt;

5:
6: x0 “ xL

t ` x0 ¨ wL
t ;

7: y0 “ yL
t ` y0 ¨ hL

t ;
8: x2 “ xL

t ` x2 ¨ wL
t ;

9: y2 “ xL
t ` y2 ¨ hL

t ;
10: w0 “ w0 ¨ avgpwL

t , h
L
t q;

11: w2 “ w2 ¨ avgpwL
t , h

L
t q;

12:
13: al

t “ x0, y0, x1, y1, x2, y2, z0, z2, w0, w2, r, g, b;
14: return al

t.
15:
16: end function

C.2 Brushstroke Regularization

The current works on autonomous painting systems are often limited to using
(an almost) fixed brush stroke budget irrespective of the complexity of the target
image. Experiments reveal that this not only reduces the efficiency of the gener-
ated painting sequence but also results in redundant (or overlapping) brushstroke
patterns (refer main paper) which impart an unnatural painting style to the final
agent. To address this, we propose an inference-time brushstroke regularization
strategy which refines and removes redundancies from the initial brushstroke se-
quence predictions sinit to output the most efficient stroke decomposition spred
for each test image. This process can be summarized through Algorithm 4.

C.3 Overall Inference Algorithm

Given functions defined in Algorithm [1,2,3,4], the overall inference algorithm
for the Intelli-paint pipeline can now be summarized as per Algorithm 5.

C.4 Hyperparameter Summary

Module Hyperparameter Value

Sequential Guidance wmin, hmin 0.2
Stroke Regularization γ 0.01

Seq. Planner Reward µ 10
η, λ lsp10´4, 0.1q

Table 2. Hyperparameter summary for Intelli-Paint. lsp10´4, 0.1q implies that coeffi-
cients η, λ are raised from 10´4 to 0.1 in a linear schedule during the training process.
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Algorithm 4 Brushstroke Regularization Function
Input: A target image I; initial brushstroke sequence sinit

sinit “ tal
t | 0 ď l ď L ´ 1, 0 ď t ď T {Lu

.
Output: Refined brushstroke sequence spred.
Defaults: Number of layers L; episode length T ;
Number of iterations M , Cinit “ Cl“0

0 “ BlankCanvas;

1: function StrokeReg(sinit, I):
2: tal

t | 0 ď l ď L ´ 1, 0 ď t ď T {Lu “ sinit;
3: xl

t „ N p0, 10´3
q @l,@t;

4: for 0 ď i ď M do
5: βl

t “ Signpxl
tq @t, l;

6: Cout “
řL´1

l“0

řT {L
t“1 Cl

t d p1 ´ βl
t Sαpal

tqq ` βl
t Scolorpal

tq;

7: Ltotal “ L2pI, Coutq ` γ
řL´1

l“0

řT {L
t“1 }βl

t}1;

8: al
t Ð al

t ´
BLtotal

Bal
t

@t, l;

9: xl
t Ð xl

t ´
BLtotal

Bxl
t

@t, l;

10: end for
11: spred “ tβl

t ¨ al
t | 0 ď l ď L ´ 1, 0 ď t ď T {Lu;

12: return spred.
13: end function

D Human User Study

In this section, we provide details about the human data collection process which
is used to quantitatively demonstrate the improved human-like resemblance of
our approach as compared to previous state of the art [2, 4, 7, 11].

User study setup. The user-study was conducted across 50 unique Amazon
Mechanical Turk [1] subjects wherein each human participant is shown a se-
ries of paired painting sequences comparing our method with previous works.
For each pair, the human subject is then asked to select the painting sequence
which best resembles the human painting style. As mentioned in the main paper,
we perform two variations of the user study in order to better understand the
human-intelligibility of our method: 1) User-Study A, where subjects are also
provided with a human painting sequence to act as reference in their decision-
masking, and 2) User-Study B, where participants are only shown a pair of
artificial painting sequences (ours vs competing method) and are thus asked to
make the decision based on their own subjective understanding of the human
painting style. Each painting sequence is presented as a gif image with a total
duration of 10 seconds. Similar to qualitative results in Fig. 4 of the main paper,
the number of brushstrokes for each method are chosen so as to ensure simi-
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Algorithm 5 Overall Inference Algorithm for Intelli-Paint
Input: A target image I; image-saliency map SI ;
number of layers L; painting episode length T .
Required: RL-based sequential-planner POLICY;

1: W0 “ xL
0 , y

L
0 , w

L
0 , h

L
0 “ p0, 0, 1, 1q;

2: Cinit “ Cl“0
0 “ BlankCanvas;

3: for 0 ď l ď L ´ 1 do
4: for 0 ď t ď T {L do
5: st “ pI, Cl

t,Gt,Wt,SI , lq;
6: al

t,α
t,∆Wt “ Policypstq;

7: Gt “ ObjectSelectpαt, tB0, . . .BNuq;
8: Wt “ MarkovUpdatepGt,Wt´1,∆Wtq;
9: al

t Ð ParamAdjustpal
t,Wtq;

10: Cl
t`1 “ Cl

t d p1 ´ Sαpal
tqq ` Scolorpal

tq;
11: end for
12: end for

13: sinit “ tal
t | 0 ď l ď L ´ 1, 0 ď t ď T {Lu;

14: spred “ StrokeRegpsinit, Itargetq;
15: return spred.

lar reconstruction loss between the output canvas and the target image. Fig. 3
illustrates the basic interface setup for both user-studies.

Response filtering. Since the choice on human-likeliness of a painting sequence
is subjective, we found that unfiltered collection of data from Amazon M-turk [1]
can lead to quite noisy responses, wherein many users simply select the responses
at random in order to quickly collect the assignment reward. To address this,
we take the following measures for avoiding data collection noise. First, we limit
the data collection to human subjects with a HIT rate [1] greater than 90%. In
order to further refine the quality of collected data, we also limit the responses
to users having a bachelors degree or equivalent. Furthermore, we intentionally
use a repeated comparison (control seed) for each human participant. Responses
of users who answer differently to this repeated comparison are discarded while
reporting the final results in the main paper.

Challenges of an unbiased Turing test. Another way to measure the sim-
ilarity with the human painting style is to perform a Turing test, wherein the
performance of an approach is measured by the frequency with which it is able
to fool an actual human user. However, for painting sequences, designing an
unbiased Turing test is highly challenging due to several practical reasons,

– Human painting sequences invariably contain leading clues (e.g . artist mov-
ing or zooming-in to adjust the canvas for digital paintings and artist brush-
stroke, and, hand movements for paintings in physical medium), which make
it almost impossible to conduct an unbiased Turing test.
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(a) User Study A (b) User Study B

Fig. 3. Human User Study Interface. Left: User-Study A, where in addition to a pair of
artificial painting sequences (gif format), the user is shown a human painting sequence
to act as reference while making the decision. Right: User-Study B, where participants
are only shown pair of artificial painting sequences and asked to select the one which
would be most interpretable from a generic human perspective.

– The current painting methods [2,4,7,11] invariably use very primitive brush-
stroke representations (Bézier curves in ours and [2, 7] or a fixed template
based oil brushstroke for [4, 11]), which are easily distinguishable from the
fluid drawing movements of actual human users.

– Procurement of large-scale full length painting sequences from real human
artists is both challenging in its setup and quite time-consuming.

Thus, as mentioned in the limitations section (Sec. 6.3 of main paper), we
do not claim that intelli-paint is truly human-like or is able to fool a human.
Instead, we ask human users (User-Study A, B) to subjectively compare the
human-like resemblance of our painting sequences as opposed to previous works,
which provides a more continuous (and practical) evaluation strategy for judging
the relatability of final painting sequences to actual human users.

E Time Efficiency Analysis in an Interactive Context

As discussed in the main paper, in this work we focus on the development of a
more human-intelligible style in order to facilitate the use of autonomous paint-
ing systems in a more interactive context (e.g . a robotic painting application).
However, in addition to the intelligibility of the painting sequences, the practical
usability of a painting approach in an interactive context would also depend on
the overall time required for painting (including both stroke-planning and exe-
cution) in the real world. In this section, we provide a time efficiency analysis
in order to further understand the practical efficacy of the proposed approach
for interactive applications (e.g . as a teaching tool for human users or robotic
painting applications). The total painting time would depend on two factors,
1) Initial stroke planning time refers to the time taken by the painting agent
to compose an actionable painting plan for the recreation of a given target image,
and depends primarily on the inference time of the used painting algorithm.
Results for initial stroke planning time for different painting methods are shown
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Method Initial Estimated Overall
Planning Time Execution Time Painting Time

RL [2] 2.317 s 1933.5 s 1935.8 s
Semantic-RL [7] 2.631 s 1890 s 1892.6 s
Optim [11] 416.7 s 1170 s 1586.7 s
Transformer [4] 1.154 s 1783.53s 1784.6 s
Ours 72.21 s 375 s 447.2 s

Table 3. Method comparison w.r.t. overall painting time required for interactive /
robotic painting applications. While our approach exhibits a slower initial planning
time, it produces significant gains in the efficiency of the painting plan which leads to
a notable reduction in the overall painting time for interactive painting applications.

in Col-2 of Table 3. We note that the use of gradient descent based stroke
regularization causes our method to exhibit a slower inference time as compared
to [2, 4, 7]. Nevertheless, we note that while both intelli-paint and Optim [11]
require gradient descent based optimization, our method is considerably faster
since it relies on high-quality initializations from the sequential-planner (SP)
agent. In contrast, Optim [11] begins with a random or heuristic-based stroke
initialization which takes gradient-descent optimization longer to converge.

2) Painting execution time is the time taken by the interactive agent (robotic
or human) to implement the provided painting plan in practice. This would
in turn depend highly on the efficiency of the painting plan produced by the
autonomous painting agent. For instance, a painting plan (such as one from
intelli-paint) which allows a robotic agent to paint the same level of final detail
using lesser number of brushstrokes is going to be more faster (and practical) to
implement than a plan which uses significantly more brushstrokes.

Consider a robotic agent trying to execute a given painting plan. Manual
analysis of painting videos from modern robotic agents [3, 5, 10] reveals that
adding a single brushstroke on the canvas takes somewhere from 1.5 to 5 seconds.
This includes time taken for retracting the robotic arm from the current location,
selecting (or mixing) appropriate colors for the next brushstroke and moving the
robotic arm to the next stroke location. Even assuming a conservative estimate
of 1.5 seconds per brushstroke, this implies that generating a final canvas with
a mere „1000 brushstrokes (previous works typically use a much larger stroke
count) would require a minimum of 25-30 minutes for the robotic agent.

Table 3 (Col-3) reports the estimated painting execution times across differ-
ent painting methods. The number of brushstrokes for each method is chosen
so as to ensure similar quality canvases (as measured by Lpcpt loss) across 100
randomly sampled images from the CUB-Birds [9] birds dataset. All results are

1 Represents a lower-bound estimate. For each method, we select the min. number of strokes re-
quired to achieve similar output performance. While this is easily estimated for [2,7,11], the same
is not trivial for [4] which exhibits a huge increase in number of brushstrokes (N) between K=3
pN « 1260q to K=4 pN « 4.8kq grid levels. Thus, in order to prevent an unfair comparison, we
choose the lower bound on number of strokes required for [4], while estimating the painting time.
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reported while assuming a fixed brushtroke budget of 250 brushstrokes for intelli-
paint and a conservative estimate of requiring 1.5 seconds per brushstroke.
Overall painting time includes both initial painting time and the estimated
execution time in the real world. Results are shown in Col-4 of Table 3. We
observe that while intelli-paint exhibits a slower initial planning time, it produces
significant gains in the efficiency of the painting plan which leads to a notable
reduction in the overall painting time required in an interactive context.
Final Notes.

– The above analysis only presents a conservative estimate on the benefits of
intelli-paint in an interactive context. In practice, the actual painting exe-
cution time would also depend on use of similar colors and spatial nearness
of consecutive brushstrokes (to reduce time required between application of
brushstrokes), both of which are explicitly enforced through spatial and color
penalties trspatialt , rcolort u in the sequential-planner (SP) agent.

– Please note while the above analysis is mainly performed from the context of
robotic painting applications, a similar analysis would also apply to novice
human users trying to recreate a painting plan taught by an artificial agent.
For instance, a painting teaching tool which teaches a novice user to paint a
vivid scene in 200-300 brushstrokes (such as ours) is going to be much more
appealing and faster to learn from, than a painting agent which shows how
to paint a similar quality output in 5k-10k brushstrokes.
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