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6 Appendix: SURF-GAN

In this section, we supplement contents that are not covered in the main paper,
i.e., additional details, experiments and discussion about the proposed SURF-
GAN.

6.1 Additional implementation details

Training details. The maximum resolution of SURF-GAN, as well as π-
GAN [3], which allows stable learning is 642 in our setting, it is because 3D-aware
GANs (especially pure NeRF-based GAN) require computationally expensive re-
sources for training. Following π-GAN, we adopt the progressive growing strategy
that the size of the generated image increases progressively. Unlike 2D GANs,
the generator does not actually “grow”. Instead, the number of sampled rays
increases. Because NeRF-based model can be seen as an implicit continuous
function, thus it is theoretically possible to generate arbitrary resolution im-
ages. Therefore, only the discriminator adds new layers at each stage to handle
higher resolutions. We start training at 322 and it is doubled at the next stage. In
training phase, the control parameter z is sampled from the standard normal dis-
tribution. The camera pose (pitch and yaw) are sampled from the approximated
distribution (normal distribution) of dataset. We assume a perspective pinhole
camera where the field of view (FOV) is 12◦. The number of sampled points
in each ray is 24 (12 from coarse sampling and 12 from hierarchical sampling).
We exploit non-saturating GAN loss with R1 penalty [16] following π-GAN. In
addition, there is orthogonal regularization of basis (Lreg) as explained in Sec.
3.1. Finally, pose loss is adopted optionally on different purposes we discuss it
in Sec. 6.4. We adopt ADAM [14] optimizer with β1 = 0 and β2 = 0.99, and the
learning rate is set initially to 0.0001 and it is halved in the next stage.

SURF-GAN architecture. The architecture of SURF-GAN generator is il-
lustrated in Fig. 1. The discriminator is same with that of π-GAN [3] except the
last layer. Besides the adversarial term that distinguishes real or fake, there is an
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Fig. 1: Details of SURF-GAN generator.

Table 1: Quantitative comparison of SURF-GAN and π-GAN. Each method is
trained on 642 images and the test is conducted on rendered 1282 images.

Method π-GAN SURF-GAN
Dataset CelebA FFHQ CelebA FFHQ

FID (↓) 29.54 47.12 28.88 44.56
Pose err.(×10−2) (↓) 5.81 3.35 6.10 2.69

ID (↑) 0.65 0.63 0.68 0.66
Runtime (↓) 0.10 0.11

additional branch that predicts the pose (i.e., pitch and yaw) of an input image.
This branch is utilized if the pose loss is adopted, otherwise it is discarded (same
as π-GAN).

6.2 Comparison with π-GAN

We present the comparison results of SURF-GAN with its baseline, π-GAN
(Table. 1). Both approaches belong to pure NeRF-GAN, which consists of NeRF
networks without following 2D layers. We evaluate FID score [9], pose accuracy,
and multi-view consistency of each method. We compute FID score between
50k of generated images and 70k of real images in each dataset. Off-the-shelf
3D model (3DDFA [25]) is utilized to evaluate pose accuracy. The reported
pose error (Pose err.) is calculated by averaging the difference between target
poses and predicted estimated poses. Multi-view consistency (ID) is evaluated
by calculating cosine similarity between canonical view image and others from
ArcFace [4]. Although π-GAN shows slightly better results in the pose accuracy
of CelebA and runtime, SURF-GAN delivers competitive and superior results.
For both models, the increased pose error in CelebA is expected to be due to an
alignment issue.



Injecting 3D Perception of 3D-aware SURF-GAN into 2D StyleGAN 3

Field of view

L0D5 (Head width)

L7D2  (Hue)L4D2  (Background)

L2D3 (Skin color)

L0D4 (Eye gaze)

Fig. 2: Additional attributes discovered by SURF-GAN which are not presented
in the main paper (CelebA).

6.3 Additional discovered attributes by SURF-GAN

We present the additional attributes in CelebA dataset which are not introduced
in the main paper (Fig. 2). Note that “Field of view” is not an discovered at-
tribute, but can be controlled in volume rendering. We also report the semantic
attributes of FFHQ in Fig. 3.

6.4 Discussion

Effect of the bottom noise. In addition to the layer-wise latent z, our gen-
erator also takes the bottom noise ϵ as an additional input to capture missing
variations (Sec. 3.1). Therefore, the intended role for ϵ is to capture the minor
variations that have less or not semantic meaning but enhance diversity. Fig. 4
presents generation results when changing only ϵ. As can be seen, the generator
synthesizes the images with minor variation while preserving facial identity.

Effect of the progressive growing. As mentioned in Sec. 6.1, we adopt the
progressive growing for training. To demonstrate the effectiveness of the strategy,
we report FID score of the variants of our method (i.e., w./ and w.o./ progressive
growing) for every 1000 iterations. As can be seen the FID curve in Fig. 5, there
is a gap between two variants.
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Fig. 3: Semantic attributes discovered by SURF-GAN when using FFHQ dataset.
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Fig. 4: The bottom noise ϵ captures subtle variations (64× 64 images).
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Fig. 5: FID curve of two variants of SURF-GAN, i.e., with and without progres-
sive growing on CelebA (64×64).

Table 2: Ablation study for training SURF-GAN with and without the pose loss
on FFHQ (128×128).

w.o./ Lpose w./Lpose

FID (↓) 44.56 45.92
Pose err.(×10−2) (↓) 2.69 2.36

Effect of the pose loss. To improve the pose accuracy, we additionally adopt
pose loss Lpose for training and compare with the original SURF-GAN (w.o./
Lpose). Lpose is calculated as the difference between input viewing directions of
generator and those predicted by the discriminator. It is not an adversarial loss,
thus both the generator and discriminator learn to minimize the loss. The results
are listed in Table. 2. The introduction of Lpose reduces pose error (Pose err.),
but sacrifices the visual quality. We exploit this model (w./ Lpose) for training
3D-controllable StyleGAN (Sec. 3.2) to offer more elaborate pose samples.

6.5 Limitation.

Although SURF-GAN has several clear advantages such as controllability, there
are still inherent limitation as like other 3D-aware GANs. In our model, the color
and density of all the points in the rays are calculated independently, thus the
amount of computation required to synthesize images increases exponentially
as the resolution increases. Such issue has been the catalyst for introducing a
method of injecting the prior of SURF-GAN into an efficient and expressive
StyleGAN2 generator [13]. It will be one of our future work to achieve high-
resolution with clever and efficient ways, e.g., adopting 2D modules [2, 7, 18,
6]in SURF-GAN generator. The other minor limitation is that the same layer
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does not always capture the same properties for each training. For example,
even if a specific dimension (e.g., L3D2) of the trained SURF-GAN captures
hair color, the same dimension might capture different attributes in the newly
trained model. It seems natural because our method is based on unsupervised
training, but it makes the process of assigning properties of each layer necessary
after training.

7 Appendix: 3D-controllable StyleGAN

This section presents additional experiments and discussion about 3D control-
lable StyleGAN.

7.1 Implementation

Latent mapper. The latent mapper consists of five FC layers. It takes an input
vector in W+ space and converts it to a canonical vector with the same size.
However, the latent mapper does not edit all elements of 18 × 512 vector, but
edits first four style vectors which have known to related to pose [12, 23] (Sec.
4.1), i.e., the input size of the latent mapper is 4 × 512. Input feature is firstly
flatten to 2048-dimensional vector and then converted to intermediate feature
∈ R512. After going through three intermediate layers, the feature is converted
to the canonical vector ∈ R4×512 in the last layer.

Training details. We leverage SURF-GAN as a multi-view image generator
to train 3D-controllable StyleGAN. As described in Sec. 3.2, the poses of source
and target images are randomly sampled from pre-defined distribution. In order
to train diverse pose angles, we sample pitch and yaw from uniform distributions
instead of Gaussian distribution, i.e., the value of pitch and yaw are uniformly
sampled from [−30◦, 30◦] and [−45◦, 45◦], respectively. The resolution of the
rendered images is 2562 that is same with input size of pSp encoder [19]. We use a
pretrained StyleGAN2 (10242) generator for experiments except for MetFace [10]
stylization (here we use a 2562 generator for transfer learning).

7.2 Discussion

Sub-directions. To demonstrate the effectiveness of exploiting orthogonal di-
rections (sub-directions) described in Sec. 3.2, we introduce an interpolation

example in Fig. 6. Among learned sub-directions, we select two directions
−→
d1

and
−→
d2 , where both vectors control yaw. As can be seen in the left side of Fig. 6,

they influence almost similarly in small pose variations. However, they shows
different interpolation outputs when checking the results by scaling both vec-

tors. It means
−→
d1 is more involved than

−→
d2 for generation of images with large

pose variations.
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Fig. 6: Example of non-linearity in pose-related vectors. The blue numbers below
the figures indicate the detected poses.

Table 3: Results of the identity similarity between two decoded images and dif-
ference of the estimated poses between SURF-GAN image and the corresponding
image decoded by StyleGAN.

SURF-GAN Decoded.
ID 0.66 0.73

Pose diff. 0.003

SURF-GAN-generated images generalization. We train the latent map-
per and the learnable directions using SURF-GAN. The objective function is
calculated with the images decoded by StyleGAN. However the question that
may arise here is “Can SURF-GAN-generated images be generalized to the train-
ing process?”. To answer the question, we conduct simple experiments. First, we
measure the cosine similarity of two decoded images at different pose angles us-
ing ArcFace [4] , and also evaluate how much the pose changes in the decoded
image using off-the-shelf pose detector. [25]. The former and the latter are for
checking whether identity and pose are maintained, respectively. Although there
is a domain gap between SURF-GAN and StyleGAN, the two images with the
same identity in SURF-GAN domain maintain the same identity in StyleGAN
domain as can be seen Table. 3. Moreover, the pose of the SURF-GAN-generated
image is hardly changed by the GAN inversion or decoding.

Extreme cases. As mentioned in Sec. 7.1, we set the poses for training within
a certain range because there are few images with extreme poses in the FFHQ
dataset. Nevertheless, we validated the extreme case by giving a large value
beyond the pose range as input and observed that there are some cases where
plausible images are obtained as shown in Fig. 7.

7.3 Additional comparison results

In this subsection, we supplement extra experimental results and discussion to
demonstrate the effectiveness of our method.
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Fig. 7: Experimental results on extreme poses beyond the range for training.

3D-controllable image synthesis. We first present the additional qualitative
comparison with 3D controllable generative models compared in Sec. 4.3. Here
we add one more baseline, DiscoFaceGAN [5] which is based on 3DMM. Although
DiscoFaceGAN does not allow explicit control over the camera pose, it can be
implicitly manipulated by an input latent. Therefore, we display the interpolated
images by appropriately adjusting the angles of the images at both ends.

Novel view synthesis. We describe the details not covered in Sec. 4.4 and
also present additional qualitative comparison with the competing methods [3,
15, 24] for novel view synthesis (Fig. 9). For all methods, we use the official
implementations provided the authors.

π-GAN leverages a latent optimization method [13] to overfit the latent code
to the testing image. π-GAN is a 3D-aware generator and learns 3D geometry
from unlabelled 2D images without 3D supervision. However, when it is applied
to novel view synthesis, π-GAN needs camera extrinsics from the testing image
to initiate the following iterative optimization (700 iterations). For the camera
pose, we exploit off-the-shelf pose detection method [8]. As shown in Fig. 9, the
visual quality deteriorates as it deviates from the original pose. It is difficult to
generate the radiance field of the target image only with latent code optimization
and a small error in the pose estimation greatly affects the result. In addition, it
takes a lot of time (164 sec.) to get results for a single image due to the iterative
optimization. This is why we excluded π-gan from the quantitative experiment
in Sec. 4.4.

For ConfigNet [15], the real data encoder firstly predicts the latent embed-
ding of a testing image, and then fine-tunes the generator on the image (50
iterations). To handle a real image, it requires pre-processing to align facial im-
ages using landmarks from OpenFace [1]. Although it shows an overwhelming
runtime in random image generation compared to other methods (Sec. 4.3), the
runtime drops significantly due to the introduction of the face detection model
in novel view synthesis (Sec. 4.4). Note that the reported runtime in Sec. 4.4
(2.13 sec.) does not include the fine-tuning procedure. The whole process takes
about 11.25 seconds (9.12 sec. for fine-tuning). Furthermore, ConfigNet struggles
to synthesize images with large pose changes.
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Rotate-and-Render (R&R) is a face rotation method using off-the-shelf 3D
fitting network [25] in the overall model, thus it takes some time for 3D fitting
(Sec. 4.4). R&R successfully generates a novel view compared to the previously
described methods. However, it loses some details of the original image such as
hair or background.

Comparison with latent-based models. The pose editing of our method is
based on latent manipulation. We introduce comparison results with the existing
latent-based method [20] that discovers pose-related direction in the latent space
of StyleGAN (Fig. 10). Although InterFaceGAN [20] successfully disentangles
the pose attribute, it requires supervision (landmark) for binary classification of
yaw in order to find a semantic hyperplane. As Tov et al. [21] have investigated,
the results of pose editing with the W+ vectors inverted by pSp [19] shows poor
editability. It is alleviated by exploiting e4e encoder [21], but the identity of the
input is not well maintained. Above all, the important limitation of latent-based
models as well as InterFaceGAN is that they only allow implicit control over pose.
Although it is not unfeasible to generate a target pose using these methods, the
process might require a few adjustments to obtain an accurate result. Nitzan et
al. [17] have introduced the latent-based linear regression method by showing
yaw angle has a linear relationship with the distance from InterFaceGAN’s yaw
hyperplane. Nevertheless, the linearity is not always guaranteed (Fig. 6), and
obtaining the hyperplane requires supervision as mentioned above. There may be
an clever alternative to acquire the hyperplane without supervision by leveraging
the concept of flipping image [22], but it can be applied only to yaw, not other
properties such as pitch or field of view.
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Fig. 8: Additional qualitative comparison with 3D-controllable generative mod-
els.
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Fig. 9: Additional qualitative comparison with methods which are capable of
novel-view synthesis from a single portrait image.
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Fig. 11: Editing results of semantic attributes by calculating the direction vector
with images generated by SURF-GAN.

FOV 

control 

Pitch 

control

Fig. 12: Failure cases of our method (red box). For FOV control, we additionally
used FOV as a conditional input for training as well as pitch and yaw.

7.4 Semantic attribute editing

In Sec. 4.5, we presented the results of semantic attribute editing using SURF-
GAN, where the direction was calculated by subtracting two inverted SURF-
GAN images using pSp encoder [19]. However, there is a trade-off between dis-
tortion and editability as Tov et al. [21] demonstrated. As a result, some local
attributes in Sec. 4.5 are not changed successfully. Although there might be an
effect that we use simple vector arithmetic, the main reason is that the W+
space shows weak editability. To address the issue, we investigate the editing
results when using e4e [21] encoder to calculate the direction vector and obtain
plausible editing results as shown in Fig. 11. Note that SURF-GAN samples in
Fig. 2 and Fig. 3 are utilized for calculating the directions.
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7.5 Limitation

Although StyleGAN can generate diverse portrait images with high quality, it
struggles to generate out-of-distribution images that do not appear in dataset.
Therefore, our method also cannot generate those images because our method
does not deviate the latent space of StyleGAN. In addition, our method is also
affected by the performance of GAN inversion, thus the performance of our model
is not guaranteed for images where the inversion method does not work well. We
select several failure cases of our method in Fig. 12. The other limitation is that
as like other pose-disentanlged GANs, our method is not capable of generating
3D representations (e.g., mesh or radiance field). Hence, when it comes to video
generation, it shows the problem of “texture sticking” [11] (especially in hair)
which is one of the most obvious artifacts in GAN generated videos.
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