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Fig. 1: Inpainting at modern camera resolutions via guided PatchMatch (guides
shown in inset) with a novel automatic curation module. Photos are 12 and
30 MP. Our result has significantly higher fidelity high-res detail than Co-
ModGAN [45] and LaMa [27], the strongest baselines according to our user
study, which were upsampled by Real-ESRGAN [31]. The guides on the top left
of the second columns indicate the chosen guides for the specific image.

Abstract. Recently, deep models have established SOTA performance
for low-resolution image inpainting, but they lack fidelity at resolutions
associated with modern cameras such as 4K or more, and for large holes.
We contribute an inpainting benchmark dataset of photos at 4K and
above representative of modern sensors. We demonstrate a novel frame-
work that combines deep learning and traditional methods. We use an
existing deep inpainting model LaMa [27] to fill the hole plausibly, es-
tablish three guide images consisting of structure, segmentation, depth,
and apply a multiply-guided PatchMatch [1] to produce eight candi-
date upsampled inpainted images. Next, we feed all candidate inpaint-
ings through a novel curation module that chooses a good inpainting by
column summation on an 8x8 antisymmetric pairwise preference matrix.
Our framework’s results are overwhelmingly preferred by users over 8
strong baselines, with improvements of quantitative metrics up to 7.4
times over the best baseline LaMa, and our technique when paired with
4 different SOTA inpainting backbones improves each such that ours is
overwhelmingly preferred by users over a strong super-res baseline.
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Fig. 2: Overview of our framework. See the intro for discussion of components.

1 Introduction

Image inpainting involves removing a region and replacing it with new pixels so
the modified photo is visually plausible. We develop a method that can take an
off-the-shelf low-res inpainting deep model and extend it to modern camera res-
olutions. Applied to LaMa [27], this yields a new a SOTA method for inpainting
at modern camera resolutions that dramatically outperforms all existing models.

Traditional patch-based synthesis approaches, such as Wexler et al. [33],
Barnes et al. [1], and Darabi et al. [6] were used for high-quality image in-
painting at arbitrary resolutions. Recently, the state-of-the-art for low resolution
image inpainting has been advanced by deep convolutional methods, such as
Zeng et al. [40], Zhao et al. [45], and LaMa [27]. When we compared these meth-
ods, we noticed an interesting trade-off. Patch-based methods such as Patch-
Match [1] can synthesize high-quality texture at arbitrarily high resolution but
often make mistakes regarding structure and semantics. On the other hand, deep
convolutional methods tend to generate inpaintings with plausible structure and
semantics but less realistic textures. Worse still, most deep methods are limited
to output resolutions such as 512 or 1024 pixels image along the max dimension3,
much smaller than modern camera resolutions which are typically 4K or above.

Based on our observations, we first collected a dataset of 1045 high-quality
photos at 4K resolution or above representative of modern sensors and paired
them with freeform and object-shaped hole masks. This dataset has approxi-
mately 2 orders of magnitude more pixels per image than the dataset Places2
[46] that is commonly used for deep inpainting evaluation. Interestingly, pho-
tos in the Places2 dataset often used for evaluation have fewer pixels than the
world’s first digital camera [5], the FUJIX DS-1P, produced in 1988, so com-
mon evaluation practices are more than 3 decades behind sensor technology.
We encourage the community to evaluate on our dataset, since datasets such as
Places2 [46] are not representative of modern camera sensors, and which may
therefore mislead researchers by giving improper guidance to the community.

After establishing the dataset, we next married the complementary advan-
tages of patch-based synthesis in generating high texture quality at arbitrarily
high resolution and deep networks, which can better predict structure and se-
mantics. Our hybrid pipeline works as illustrated in Figure 2. We first inpaint
the hole region using an off-the-shelf deep network, such as LaMa [27], at 512

3 With the exception of HiFill [36] and LaMa [27], which we discuss in related work.
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pixels along the long edge of the image. This method typically establishes a rea-
sonable semantic layout and structure inside the hole. Still, as can be seen in
Figure 1, the texture quality is often poor if we zoom in. Next, we extract sev-
eral guide images using existing methods: depth [37], structure [35], and panoptic
segmentation [17]. We then use these guides in a multi-guided PatchMatch [1]
implementation to perform patch-based image inpainting. Depending on the in-
put photo, the best result may be obtained by different combinations of guides,
so we produce a set of eight guided PatchMatch candidate inpainting results
using multiple combinations of guides.

Besides the novelty of our overall framework, our key technical innovation
is creating a novel automatic curation module whose architecture is shown
in Figure 3(a). This curation module automatically selects one good inpainted
image out of the 8 candidates by an architecture suited for making subtle com-
parisons and contrasts between similar images. It does this by constructing an
antisymmetric 8x8 matrix whose entries are populated in pairs by a network that
learns to predict antisymmetric pairwise human preferences for every possible
pair of candidate inpaintings. The preferred inpainted image is selected by taking
the row with max column sum for the 8x8 matrix. Different from previous work
such as RealismCNN [51] and LPIPS [43] and image quality assessment papers,
our network estimates pairs of entries Mij and Mji at a time for an 8x8 matrix
M that is antisymmetric i.e. M = −MT , and the pairwise structure is critical
because it allows the network to differentiate between subtle feature differences.
On pairs of images, our curation has near-human performance.

We conducted quantitative experiments with metrics commonly used to eval-
uate deep networks and multiple user studies for our evaluation. Our method
dramatically outperforms state-of-the-art deep inpainting methods according to
our quantitative metrics and user studies. User preferences are between 79% and
96% for our method, every one of our 7 user study results in Tables 2-4 has statis-
tically significant preference for ours, and quantitative metrics improve by up to
7.4 times over strong baselines like LaMa [27] coupled with Real-ESRGAN [31].
Because our method uses patch-based synthesis, it can easily scale to arbitrary
resolution: in the supplemental, we show results on images up to 62 megapix-
els. We show in our experiments that our method can be combined with four
different deep inpainting baselines and improves every one of them for modern
camera resolution inpainting according to quantitative metrics and user studies.
Most convolutional models cannot scale to modern camera resolutions, except
HiFill [36] and LaMa [27], which our evaluation shows we outperform.

Our paper contributes: (1) A benchmark dataset of 4K+ resolution images
with holes appropriate for evaluating inpainting methods as they perform on
modern camera sensors and evaluation of 9 methods on this dataset; (2) A novel
high-resolution inpainting framework which shows that deep inpainting models
need not give high quality results only on low resolutions. This framework has a
choice of guides that perform well, which were nontrivial to choose and required
extensive empirical investigations as discussed in Section 4.2, and is the first
to explore combinations of multiple guides with a mechanism to automatically
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choose between them; (3) A curation module (seen for the first time in inpaint-
ing) with near-human performance that chooses a good inpainted image in a
new way by populating an 8x8 antisymmetric preference matrix by comparing
images one pair at a time and column-summing that matrix; (4) State-of-the-art
results on the natural image inpainting task from both quantitative and user
studies, with dramatic improvements over 8 strong baselines; (5) Our method
can be combined with a variety of SOTA deep inpainting baselines and improves
each of them for modern camera resolution inpainting. To enable reproducibility,
we plan to release our full benchmark dataset including results of all methods
and curation module test code and weights.

2 Related Work

Patch-based synthesis and inpainting. Our approach uses the patch-based
inpainting method of Wexler et al. [33] as implemented in the PatchMatch
framework [1]. Inspired by image analogies [12], we added to this basic inpaint-
ing framework multiple guiding channels. Similar guided texture synthesis ap-
proaches have been used for stylizing renderings [9] and stylizing video by exam-
ple [2,15], but the choice of guides is nontrivial and application-dependent : we
performed many empirical investigations of alternative options to finally choose
the guides used in this paper, as we discuss later in Section 4.2. Image Meld-
ing [6] improved patch-based synthesis results with geometric and photometric
transformations and other means. We incorporated a gain and bias term from
that paper to obtain better inpaintings for regions with smooth gradient changes
in intensity. Kaspar et al. [16] performed texture synthesis using a patch-based
optimization with guidance channels that preserve large-scale structures. Several
papers explored initialization and search space constraints that use scene-level
information that is different from ours [11,13,7].

Recently, some papers have explored learning good features by making Patch-
Match differentiable [8,47]. Because of our modern camera resolution photos,
multi-res and many iterations of filling used in PatchMatch [1], and because dif-
ferentiable PatchMatch techniques track multiple candidate patches, the GPU
memory requirements of applying a differentiable PatchMatch naively in our
context are far beyond the capacity of today’s GPUs. Thus, we use a non-
differentiable PatchMatch with off-the-shelf guide features, and rely on the down-
stream curation module to pick good guide features.

Neural network image inpainting. One significant advantage of convo-
lutional neural network inpainting methods is that they can gain some under-
standing of semantic information such as global and local context, edges, and
regions. Context encoders used a CNN to fill in a hole [24] by mapping an image
with a square hole to a filled image. Iizuka et al. [14] used two discriminators to
encourage the global and local appearance to both be reasonable. Yu et al. [38]
proposed a contextual attention model which can effectively copy patches from
outside the hole to inside the hole, however, it is limited in resolution because
of the brute-force dense attention mechanism. Liu et al. [19] and Yu et al. [39]
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improved inpainting results by masking and gating convolutions, respectively.
Zhao et al. [45] better address the situation of large holes by co-modulating the
generative decoder using both a conditional and stochastic style representation.

A number of papers recently attempt to separate the scene in terms of
edges [22,34], structure-texture separation, such as Ren et al. [26] which uses
relative total variation (RTV) [35], or Liu et al. [20]. Our approach is inspired
by these works and uses structure from RTV [35] and a panoptic segmentation
map to guide PatchMatch.

A few recent works attempt to train neural networks that can output higher
resolution results. ProFill [40] uses a guided upsampling network at a resolution
of up to 1K on the long edge. HiFill [36] introduced a contextual residual ag-
gregation module that weights residuals similar to those in a Laplacian pyramid
[4], at up to 8K resolution, but according to our evaluation its results are worse
than our method. The work LaMa [27] was trained on 256x256 patches but can
be evaluated on images up to 2K.

Visual realism. For pretraining our curation network, we use a similar idea
as RealismCNN [51], which learns a visual realism score for composite images
using a large dataset of images and a synthetic compositing pipeline. In our case,
however, we generate millions of fake inpainted images using our pipeline, and
pretrain a network to classify these images as fake and real images as real. In-
spired by LPIPS [43] and image quality assessment (IQA) papers (e.g., [3,28,49]),
we then fine-tune on real human preferences between pairs of synthetic inpainted
images, but we use a different architecture and inference that involves predicting
entries one pair at a time in an antisymmetric matrix and column-summing it.
In contrast, LPIPS [43] learns a symmetric distance metric, full-reference IQA
papers typically are also estimating some perceptual distance that is not anti-
symmetric, and no-reference IQA papers use a single image as input. See Figure 3
for an illustration. Also related is Wang et al. [30], which trains a “universal”
detector that can distinguish between CNN-generated images and real images.

3 Inpainting Dataset

To benchmark the performance of our method and 8 other methods, we collect
1045 high-quality images at modern sensor resolutions from two sources: DIV8K
[10], and a test set portion of the dataset of photos taken by the authors and
their collaborators mentioned earlier in Section 4.3. The photos span a diverse
variety of scenes including indoors and outdoor urban photography including
many architectural styles, nature and wildlife, macro photos, and human subject
photos. The photos are all at least 4K pixels along the long edge. The mean
megapixel count is 20 and the maximum is 45, excluding high-res panos that go
up to 62 MP. DIV8K [10] has previously been used for super-resolution tasks and
contains images with resolutions up to 8K. We chose all 583 images in DIV8K
that were above 4K resolution on the long axis.

For each test image, with equal probability, we sample either a free-form
mask or an instance mask using the same process and hole dataset as in ProFill



6 Zhang et al.

[40]. Different from ProFill, because our photos are from modern sensors, we
generate larger holes with a mean hole size of 2.3 MP: see the supplemental
for details. No test images are seen during training. To enable reproducibility,
we plan to release the testing dataset and results for all methods. Experimental
results are shown later in Section 5.2.

4 Our Hybrid Synthesis Method

4.1 Multi-guided PatchMatch for Image Inpainting

PatchMatch [1] is an efficient randomized correspondence algorithm that is com-
monly used for patch-based synthesis for images, videos [2,15] and neural fea-
ture maps [18,48]. For image synthesis, PatchMatch repeatedly performs match-
ing from the region being synthesized to a reference region: in our case, the
matching is from the hole to the background region. We implement the method
of Wexler et al. [33], with default hyperparameters for PatchMatch (e.g. 7x7
patches) and Wexler et al. One key advantage of PatchMatch is that it can ef-
ficiently scale to arbitrary resolutions while preserving high-texture fidelity. We
extend this basic method in two ways: we allow multiple guides to be used (as
in [12]), and we implement the gain and bias term from Image Melding [6].

For the multiple guides, we modify the sum of squared differences (SSD) used
in Equation (5) of PatchMatch. Instead of computing SSD over a 3 channel color
image, we compute a weighted SSD over a 3 + m channel image with channel
weight wi, where the first 3 channels are RGB and remaining channels are guides.

wi =

{
wc/3 i ≤ 3

(1− wc)/m i > 3
(1)

Using a separate validation set of images and manual inspection, we tried dif-
ferent settings of wc and empirically found the best setting is wc = 0.6 if there
is no structure guide, otherwise wc = 0.3. Structure and RGB information are
highly correlated so we decrease the RGB weight if there is a structure guide.

We implement the gain and bias term from Image Melding [6] because we
find it helps improve inpainting quality in cases where there are subtle gradients,
such as in the sky. We implement this term using RGB color space.

4.2 Guides Used for PatchMatch

We performed extensive investigations of many possible guides, and empirically
settled on the three selected in this paper — structure, depth, and panoptic seg-
mentation — because they worked the best on our validation set. Although our
main novel low-level technical contribution is our curation module that we de-
scribe in the next section, the existence of appropriate guides, the empirical work
needed to choose them and our overall novel multi-guided inpainting framework
with curation also forms a high-level technical contribution.
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Our pipeline works by first inpainting the hole using an off-the-shelf deep
network LaMa [27] at 512 pixels on the long edge and then extracting three guide
images: depth, segmentation, and structure. Depth is a useful cue as regions at
a similar distance from the camera have usually more relevant content. This is
especially important for slanted surfaces (e.g. the ground) where scale and focus
properties of texture vary with depth. We also often want to sample semantically
similar content, motivating the segmentation guide. However, the segmentation
labeling might not be fine-grained enough to distinguish between different types
of floor tiles or wall colors. Therefore we add the structure guide that captures
the main edges and color regions in the image, and abstracts away the texture.

For depth prediction, we used a recent method by Yin et al. [37], which is
retrained using a DPT [25] backbone to obtain better results. For panoptic seg-
mentation prediction, we used PanopticFCN [17] retrained with a ResNeSt [41]
backbone, which obtains a higher panoptic quality of 47.6 on the COCO val
set. For structure prediction, we extract the structure using RTV [35], that was
shown effective for inpainting by Ren et al. [26].

We performed extensive investigations of many alternative possible guides,
and choose these three because they gave the best quality. We tried raw RGB
color instead of structure, but this produced worse results due to patch matching
becoming less flexible (see supplemental for details), Iterative Least Squares
texture smoothing [21], but the latter had color bleeding artifacts that caused
worse inpaintings, and Gaussian blurred RGB color and bilateral filtered RGB
instead of structure, but these produced artifacts in the patch synthesis. We also
tried different segmentation and depth modules and settled on the above ones
because they gave better patch synthesis results.

Is there a universal ‘best’ guide for all images? We find that different choices
of guides may give the best final inpainting result, depending on the input im-
age and hole. Empirically, we find that the structure guide can help PatchMatch
find patches with consistent edges and fine-scale structures, depth guides can
be handy when the images have gradually changing depth such as outdoor pho-
tography, and segmentation guides can be useful when the segmentation map is
accurate for preventing patches from leaking into the wrong semantic or object
region. In general, we find no single guidance map by itself is sufficient to get the
best quality of results, and multiple guidance maps are needed. In many appli-
cations it is desirable to have a fully automatic image inpainting process and we
found that a fixed weighted combination of guides leads to sub-optimal results.
Thus, as shown in Figure 2, we generate a variety of results using different guides
and use our curation module to automatically choose a good one. Specifically, we
use a simple scheme where we can either enable or disable each of our 3 guides,
so the total number of possibilities for guides are 23 = 8, including the use of
no guides, and then we select among those eight generated results. We show an
example of how the guides influence the results in the supplemental.
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4.3 Curation Module

Suppose you are given two inpainted candidate images and asked, “Which of
these do you prefer, or do you have no preference?” We were inspired by how
humans carry out this task: since the images usually look similar, we carefully
compare and contrast between subtle differences in visual features to determine
which image is slightly better overall. Our architecture thus is designed to en-
able such subtle comparisons and contrasts between features within inpainted
images. In Figure 3, we show an architecture diagram of our novel curation
module and a comparison with other common architectures such as LPIPS [43]
and no-reference IQA. Notably, our curation module has a different architecture
and inference methodology that populates entries in a matrix M that is anti-
symmetric due to the paired preference task and column-sums that matrix to
determine the relative preference vector of one inpainting candidate as contrasted
with others.

Fig. 3: Our curation architecture produces scores in an antisymmetric matrix
M that is column-summed. LPIPS [43] produces a symmetric distance score.
Architectures used in RealismCNN [51] and no-reference IQA produce a score
for each candidate image that is independent of the other candidates.

Pretraining. Inspired by RealismCNN [51], our curation network backbone
F is first pretrained to classify for a given image, whether it is a real image
or a fake inpainted image as output by our pipeline. Our reasoning is that we
observed that the initial pretrained network predictions have correlation with
human perception of inpainting quality, and can allow the network to learn
good features over a very large number of photos, but we need to later fine-tune
on human preferences to obtain performance close to humans. We generated a
dataset for pretraining the curation network by collecting 48229 diverse pho-
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tos that are at least 2K in resolution, generating 10 synthetic holes for each,
and then generating 8 guided PatchMatch results. This results in more than 3
million inpainted images at 2K resolution. Our curation network backbone F is
EfficientNet-B0 [29]. We modify the input to take 4 input channels and pretrain
the network from scratch. We trained for one epoch using a binary cross-entropy
loss, after which we obtained train, test, val accuracies of 98.9%, 99.3%, 99.2%,
respectively. Please see the supplemental for more details.

Fine-tuning on human preferences. In nearly all cases, the pretrained
curation network F can easily distinguish between real and our inpainted results,
but it was not specifically trained to predict human preference among different
inpainted results. Therefore, we next fine-tune our network for a paired pref-
erence task. By subsampling the dataset described in the last subsection, and
comparing sampled pairs of the 8 guided PatchMatch results against the oth-
ers, we gather approximately 33000 synthetic inpainted image pairs for which
we gather human preferences. We discuss in our supplemental lessons learned in
gathering these preferences. For each image pair, our model works by featurizing
each of the images in the pair through a shared-weight pretrained EfficientNet
backbone F , and then using a small MLP to predict 3 classes that the human
preference data contain: prefer left image, tie, prefer right image.

In contrast to perceptual distances such as LPIPS [43], we have a different
task where our model predicts an antisymmetric preference. In particular, if one
swaps the left and right image, one would expect the preference for left or right
image to also swap. We thus impose this swapping as a data augmentation,
by doubling each original batch to include a swapped copy of the batch: we
found this accelerates and stabilizes training. We include a variety of standard
augmentations that we list in the supplemental.

Inference for curation. Our network is trained on paired preferences, but
at inference time, we want to compare 8 guided PatchMatch inpaintings and
establish a preference for each, and a preferred ordering. Moreover, in alternative
implementations, one might wish to compare more or fewer images. Thus, to
compare n inpainted candidate images, we form an n × n matrix M , where
Mij is the probability of preferring method i over method j. We establish this

probability for all pairs i, j with i < j by setting o
(k)
ij for k = 1, 2, 3 as the 3

softmaxed outputs of the MLP for the pair, and then compute Mij = o
(3)
ij − o

(1)
ij

and Mji = −Mij . The ground truth and prediction are antisymmetric matrices
i.e. M = −MT . The preference of a given inpainted image i in the context of
the other images is the average of row i of M . In this way, we recover the same
antisymmetric paired preferences in the special case of n = 2, but also generalize
to establishing preferences among arbitrary numbers of images.

The input resolution for our curation network is 512x512, however, the pho-
tographs to be inpainted can have 1 to 2 orders of magnitude more pixels. We
use an operation called “auto crop” to resize a crop region around the hole that
contains approximately 25% hole pixels and surrounding context to the target
resolution. Please see the supplemental for details about automatic cropping.
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5 Experiments

5.1 Curation Module

Method Accuracy Accuracy for
Easy Cases

Human Performance 57.1% (+0.7%) 86.1% (+1.4%)

Our Curation Network 56.4% 84.7%
Ours No Pretraining 53.9% (−2.5%) 78.8% (−5.9%)
Ours Fewer Augmentations 53.8% (−2.7%) 77.8% (−6.9%)
Ours No Mask 52.6% (−3.8%) 72.2% (−12.5%)
Ours Late Fusion Variant 52.6% (−3.9%) 82.1% (−2.6%)
Ours Early Fusion 51.4% (−5.1%) 77.8% (−6.9%)
Ours Freeze Backbone 43.7% (−12.7%) 53.0% (−33.1%)
NIMA[28] w/ MLP 41.4% (−15.0%) 50.0% (−34.7%)
MetaIQA+[50] w/ MLP 41.1% (−15.3%) 50.4% (−34.3%)
Random Chance 33.1% (−23.3%) 30.6% (−54.2%)

Table 1: Curation network performance on human paired preference data, ab-
lations, and comparisons. We report two test set accuracies: over the whole
dataset, and over only easy cases. Our network is competitive with humans and
outperforms all alternatives. Parenthetical numbers are relative to our network.

We show in Table 1 the performance on human paired preference data for
our curation module, ablations, and comparisons. The table is computed from
the human preference dataset previously discussed in Section 4.3. In our user
study, if a human expresses a preference for one image, we ask if the preference is
strong or weak. Because the task itself is challenging, we also report easy cases
as those where mean human preference is strongly for one image.

We list our network and human performance in Table 1. Human preference
is determined by collecting an additional opinion for a random subset of images.
Our curation module outperforms all other alternatives and is only slightly worse
than human performance by both metrics. Although the accuracy for both hu-
mans and ours is “only” 56-57%, this is already much better than random chance
at 33%, and this is because of the difficulty of the task, where for many fills it is
hard to tell whether they are tied in quality or one or the other is preferred. For
easy or unambiguous cases, the accuracies for humans and ours are both much
better, at 85-86%. Since models can overfit to the training set, we always report
the checkpoint with highest validation accuracy.

We next discuss the ablations in Table 1. “Ours No Pretraining” skips the
pretraining, which is necessary for best generalization. “Ours Fewer Augmen-
tations” is an ablation where removing JPEG compression, rotation, and noise
reduces accuracy. For “Ours No Mask,” we do not input the hole mask. “Ours
Late Fusion Variant” modifies the pretraining so instead of using one classifier,
both real and fake image are featurized with a shared-weight EfficientNet back-
bone and compared with an additional MLP. “Ours Early Fusion” modifies the



SuperCAF 11

network by concatenating both images with mask and feeding this through a
single EfficientNet backbone followed by MLP.

We find that fine-tuning only the MLP for the human preference task and
freezing the backbone network weights is insufficient. “Ours Freeze Backbone”
freezes backbone weights after pretraining and only fine-tunes the MLP. Simi-
larly, “NIMA[28] w/ MLP” and “MetaIQA+[50] w/ MLP” use pretrained, frozen
no-reference image quality assessment backbones, and fine-tune the MLP.

Our Table 4 shows that the guided inpainting chosen by our curation module
out of all 8 options outperforms both a random choice of a guided fill and Photo-
shop’s Content-Aware Fill: the outperformance in user preference is particularly
strong. That table is for the inpainting dataset, which is described next.

5.2 Comparison with Other Methods

Methods LPIPS ↓ FID ↓ P-IDS ↑ U-IDS ↑ User Pref. ↑ User Pref. ↑
Full Patch Full Patch Full Patch Full Image Boundary Patch

EdgeConnect [22] 0.05017 35.06 41.05 0.04 4.56 0.00 0.55 - -
Deepfillv2 [39] 0.05295 32.87 36.06 5.54 5.47 1.35 0.84 - -
MEDFE [20] 0.05170 33.97 60.87 0.48 2.23 0.00 0.26 - -
HiFill [36] 0.05213 34.39 31.74 4.15 5.20 0.75 0.97 - -
CoModGAN [45] 0.05099 24.81 32.08 14.72 7.01 4.47 1.51 28 17
MADF [52] 0.04773 23.62 33.21 10.48 6.81 2.14 1.48 6 12
ProFill [40] 0.04783 24.25 31.26 11.35 6.89 2.26 1.31 10 16
LaMa [27] 0.04588 19.20 35.95 17.24 6.86 5.62 1.38 28 22

SuperCAF (Ours) 0.04156 18.74 15.63 22.46 19.77 10.70 10.22 128 133

Table 2: A comparison study with the state-of-the-art inpainting methods. The
top 3 methods are colored: 1, 2, 3.

We compare our algorithm with eight state-of-the-art image inpainting meth-
ods, quantitatively and qualitatively. Among all these methods, HiFill [36] can
run on images up to 8K resolution like our method, the work LaMa [27] states
that they can generalize to higher resolutions up to around 2K, ProFill [40] can
run on images up to 1K resolution, and the rest of the methods can only run on
images up to 512 x 512.

The main focus of our method is inpainting of high resolution images of size
4K and beyond. We thus generate full resolution images for all methods. We
attempted to make the comparison as generous as possible for baseline methods
by applying Real-ESRGAN [31] for super-resolution to increase all methods with
limited output resolution back to the native image resolution. We chose Real-
ESRGAN [31], since it is the state-of-the-art SR algorithm for real-world images
and is robust to visual artifacts in the input. We apply HiFill [36] at native
resolution, and ProFill [40] at its maximum of 1K resolution. For LaMa [27],
we found that although it can be applied at higher resolutions, we obtain best
quality by applying it at a resolution where the maximum axis is 512 pixels.
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Methods LPIPS ↓ FID ↓ User Pref. ↑

ProFill [40] + SR [31] 0.0478 24.2589 21
ProFill [40] + Ours 0.0425 20.4362 179

CoModGAN [45] + SR [31] 0.0510 24.8189 36
CoModGAN [45] + Ours 0.0430 19.9224 164

MADF [52] + SR [31] 0.0477 23.6290 27
MADF [52] + Ours 0.0421 19.9022 173

LaMa [27] + SR [31] 0.04588 19.2022 42
LaMa [27] + Ours 0.04156 18.7414 158

Table 3: A pairwise comparison study
between high-resolution inpainting re-
sults for upsampled by Real-ESRGAN
[31] and results upsampled by our
framework, for four recent inpainting
methods. Users are asked to choose the
best image from a pair for each in-
painting model. The best score is bold.

Methods LPIPS ↓ FID ↓ User Pref. ↑

Content-Aware Fill 0.04675 23.0068 16
Random Guided PM 0.04281 19.7704 24
SuperCAF (Ours) 0.04156 18.7414 60

Table 4: A comparison study with
Photoshop’s Content-Aware Fill,
which is based on PatchMatch [1]
and a randomly selected Guided
PatchMatch baseline. Photos average
20 megapixels and holes average 2.3
megapixels. The user studies are
performed on 100 photographs where
all method outputs are different from
each other. The best scores are bold
text in the table.

Additionally, we tried two scenarios for the baselines: running on the auto-crop
region discussed earlier in Section 4.3 and running on the full image. In our
evaluation we found no advantage for the baselines run on the auto-crop region
so we used the full image scenario.

For the quantitative evaluation, we evaluated six popular metrics: Peak Signal-
to-Noise Ratio (PSNR), SSIM [32], LPIPS [44], the recently improved version
of FID [23], and P-IDS and U-IDS from CoModGAN [45], which were recently
shown to correlate highly with human perception. Because the holes are very
large (2.3 megapixel on average) and valid fills can have quite diverse contents
that differ greatly from the original image, we feel the metrics FID and P/U-IDS
are most appropriate, and we also show LPIPS, and we report PSNR and SSIM
in the supplemental. The quantitative results are shown in Table 2. For P/U-IDS,
because of the dataset size of 1045 images, we also apply vertical and horizontal
augmentation for the full image to improve convergence of those metrics.

In Table 2, we report quantitative metrics for two scenarios: “full” indicates
a square crop region around the entire inpainted region was used, as determined
by auto-crop Section 4.3, and “patch” indicates 10 smaller randomly sampled
256x256 crop regions drawn at consistent position from locations where the
patch center is a hole pixel. We note that ours outperforms all baselines by
the metrics in the table. We particularly note that in the patch scenario, for the
metrics FID, P-IDS, and U-IDS, we dramatically outperform the SOTA method
LaMa [27] by factors between 2.3 to 7.4 times, and the outperformance can be
even greater for other methods. This is because our method has much higher
texture fidelity at the finest resolutions, since it can copy relevant background
patches via PatchMatch. These textures form a coherent whole, as indicated by
outperformance via other metrics.
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As often mentioned in the inpainting literature (e.g., [38,39]), image inpaint-
ing lacks a good quantitative evaluation metric, and there is no single metric
that can be used to gauge real image quality. Thus, we also conduct two user
studies for randomly sampled 200 test images in comparison with the top four
methods using Amazon Mechanical Turk. For the first user study, we use the
“full” image scenario described earlier, and in the second user study, we use a
“boundary patch” setup. The boundary patch is determined by randomly sam-
pling a 512x512 crop region, centered on a boundary pixel of the hole region. This
setup allows human participants to easily contrast the texture synthesized inside
the hole with that in the background region, and thus assess the suitability of
methods for inpainting at modern camera resolutions. In the user study, we give
user output images from all methods with randomized order, and ask users to
pick the best image for each case. For each of the two user studies, we recruited
more than 150 users and asked each user to evaluate a randomly sampled batch
of 20 images from the whole test set. The study results are shown in the last
two columns of Table 2. In the “full” scenario, our automatically selected guided
PatchMatch outperforms the other methods by a large margin of 4.6 times to 21
times, and in the “boundary patch” scenario, our method outperforms alterna-
tives even more strongly, by 6 times to 11 times. Users in general very strongly
prefer our method for inpainting at modern camera resolutions, but in the crop
scenario where a user focuses on high-resolution detail — as might be important
for large displays or large format prints — our method performs better still.

In Table 3, we show our method can be used in combination with 4 differ-
ent baseline methods that perform the initial coarse-scale inpainting: ProFill[40],
CoModGAN [45], MADF [52], and LaMa [27]. In every case, our method outper-
forms the baseline with Real-ESRGAN [31] super-resolution applied. We ran user
study containing pairs of images, and found the user study preferences strongly
prefer our method, with between 4.5 and 8.5 times higher preference for ours
over the baseline. Our method is suitable when combined with a variety of deep
inpainting baselines, and greatly improves user preference over alternatives. We
show similar results for 3 older inpainting models in the supplemental.

In Table 4, we compare our method to two other baselines: Photoshop’s
Content-Aware Fill (CAF), which is based on PatchMatch [1], and a baseline
that randomly picks with equal probability one of our eight guided PatchMatch
results. Our method again performs best for the quantitative metrics. We ran a
user study on 100 images where all methods have different outputs, and again
find our method is strongly preferred 3.4 to 4 times more than the other two base-
lines. This indicates that our method outperforms a strong commerical baseline
of Photoshop’s CAF, which is used by professionals to manipulate photos at
modern camera resolutions, and shows that our curation outperforms a random
guided PatchMatch result. We include many photographic results in our supple-
mental material, and show that the preference for ours is statistically significant
for all 7 of the above user studies.
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Fig. 4: Results for our method and two baselines with Real-ESRGAN, for (from
top): a 26 MP nature panorama with real hole, a 20 MP photo with random
scribble hole, a 12 MP lake photo with random scribble hole, a 12 MP field
photo with an instance hole. Please check out supplemental for visual results.

5.3 Running Time

On a 3.6 GHz 8 core Intel i9-9900K with 11 GB NVidia RTX 2080 Ti, for
a representative 12 MP image with 4K resolution, our naive implementation
takes 23.0 seconds, and our optimized implementation takes 2.5 seconds by ini-
tially computing PatchMatch results at 1K, running curation, then using another
PatchMatch to obtain the 4K result.

6 Discussion, Limitations, Future Work

Our method has some limitations, which could be mitigated through user in-
teractions such as manually picking guides. Generally, PatchMatch is good at
synthesizing texture and repetitive regular structures, but structures under per-
spective transformations in architecture can be broken. We occasionally observe
small amounts of blur especially near the hole boundary: this might be addressed
by using curation in a smarter way such as an iterative fill [40,42]. Occasionally,
we observe repetitions of salient patches: these might be mitigated by incorpo-
rating patch usage budgets [9,16] combined with saliency. GANs may produce
amazing results by hallucinating content not present in the input image, but they
can also hallucinate bizarre artifacts. We use patch-based synthesis throughout
the image, however, patch-based synthesis can remove unique features, so the
result could be allowed to deviate from patch-based synthesis if we believe a
hallucinated output is a good one.
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9. Fǐser, J., Jamrǐska, O., Lukáč, M., Shechtman, E., Asente, P., Lu, J., Sỳkora,
D.: Stylit: illumination-guided example-based stylization of 3d renderings. ACM
Transactions on Graphics (TOG) 35(4), 1–11 (2016) 4, 14

10. Gu, S., Lugmayr, A., Danelljan, M., Fritsche, M., Lamour, J., Timofte, R.: Div8k:
Diverse 8k resolution image dataset. In: 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW). pp. 3512–3516. IEEE (2019) 5

11. He, K., Sun, J.: Statistics of patch offsets for image completion. In: European
conference on computer vision. pp. 16–29. Springer (2012) 4

12. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-
gies. In: Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. pp. 327–340 (2001) 4, 6

13. Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Image completion using planar struc-
ture guidance. ACM Transactions on graphics (TOG) 33(4), 1–10 (2014) 4

14. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image com-
pletion. ACM Transactions on Graphics (ToG) 36(4), 1–14 (2017) 4
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