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1 Details of Audio-Driven Reenactment

We introduce the extension of our framework to tackle the audio-driven facial
reenactment task via directly predicting the motion from audio features in the
manuscript. Here, we complete the remaining details of network structure and
training objectives.
Network Structure. The network structure of the audio-driven motion gen-
erator is similar to the proposed video-driven motion generator. Differently, the
driving signal comes from audio. Thus, we transform the original audio to Mel-
Spectrogram first. Then we use an MLP to squeeze the temporal dimension.
Finally, these features are injected into the network via AdaIN.
Training Objectives. As for the loss function, similar to our video-driven
motion generator, we calculate the loss between the driving image It and the
warped image Îaudio using the perceptual loss and the L1 loss. Differently, we use
a mask strategy to increase the weight of the mouth area. The mask is obtained
by calculating the bounding-box of the landmark points around mouth. The loss
is defined as:

La
t =

∑
i

∥M · ϕi(It)−M · ϕi(Îaudio)∥1 + λa
1 · ∥M · It −M · Îaudio)∥1, (1)

where λa
1 is the hyper-parameter. And in practice, the mask M is in the soft

form.
Besides, since the artifacts always happen in the masked region, we design

a regularization loss to make sure the consistency of the non-masked region
between the proxy input Îvisual and the warped image Îaudio:

La
reg =

∑
i

∥(1−M) · ϕi(Îvisual)− (1−M) · ϕi(Îaudio)∥1. (2)
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(yang.yujiu@sz.tsinghua.edu.cn).



2 Fei Yin et al.

8⨉8 16⨉16 32⨉32 64⨉64

128⨉128 256⨉256 512⨉512 1024⨉1024Driving

Source

Fig. 1. Study for which layer to operate on.

Finally, to make the lip movement be more consistent with audio, we employ
a lip-sync discriminator Dsync that is trained for the synchronization between
audio and video by SyncNet [1]. The synchronization objective can be defined
as:

La
sync = −E[

i+2∑
t=i−2

log(D(Îaudio,a))], (3)

where Dsync requires 5 consecutive frames as input.
The total loss can be defined as:

La = La
t + λa

r · La
reg + λa

s · La
sync, (4)

where λa
r and λa

s are the corresponding weights.
Joint Training with Calibration Network. To alleviate the artifacts intro-
duced by warping, we joint train the whole framework after pre-training the
motion generator. The objective is a weighted summation of the loss of calibra-
tion network and the audio-driven motion generator as follows:

Lc = Lc
t + λc

d · Lc
domain + λc

adv · Lc
adv + βa · La, (5)

where λc
d, λ

c
adv, and βa are the corresponding weights.

2 Study on Warping Layer Selection

We investigate the strong spatial prior preserved in the feature space of pre-
trained StyleGAN in Sec. 3 in the manuscript. Here, we provide a study to
determine the proper layer for performing the spatial transformation. We first
randomly sample the style latent code w in W+ space to generate a ran-
dom face image with the pre-trained StyleGAN and obtain spatial features
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[f4×4,f8×8, . . . ,f1024×1024] in F space. Then we perform a warping operation
on each feature map individually and feed it with the rest fixed style code into
StyleGAN. The results are shown in Fig. 1. We can observe that warping lower
layers cannot accurately control pose and expression while warping higher layers
yields ghost shadows on the synthetic image. In order to reduce the semantic
information lost by subsequent operations as much as possible and reduce the
number of parameters for the calibration network, we choose the layer f64×64 as
a balanced choice.

3 Additional Experiment Details

3.1 Settings

Dataset Preprocessing. We train the two motion generators on the VoxCeleb
dataset [5]. Following [7], we preprocess the data by cropping faces from the
videos and then resizing them to 256× 256. Faces are not aligned and can move
freely within a fixed bounding box. To be consistent with videos at 25 fps,
we extract Mel Spectrogram as acoustic features a ∈ R80 per second by Fast
Fourier Transform (FFT) in advance. We take the continuous temporal window
coefficients as the current time feature. We joint train the whole framework on
the HDTF dataset [10]. The resolution of original videos is 720P or 1080P , which
is higher than that of VoxCeleb. The videos are cropped in the same manner as
processing VoxCeleb and then resized to 512× 512.
Implementation Details. We train the two motion generators and the cali-
bration network in two stages. In the first stage, we pre-train the video-based
motion generator on VoxCeleb for 200K iterations. Then, we formulate train-
ing pairs for the audio-based motion generator by using the predicted motion
as the pseudo label. We pre-train the audio-based generator with synthesized
audio-motion pairs for 200K iterations. The trade-off hyper-parameters are set
to λa

1 = 10, λa
r = 0.1 and λa

s = 1. The optimizer for both pretraining processes
is ADAM [4] with an initial learning rate of 10−4. The batch size is set to 20 for
all experiments.

In the second stage, we first jointly optimize the calibration network and
the video-based motion generator in an end-to-end manner on HDTF for 20K
iterations. The hyper-parameters are set to λc

1 = 10, λc
d = 0.01, λc

adv = 0.1,
βv = 0.01, and βa = 0. The learning rates are set to 10−4 and 2×10−5 for them,
respectively. Then, we fix the video-based motion generator and jointly optimize
the calibration network and the audio-based motion generator for 20K iterations.
The hyper-parameters are set to λc

1 = 10, λc
d = 0.01, λc

adv = 0.1, βv = 0, and
βa = 0.01. The learning rates are set the same as the above optimization.

During inference, the two motion generators can be used individually or
jointly. When using both of them, the video-based motion generator controls the
head pose while the audio-based motion generator controls the lip movement.

The GAN inversion is used to get the spatial feature maps in our framework.
Optimization techniques can achieve more accurate reconstruction results, but
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Fig. 2. Qualitative results of audio-driven talking face generation.

they are not efficient. While learning-based techniques are much faster, they
encounter lower reconstruction quality. Considering the efficiency, we exploit
a state-of-the-art learning-based inversion method [8] during training. During
inference, we first use [8] to obtain the style codes and feature maps. For motion
transfer tasks, we further exploit an optimization-based inversion method [11] to
optimize latent feature maps for 250 iterations with fixed style codes. For editing
tasks, we directly use the style codes and feature maps from [8] to preserve edited
semantic information.

Evaluation Metrics. We exploit a set of metrics to evaluate image quality
and motion transfer quality. For image quality, Learned Perceptual Image Patch
Similarity (LPIPS) [9], Peak signal-to-noise ratio (PSNR) are utilized as metrics
to measure the reconstruction quality. Structural Similarity (SSIM) is utilized to
measure the structural similarity between patches of the input images. Frechet
Inception Distance (FID) [3] is utilized to measure the realism of the synthe-
sized results. To measure identity preservation, we compute the cosine similar-
ity (CSIM) of identity embeddings between the source images and the generated
videos extracted from ArcFace [2]. For motion transfer quality, following [6], Av-
erage Expression Distance (AED), and Average Pose Distance (APD) are used
to compute the differences between generated images and target images in terms
of 3DMM expression and pose, respectively.
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3.2 Additional Results

Results of Audio-Driven Talking Face Generation. In our framework, the
audio-based motion generator can work either individually or jointly with the
video-based motion generator. The visual results of both cases are illustrated in
Fig. 2. The first row represents the videos that provide the audios. The first col-
umn represents the source portraits to be animated. Synthesized faces from the
2nd to 4th column are generated purely by the driving audio. While synthesized
faces in the last three columns are generated according to both the driving video
and audio. The driving video controls the head pose while the audio controls the
lip movement.

For the audio-driven case, it can be observed that the generated lip move-
ments are consistent with those of the ground-truth video for different source
portraits. For the audio-and-video-driven case, the results show that the pose
is accurately controlled by the video and the lip movements are still consistent
with those of the video. Both the visual and acoustic control can generalize to
different identities.
Attribute Editing Results. We provide additional global attribute editing
results via modifying the style codes gradually in the video generation process.
The edited attributes include decreasing age, increasing age, adding makeup and
adding beard. The results are shown in Fig. 3 and Fig. 4.

3.3 Video Results.

To better demonstrate the temporal consistency and flexible editability of our
synthesised results, we provide a demo video in the supplementary.
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Fig. 3. Global attribute editing via GAN inversion. The attribute is gradually modified
in each generated talking video.
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Fig. 4. Global attribute editing via GAN inversion. The attribute is gradually modified
in each generated talking video.
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