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Abstract. Neural Radiance Fields (NeRF) show remarkable ability to
render novel views of a certain scene by learning an implicit volumetric
representation with only posed RGB images. Despite its impressiveness
and simplicity, NeRF usually converges to sub-optimal solutions with in-
correct geometries given few training images. We hereby present GeoAug:
a data augmentation method for NeRF, which enriches training data
based on multi-view geometric constraint. GeoAug provides random ar-
tificial (novel pose, RGB image) pairs for training, where the RGB image
is from a nearby training view. The rendering of a novel pose is warped
to the nearby training view with depth map and relative pose to match
the RGB image supervision. Our method reduces the risk of over-fitting
by introducing more data during training, while also provides additional
implicit supervision for depth maps. In experiments, our method signif-
icantly boosts the performance of neural radiance fields conditioned on
few training views.

Keywords: Neural Radiance Fields, Few-Shot Learning, Unsupervised
Depth Estimation

1 Introduction

To sense and infer our 3-dimensional world is a natural and fundamental ability of
human beings. However, not until recently did we find how remarkable the ability
is when creating virtual reality (VR) systems. We can memorize a scene from one
perspective and imagine its appearance from another viewpoint with no effort,
yet for a VR system, it is quite difficult to develop an automatic algorithm which
is able to render photo-realistic images for a novel view. This task is challenging
since it not only requires to understand the 3D scene geometry, but also needs to
synthesize high-frequency textures with complex viewpoint-dependent effects.

Recently, real progress has been made on novel view synthesis. A representa-
tive work is Neural Radiance Fields (NeRF) [22], which learns an implicit scene
representation and generate images with volume rendering. When trained on
a specific scene, a Multi-layer Perceptron (MLP) is used to estimate the vol-
ume density and color for each point in the space. Volume rendering is then
used to generate the RGB image, supervised by the ground truth image with
a photometric reconstruction loss. NeRF has shown its exceptional ability on
high-quality image synthesis, while being conceptually simple and easy to train.
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Fig. 1: NeRF overfits to few training views. NeRF produces favorable
rendering result for training views, while fails to generalize to novel views. NeRF
also struggles to learn the correct geometries with few training views.

Typically, NeRF needs a large amount of input views for simultaneous ge-
ometry and appearance reconstruction with high fidelity. If the training views
are inadequate, NeRF tends to overfit the limited training samples. Satisfactory
images could only be produced at observed poses, while the renderings under
novel views are polluted with many artifacts. A comparative example is shown
in Fig. 1. The reason is that NeRF cannot infer the correct 3D geometry from
limited views with only RGB image supervision, resulting in a sub-optimal so-
lution which cannot generalize to novel views [41]. Fig. 1 also illustrates that
the depth maps for neither the training view nor the novel view are correctly
inferred. Several works [40,33,35,12,6] have been proposed to address this prob-
lem, among which DSNeRF [6] shows its simplicity and effectiveness by adding
sparse depth as an additional explicit supervision.

In this work, we aim to improve the performance of NeRF with few train-
ing views. A straightforward way is to increase the training samples by data
augmentation. Meanwhile, DSNeRF [6] also shows that adding depth supervi-
sion is a valid strategy. To this end, we propose GeoAug, a data augmentation
method for NeRF based on geometry constraint with implicit depth supervision.
In addition to the original training views, we first generate camera poses under
novel views and render the corresponding images. Since ground truth images are
not available for novel views, we warp the rendered images to nearby training
views based on the predicted depth maps and relative camera poses. Then we
can impose a photometric loss between the warped images and training images.
A comprehensive illustration is shown in Fig. 2. Since the warping operation is
differentiable and involves depth information, the model is encouraged to learn
depth estimation implicitly, which could be seen as a strong geometric constraint.

Our method is inspired by prior work [43] which aims for unsupervised depth
estimation by means of view synthesis. In [43], view synthesis serves as a proxy
task which forces the network to infer the depth map, based on the insight
that a view synthesis system could only perform well across multiple views if
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the scene geometry is modeled correctly. Our work follows the same insight,
except that we focus on view synthesis as the primary task and uses the implicit
depth estimation as an extra regularizer. Compared to DSNeRF [6] which uses
explicit and sparse depth supervision, our method provides implicit and dense
depth signal. Both GeoAug and DSNeRF discover supervision signal for free,
while being complementary to each other and easy to integrate into other NeRF
based models. Empirical evaluations on NeRF Real [22,21] and DTU [13] datasets
demonstrate the effectiveness of our approach on improving the synthesis quality
with few training views.
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Fig. 2: Overall pipeline of training NeRF with GeoAug.We first sample a
random camera pose (termed as Cam1) from training set, render its appearance
image (img1) and depth map. A novel camera pose Cam2 is then created by
adding noise to Cam1. The appearance image (img2) of Cam2 is rendered and
warped to Cam1 with depth map and the relative pose between Cam1 and Cam2.
Both img1 and the warped-img2 are supervised by the ground truth image of
Cam1.

2 Related Work

Novel View Synthesis. The literature of novel view synthesis could be roughly
categorized into two classes: 1) explicit 3D reconstruction and 2) implicit repre-
sentations. For approaches in the first category, the 3D geometry and appearance
is explicitly represented by point clouds [37], voxels [20,30], meshes [29,11,15], or
multi-plane images [44,34,21,7,5]. Once the 3D scene is reconstructed, it is trivial
to render the 2D image under arbitrary view. These approaches are computa-
tionally efficient, while having the merit of straightforward to check and modify
the 3D structure. However, these methods are typically difficult to optimize due
to the discontinuous nature.
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On the other hand, implicit approaches[25,39,8,22,31] directly model the ap-
pearance of 3D scene. Without the need to represent geometry explicitly, means
of discretization, i.e. creating voxel, mesh or multi-plane, are not adopted. There-
fore, images under arbitrary views could be synthesized continuously with high
definition. The representative work is Neural Radiance Fields (NeRF) [22], which
maps from camera pose to color and volume density of each location in the space
with an MLP. RGB images are then produced with differentiable volume render-
ing. Due to its simplicity and exceptional rendering quality, recent works adopt
NeRF for various extensions such as generative adversarial networks [4,28,24],
video synthesis [18,38], relighting [1,32], scene editing [19,14], etc.

Few-Shot Neural Radiance Fields. NeRF-based methods usually require a
lot of images from different views for training. Several works have been proposed
to address the data-hungry problem of NeRF by exploiting training data [40,35],
meta learning [33] and additional supervision [12,6]. PixelNeRF [40] takes advan-
tage of the training images during test time rendering, which is ignored by vanilla
NeRF. Convolutional feature of the training image is projected onto the ray of
novel view, which is later used as a conditional embedding for MLP inference.
IBRNet [35] adopts a similar strategy and adds an additional ray transformer
for better density estimation. Instead of randomly initialize the weights of MLP,
MetaNeRF [33] propose to pre-train the network on a large-scale dataset before
fine-tuning on each scene. DietNeRF [12] adds a pair-wise loss which regular-
izes multi-view consistency by pulling the cosine distance between high-level
semantic features of different views. RegNeRF [23] renders image patches from
unseen camera views and regularize the RGB values with a trained normaliz-
ing flow model. The density values are also regularized by a smoothness loss.
DSNeRF [12] utilizes the sparse depth information generated by COLMAP [27]
as an explicit supervision for the rendered depth map. Our work shares simi-
lar insight to DSNeRF, i.e. provide supervision for depth map, except that our
approach is unsupervised, requiring no additional data nor annotations. In this
paper, we mainly apply our data augmentation method upon DSNeRF, yet it is
worth to notice that our method is compatible to all NeRF-based models.

Unsupervised Depth Estimation. Our GeoAug method is closely related to
works on unsupervised depth estimation [43,10,3,2], which utilize the geomet-
ric constraints between frames as supervisory signal. During training, adjacent
video frames, denoted as source/target frames, are sampled as inputs to a depth
network and a pose network respectively. The output depth map and relative
camera pose are used to warp the source frame to the viewpoint of target frame.
The photometric error between the warped source frame and target frame is
minimized during training, which represents the geometric constraint. During
inference, the depth network could be used separately for depth estimation.

For NeRF models, camera poses are estimated beforehand by SfM [27], thus
no pose network is needed. The depth map could be rendered in a similar way to
RGB images. Therefore, the warping-based geometric constraint could be used
as an additional supervision for NeRF, encouraging a better understanding of
scene geometry.
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3 Methodology

We now present our geometry-aware data augmentation method in this section.
We begin by revisiting the classic NeRF method and volumetric rendering, with
an important baseline: DSNeRF [6], which adds additional sparse depth supervi-
sion to NeRF. Then we introduce our data augmentation method as well as the
adaptive noise module. Finally, we summarize the overall training procedure.

3.1 Revisiting Volume Rendering

NeRF [22] is originally proposed for the task of novel view synthesis, which aims
at rendering an RGB image given a camera pose P. This is implemented by 1)
shooting rays from the center of camera pose P, 2) predicting the radiance inten-
sity at each point along all the rays and 3) rendering each pixel by accumulating
the radiance of all points along the ray.

Specifically, given a camera center o ∈ R3 and viewing direction d, the cor-
responding ray is represented as r(t) = o+ td, parameterized by t. For a specific
point x ∈ R3 on the ray, NeRF uses an Multi-Layer Perceptron (MLP) to pre-
dict the color c ∈ R3 and volume density σ ∈ R+. The MLP could be seen as
a function fθ that maps from spatial location and direction to radiance field:
fθ(x,d) = (c, σ).

Once the entire radiance field is available, RGB images could be rendered by
integrating along rays with volume rendering:

Ĉ(r) =

∫ tf

tn

T (t)σ(t)c(t) dt , where T (t) = exp

(
−
∫ t

tn

σ(s) ds

)
(1)

where tn and tf represent the near and far bounds of the rays. T (t) is a trans-
mittance term which measures the probability that light could travel from tn to
t without being obstructed.

During training, NeRF model is supervised by a reconstruction loss:

Lc =
1

|R|
∑
r∈R

∥Ĉ(r)−C(r)∥22 (2)

where R is the set of rays randomly sampled during training. C is the ground
truth RGB image under camera pose P.

DSNeRF: A Supervised Baseline. Given enough training images captured
under various camera poses, NeRF is effective at representing the scene implicitly
and thus rendering satisfying images at novel views. However, under few-shot
settings, NeRF is prone to overfit the available scenes with incorrect geome-
try [41], e.g . a plain canvas at the camera’s near bound filled with the pixels
from training images [6]. Adding images from more diverse views could alleviate
this problem, but they are not always available in real-world applications. To
this end, DSNeRF [6] is proposed to improve NeRF under few-shot settings.
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Generally, DSNeRF adds a depth reconstruction loss Ld alongside the RGB loss
Lc:

Ld =
1

|Rd|
∑
r∈Rd

wr∥D̂(r)−D(r)∥22 (3)

where the depth ground truth D(r) and the corresponding confidence wr are
side products of camera pose estimation with structure-from-motion (SfM) [27],

which is the standard preprocess for training NeRF. D̂(r) is the depth map
rendered in a similar way to rendering RGB images:

D̂(r) =

∫ tf

tn

T (t)σ(t)tdt (4)

Note that SfM only produces a sparse set of points with depth, thus the sampling
set Rd for depth supervision is different from the one for RGB supervision R.

DSNeRF has shown it’s superior performance over other NeRF variants for
few-shot settings [40,33,35]. Therefore, we choose it as our baseline and test our
data augmentation method upon DSNeRF.

3.2 Geometry-Aware Data Augmentation

Fig. 2 shows the overview of our GeoAug method. During training, we first add
random noise to the 6 degree-of-freedom (6-DoF) representation of a camera
pose P in the training set:

P′ = P+ ϵ, ϵ ∼ N (0, δ) (5)

where the noise vector ϵ is sampled from a Gaussian distribution with 0 mean
and δ standard deviation. We then render the RGB image Ĉ′(r) under camera
view P′ using volume rendering described in Sec. 3.1. Since there is no ground
truth for Ĉ′(r), we warp Ĉ′(r) from P′ to P and supervise the warped image
with C:

La =
1

|R|
∑
r∈R

∥π(Ĉ′(r), D̂(r), Tp→p′)−C(r)∥ (6)

In Eq. 6, π(·) denote the differentiable image warping function. Let p′ and p be

the homogeneous coordinates of pixels in Ĉ′(r) and Ĉ(r) respectively, K the
camera intrinsics matrix and Tp→p′ the relative pose between P and P′. The
warping function π(·) is described as

p′ ∼ KTp→p′D̂(p)K−1p (7)

Since the projected coordinates p′ are continuous values, we use nearest sampling
to get the pixel value from Ĉ′(r). We also ignore the pixels if p′ is outside the

image bound of Ĉ′(r).
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One prerequisite for successful warping between different views is that there
should be no occlusion or disocclusion. However, it is not always true if the
scene geometry is complex, i.e. a scene containing a lot of discontinuous depths.
Regions with complex geometry would induce outliers in Eq. 6, corrupting the
gradients and harm the training process. In our experiments, a simple L2 loss
for La works just fine, which means that the outlier points are not dominating
the loss. To improve the robustness of our method, we propose to designate the
metric ∥ · ∥ in Eq. 6 as smooth L1 loss instead of the commonly used L2 loss,
since smooth L1 loss is less sensitive to outliers [9]. Our experiments also show
that smooth L1 loss improves the performance over L2 loss. Smooth L1 loss is
defined as below:

∥ · ∥smooth L1 =

{
0.5× (·)2 if | · | < 1.0

| · | − 0.5 otherwise
(8)

3.3 Adaptive Noise

One important hyper-parameter in our GeoAug method is the standard deviation
δ of camera pose noise. δ controls the offset magnitude between P′ and P, i.e.
the larger the δ, the more P′ is deviated from P. It could be tedious to tune δ
since we have no prior knowledge of the pose offset. If P′ is too far away from
P, the warping operation could be highly unreliable. If the offset is otherwise
too small, the efficacy of data augmentation is diminished. On the other hand,
using the same noise magnitude through out the entire training process may not
be optimal.

Inspired by the adaptive augmentation methods used in GANs [16], we pro-
pose to tune δ adaptively instead of picking the appropriate δ manually through
exhaustive experiments. Our method is based on a heuristic rule regarding the
discrepancy between the loss values of Lc and La. Typically, an ideal augmenta-
tion method should keep the loss of augmented samples a little higher than the
loss of intrinsic training samples. In our case, we first set an initial δ0 as a base,
multiply/divide δ0 with a factor γ (γ > 1) if La smaller/larger than a margin m
over Lc:

δt =


δ0, if t = 0

δt−1 ∗ γ, if 2L̄a < L̄c +m

δt−1/γ, if 2L̄a > L̄c + 2m

δt−1, if L̄c +m ≤ 2L̄a ≤ L̄c + 2m

(9)

where L̄ is the averaged loss value of the most resent 100 training steps. In other
words, the rule defined by Eq. 9 aims to keep the loss value of 2L̄a between
L̄c +m and L̄c + 2m.

Although our adaptive noise rule brings additional hyper-parameters, i.e. δ0,
γ and m, we find through experiments that the choice of δ0 and γ does not affect
the performance too much, since δt would converge to the same range quickly.
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Algorithm 1: Training DSNeRF with GeoAug

Data: Training set {P,C,D}, initial noise standard deviation δ0, noise
growing factor γ, loss margin m, number of augmented sample
per-iteration N , learning rate η, loss weights λd, λa

Result: Trained radiance field function fθ
Initialize MLP parameters of fθ ;
t← 0, δt ← δ0 ;
for t← 1 to NumIters do

Sample rays r ∈ R and ground truth C(r) ;

Render Ĉ(r) and D̂(r) under view P;
Calculate loss Lc with Eq. 2 ;
Sample rays rd ∈ Rd and depth map D(r) ;

Render depth value D̂(rd) under view P;
Calculate loss Ld with Eq. 3 ;
La ← 0 ;
for n← 1 to N do

Draw noise vector ϵ ∼ N (0, δt) ;
P′ ← P+ ϵ ;

Render Ĉ′(r) under view P′ ;

Warp Ĉ′(r) with Eq. 7 ;
Calculate loss with Eq. 6 and add to La;

end
La ← La/N ;
Update averaged loss value L̄c and L̄a;
Update δt with Eq. 9 ;
L ← Lc + λdLd + λaLa ;
Update parameters θ ← Adam(θ, η,∇θL) ;

end

As for the margin m, it’s much easier to set than setting δ directly, since the
magnitude of m is strongly related to the loss value of Lc, which is intuitive to
find an appropriate magnitude through experiments. Therefore, we set δ0, γ and
m to 5e−5, 1.01 and 3e−3 respectively in all the experiments without further
tuning. Note that L̄a is re-scaled by a factor of 2 in Eq. 9. It is because that we
have to align the magnitude of L̄a and L̄c when compared directly, on account
of the fact that smooth L1 loss [9] scales the L2 loss part by 0.5.

3.4 Training

During training, we can augment each sample by N times and average the losses
of all augmented samples as La. For convenience, we set N = 1 throughout the
paper. The final loss L is a linear combination of the original NeRF loss Lc,
sparse depth loss Ld and the loss of augmented samples La:

L = Lc + λdLd + λaLa (10)
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The loss weight λd and λa are set to 0.01 and 0.1 throughout the paper. The
complete training process is summarized in Algorithm 1, where the gray back-
ground marks the sparse depth supervision for DSNeRF. Our GeoAug proce-
dures are marked with green.

4 Experiments

For experiments, we first introduce the implementation details and the datasets
in Sec. 4.1. We then compare the view synthesis performance with other methods
in Sec. 4.2. Finally, we conduct ablation study in Sec. 4.3, including the met-
ric choice of La, efficacy of adaptive noise and performance under multiplicity
settings.

4.1 Settings

Implementation Details. Our models are implemented with PyTorch [26]. To
improve computational efficiency, we made several modifications to the original
NeRF model. 1) Instead of using two-stage MLPs with hierarchical sampling,
we only use a single MLP with stratified sampling; 2) The network width is
reduced from 256 to 128; 3) Each ray is discretized uniformly into 128 points. We
keep using this configuration throughout the paper. Moreover, we also change
the random pixel sampling to patch sampling [28], in order to conduct valid
warping operation. We also apply patch sampling to the baseline methods for
fair comparison.

During training, we sample 4096 rays under a single view for each iteration.
The model is trained for 10000 epochs with a learning rate of 0.001, which is
exponentially decayed with a rate of 0.9954 every 10 epochs. We use the Adam
optimizer [17] with β1 = 0.9 and β2 = 0.999 for all models. All the experiments
are conducted on a single NVIDIA Tesla V100 GPU.

Dataset and Evaluation Protocol.NeRF Real-world Data (NeRF Real) [21,22]
is a real-world dataset containing 8 forward-facing scenes. We use the official test
split for each scene, i.e. test image is sampled every 8-th image. For training im-
ages, we randomly sample 2, 5 and 10 views for three different few-shot settings.

DTU MVS Dataset (DTU) [13] is a large-scale multi-view stereo dataset
captured in a controlled environment. The complete dataset contains 80 scenes,
from which we choose 15 scenes for testing following the configuration of [6]. For
each scene, we reduce the image resolution to 400 × 300 and randomly sample
3, 6, 9 views for training. We use the ground truth camera poses provided by
the dataset and run COLMAP [27] by initializing the camera poses with ground
truths for sparse depth information.

To evaluate the synthesis quality, we report PSNR, SSIM [36] and LPIPS [42]
calculated against the corresponding ground truth.
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Scene

PSNR ↑ SSIM ↑ LPIPS ↓

NeRF DSNeRF +GeoAug NeRF DSNeRF +GeoAug NeRF DSNeRF +GeoAug

Fern 18.08 18.34 19.36 0.50 0.51 0.54 0.60 0.60 0.55
Flower 18.31 19.07 19.64 0.46 0.51 0.51 0.60 0.57 0.54
Fortress 20.24 19.86 20.33 0.54 0.53 0.57 0.59 0.59 0.54
Horns 16.23 15.42 15.76 0.44 0.41 0.41 0.65 0.67 0.64
Leaves 15.33 14.89 15.17 0.32 0.32 0.34 0.61 0.62 0.56
Orchids 14.05 14.41 14.62 0.30 0.31 0.32 0.62 0.61 0.60
Room 20.23 20.89 22.39 0.72 0.73 0.77 0.57 0.58 0.50
Trex 17.26 17.49 17.91 0.54 0.52 0.55 0.59 0.61 0.58

Mean 17.47 17.55 18.15 0.48 0.48 0.50 0.60 0.61 0.56

Table 1: View synthesis results on NeRF Real dataset [21,22]. The num-
bers are averaged over three few-shot settings, i.e. 2-view, 5-view and 10-view.
Our GeoAug method effectively improves DSNeRF on all three metrics.

Method

PSNR ↑ SSIM ↑ LPIPS ↓

3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

NeRF [22] 11.26 13.00 15.71 0.43 0.47 0.59 0.61 0.61 0.47
DSNeRF [6] 13.47 14.82 18.81 0.49 0.57 0.69 0.58 0.52 0.43
DSNeRF +GeoAug 14.91 17.12 19.57 0.52 0.64 0.68 0.54 0.47 0.43

Table 2: View synthesis results on DTU dataset [13]. The numbers are
averaged over 15 test scenes following the setting of DSNeRF [6].

4.2 Benchmark Comparison

Comparison on NeRF Real. In this section, we inspect the perceptual quality
of novel view synthesis on NeRF Real dataset [21,22]. Three NeRF variants are
compared, namely, 1) the basic NeRF described in Sec. 3.1, 2) basic NeRF with
sparse depth supervision, denoted as DSNeRF [6], and 3) DSNeRF with our
proposed GeoAug method. We average the experiment results under three few-
shot settings and present them in Tab. 1. We can see from Tab. 1 that DSNeRF
improves the mean PSNR of basic NeRF by 0.08 dB, yet did not increase SSIM
or LPIPS. One explanation for the limited improvement is that the noisy depth
information provided by SfM is less reliable. For instance, ‘Fortress’, ‘Horns’
and ‘Leaves’ are the three scenes with lowest SfM confidence for depth among
all scenes. Therefore, DSNeRF performs even worse than the basic NeRF on the
three scenes. In contrast, our GeoAug method does not rely on external depth
information, thus won’t be affected by the noise from SfM. We can see that our
GeoAug boosts the performance of DSNeRF in all scenes. The three metrics are
consistently better than the basic NeRF and DSNeRF.

We also present qualitative comparison in Fig. 5. Video visualizations are
available at bit.ly/3wMX1Sb. When the training images are relatively abun-
dant, e.g . under 10-view setting, DSNeRF already renders satisfying images.

https://bit.ly/3wMX1Sb
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Method PSNR ↑ SSIM ↑ LPIPS ↓

DSNeRF 21.27 0.61 0.52
w. GeoAug, L2 22.07 0.64 0.48
w. GeoAug, L1 21.37 0.61 0.52
w. GeoAug, SmoothL1 22.65 0.66 0.44

Method PSNR ↑ SSIM ↑ LPIPS ↓

Noise δ = 5e−5 22.09 0.64 0.48
Noise δ = 2e−4 21.84 0.64 0.47
Adaptive Noise 22.65 0.66 0.44

Table 3: Ablation study conducted on the ‘fern’ scene under 10-view
setting. Left: Different metric choices of augmentation loss La. Right: GeoAug
with different noise level.

Therefore, our GeoAug method only brings slight improvement w.r.t. image de-
tails like the leaves of fern and telephone wires on the desk. When the number
of training images decreases, our GeoAug method shows greater improvement
on preserving the overall image structure. Two representative samples are the
“fern” and “room” scene in the 2-view setting, where GeoAug preserves the
shape structure of fern, TV and long desk, while DSNeRF completely fail to
reconstruct. For scenes with extremely complex geometries, e.g . stacks of petals
and leaves, our method produces clearer basic structures such as flower edges
and stems.
Comparison on DTU We present the numerical performance on DTU in
Tab. 2. Different to the conclusion on NeRF Real dataset [21,22] where DSNeRF
only brings limited improvement over NeRF, Tab. 2 shows that DSNeRF consis-
tently improves the basic NeRF on all settings by a large margin. This is mainly
due to the better point cloud estimation quality, i.e. depth information gener-
ated by COLMAP is more reliable since the camera poses are initialized with
ground truths. As a result, DSNeRF learns better geometry since the explicit
depth supervision is hindered less by noise.

Our GeoAug method does not rely on SfM estimations. Therefore, the per-
formance of GeoAug does not depend on the dataset. Moreover, our GeoAug
method provides dense depth supervision upon the sparse point depth of DSNeRF.
We can see in Tab. 2 that our GeoAug method improves the performance of
DSNeRF on DTU, especially under 6 and 3 view settings. The lower block of
Fig. 5 shows the qualitative comparisons. GeoAug helps to render clearer lo-
cal details such as the characters on the bottle and building windows. On the
other hand, NeRF and DSNeRF struggle to preserve large-scale structures, e.g .
buildings under 6 view and 3 view settings. Our method enhances DSNeRF
with the ability of inferring better structures, thanks to the additional geometry
constraints provided by GeoAug.

4.3 Ablation Study

Smooth L1 Loss. As discussed in Sec. 3.2, outliers are usually inevitable dur-
ing the warping process. Unsupervised depth estimation methods like [43] use
an explanatory mask for each frame to cast out the outliers. However, since
the augmented views in our method are randomly sampled, it is implausible to
maintain a mask pool for every training view. Therefore, we choose to leave the



12 D. Chen et al.

outliers and use a robust function, i.e. smooth L1 loss [9] to measure the loss of
augmented samples. In Tab. 3 (left), we compare different choices for augmented
loss La. For L2 loss, the re-scale factor for L̄a of adaptive noise is changed from
2 to 1, in order to match the L2 loss of original training samples. For L1 loss, we
cannot compare its magnitude directly to L2 loss. Therefore, we remove adaptive
noise and set the noise arbitrarily to 5e−5. We can see from Tab. 3 (left) that
using L2 loss for La improves DSNeRF by 0.8 dB w.r.t. PSNR, which means
that the outlier problem is not strong enough to counteract the effectiveness of
our GeoAug method. Furthermore, replace L2 loss with smooth L1 loss brings
an additional 0.58 dB improvement on PSNR. Therefore, smooth L1 loss is a
better choice than L2 loss for handling warping outliers. Besides, we also tried
to use standard L1 loss as La. It only brings minor improvement to PSNR, while
SSIM and LPIPS are not better. We assume it is due to its over-tolerance to
large errors and the lack of adaptive noise.

Fig. 3: Inspection on adaptive
noise. Left: Reconstruction loss Lc

and Augmentation loss 2La. Right:
Magnitude of the noise standard de-
viation δ. Adaptive noise is designed
to ensure that 2L̄a is roughly between
L̄c +m and L̄c + 2m.

Adaptive Noise. Our adaptive noise
chooses the suitable noise standard de-
viation δ automatically for our GeoAug
method, reduces the need for exhaus-
tive parameter tuning. In Fig. 3, we
demonstrate how adaptive noise works
during the training process. As ex-
pected, we can see that the augmen-
tation loss 2La is kept above the re-
construction loss Lc with a reasonable
margin. It ensures that the augmented
samples are neither too easy nor too
noisy. The noise standard deviation δ
is initially set to 5e−5, which quickly
converges to the range between 1.8e−4
and 2.2e−4.

We also conduct an ablative exper-
iment to show the difference between
our adaptive noise and setting a global fixed noise. The results are gathered in
Tab. 3 (right). We can see that arbitrarily setting δ to the initial value 5e−5 or
the converged mean value 2e−4 is not optimal. Both of their performance are
inferior to our adaptive noise strategy. Therefore, our adaptive noise not only
reduces the need for parameter tuning, but also improves the performance of
GeoAug.

Multiplicity Setting. In this section, we investigate our data augmentation
method under multiplicity settings where the training images are relatively abun-
dant. In Tab. 4, we report the synthesis result on the ‘fern’ scene with all 17
images for training. Different from the results under few-shot settings, the basic
NeRF model performs better than DSNeRF given enough training images. This
is because NeRF could avoid shape-radiance-ambiguity [41] when the training
views are dense, thus inferring the correct geometry and generalizing well to
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NeRF PSNR↑ SSIM ↑ LPIPS ↓

NeRF 23.09 0.68 0.44
NeRF + GeoAug 23.03 0.68 0.42

DSNeRF PSNR↑ SSIM ↑ LPIPS ↓

λd = 0.001 22.85 0.66 0.47
λd = 0.01 22.84 0.66 0.47
λd = 0.1 22.60 0.65 0.47
λd = 0.01 + GeoAug 22.88 0.67 0.43

DSNeRF DSNeRF + GeoAugNeRF

Table 4 & Fig. 4: View Synthesis with all training images on the ‘fern’
scene. Left: Given dense training view, the basic NeRF model avoids shape-
radiance-ambiguity and renders high-quality novel views. DSNeRF shows inferior
performance since it introduces extra noise through explicit depth supervision.
Our GeoAug method harms less to the synthesis quality of NeRF. Right: The
depth noise brought by DSNeRF causes stains on the rendering image. Our
GeoAug method alleviates the negative effect of depth noise.

novel views. Under this circumstance, the depth supervision of DSNeRF only
brings very limited hint on the geometry information, but instead involves addi-
tional noise resulted from imperfect SfM estimation. We can see in Tab. 4 that
as the weight of depth regression loss λd increases, the performance of DSNeRF
gets worse, since the model is forced to fit the noise. Fig. 4 also shows that the
depth map and image produced by DSNeRF show more stain-like artifacts.

Similarly, the performance improvement of our GeoAug method is also di-
luted as more training views are available. However, our method does not rely on
external depth information, thus free from SfM noises. When applied in compan-
ion with the basic NeRF model, GeoAug won’t bring too much negative effect.
The PSNR is only 0.06 dB lower, while the LPIPS is better than NeRF by 0.02.
Meanwhile, GeoAug could also compensate the degradation of DSNeRF both
quantitatively (Tab. 4) and qualitatively (Fig. 4).

5 Conclusion

In this paper, we present GeoAug: a data augmentation method for Neural
Radiance Fields which alleviates the over-fitting problem under few-shot settings.
During training, camera poses of random novel views are generated with an
adaptive noise method, which are later used as inputs for the NeRF model. For
each novel pose, the output rendering is warped to a nearby intrinsic training
view and supervised by the corresponding ground truth image. In this way, our
method enriches training data by leveraging geometry constraints through the
warping operation, thereby posing implicit supervision on the rendered depth
map. Experiments shows the effectiveness of GeoAug on improving the rendering
quality for NeRF.
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DSNeRF

10-View

9-View

DSNeRF + GeoAug DSNeRF

5-View

DSNeRF + GeoAug DSNeRF

2-View

DSNeRF + GeoAug

DSNeRF DSNeRF + GeoAug
6-View

DSNeRF DSNeRF + GeoAug
3-View

DSNeRF DSNeRF + GeoAug

Fig. 5: Qualitative results on NeRF Real (upper block) and DTU
(lower block) datasets. RGB images are rendered under different few-shot
settings. Our GeoAug method helps to preserve image structure and retain more
details.

Despite good performance on standard datasets, there are challenges yet to
be explored: 1) The warping outliers caused by camera movement and scene oc-
clusions are not handled explicitly. This is the main reason why GeoAug won’t
improve NeRF under multiplicity settings, i.e. given dense training views. Al-
though this problem is bypassed with a robust loss function, we believe that more
improvement could be harvested if outliers could be managed properly. 2) NeRF
models and our GeoAug method assume that the camera pose for each train-
ing view is already known. However, under few-shot settings where the camera
poses are so diverse that even SfM fails to estimate the camera pose and sparse
depth, it is unlikely for NeRF models to fit training views or synthesis novel
views. Therefore, extending GeoAug for NeRF models to the general purpose of
multi-view stereo and structure-from-motion would be an interesting direction
for future work.
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