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Abstract. Reference-based line-art colorization is a challenging task in
computer vision. The color, texture, and shading are rendered based
on an abstract sketch, which heavily relies on the precise long-range
dependency modeling between the sketch and reference. Popular tech-
niques to bridge the cross-modal information and model the long-range
dependency employ the attention mechanism. However, in the context of
reference-based line-art colorization, several techniques would intensify
the existing training difficulty of attention, for instance, self-supervised
training protocol and GAN-based losses. To understand the instability
in training, we detect the gradient flow of attention and observe gradi-
ent conflict among attention branches. This phenomenon motivates us to
alleviate the gradient issue by preserving the dominant gradient branch
while removing the conflict ones. We propose a novel attention mecha-
nism using this training strategy, Stop-Gradient Attention (SGA), out-
performing the attention baseline by a large margin with better training
stability. Compared with state-of-the-art modules in line-art coloriza-
tion, our approach demonstrates significant improvements in Fréchet In-
ception Distance (FID, up to 27.21%) and structural similarity index
measure (SSIM, up to 25.67%) on several benchmarks. The code of SGA
is available at https://github.com/kunkun0w0/SGA.
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1 Introduction

Reference-based line-art colorization has achieved impressive performance in
generating a realistic color image from a line-art image [32,59]. This technique
is in high demand in comics, animation, and other content creation applica-
tions [55,2]. Different from painting with other conditions such as color strokes
[53,12], palette [56], or text [25], using a style reference image as condition input
not only provides richer semantic information for the model but also eliminates
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the requirements of precise color information and the geometric hints provided
by users for every step. Nevertheless, due to the huge information discrepancy
between the sketch and reference, it is challenging to correctly transfer colors
from reference to the same semantic region in the sketch.

Several methods attempt to tackle the reference-based colorization by fusing
the style latent code of reference into the sketch [31,38,36]. Inspired by the suc-
cess of the attention mechanism [41,46], researchers adopt attention modules to
establish the semantic correspondence and inject colors by mapping the reference
to the sketch [28,55,54]. However, as shown in Figure 1, the images generated by
these methods often contain color bleeding or semantic mismatching, indicating
considerable room for improving attention methods in line-art colorization.

Fig. 1: The comparison between the images produced by SCFT [28] and SGA
(Ours). SCFT subjects to color bleeding (orange box) and semantic mismatching
(green box).

There are many possible reasons for the deficiency of line-art colorization
using attention: model pipeline, module architecture, or training. Motivated by
recent works [13,5] concerning the training issues of attention models, we are
particularly interested in the training stability of attention modules in line-art
colorization. It is even more challenging to train attention models in line-art
colorization because state-of-the-art models [28] deploy multiple losses using a
GAN-style training pipeline, which can double the training instability. Therefore,
we carefully analyze the training dynamics of attention in terms of its gradient
flow in the context of line-art colorization. We observe the gradient conflict
phenomenon, namely, a gradient branch contains a negative cosine similarity
with the summed gradient.

To eliminate the gradient conflict, we detach the conflict one while preserving
the dominant gradient, which ensures that the inexact gradient has a positive
cosine similarity with the exact gradient and meet theory requirements [14,50].
This training strategy visibly boosts the training stability and performance com-
pared with the baseline attention colorization models. Combined with archi-
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tecture design, this paper introduces Stop-Gradient Attention, SGA, whose
training strategy eliminates the gradient conflict and helps the model learn bet-
ter colorization correspondence. SGA properly transfers the style of reference
images to the sketches, establishing accurate semantic correspondence between
sketch-reference pairs. Our experiment results on several image domains show
clear improvements over previous methods, i.e., up to 27.21% and 25.67% re-
garding FID and SSIM, respectively.

Our contributions are summarized as follows:

– We reveal the gradient conflict in attention mechanism for line-art coloriza-
tion, i.e., a gradient branch contains a negative cosine similarity with the
summed gradient.

– We propose a novel attention mechanism with gradient and design two at-
tention blocks based on SGA, i.e., cross-SGA and self-SGA.

– Both quantitative and qualitative results verify that our method outperforms
state-of-the-art modules on several image datasets.

2 Related Work

Reference-based Line-Art Colorization. The reference-based line-art col-
orization is a user-friendly approach to assist designers in painting the sketch
with their desired color [31,28,55,2]. Early studies attempt to get the style latent
code of reference and directly mix it with sketch feature maps to generate the
color image [31,38]. To make better use of reference images, some studies propose
spatial-adaptive normalization methods [36,60].

Different from the aforementioned methods that adopt latent vectors for
style control, [28,55,54] learn dense semantic correspondences between sketch-
reference pairs. These approaches utilize the dot-product attention [41,46] to
model the semantic mapping between sketch-reference pairs and inject color into
sketch correctly. Although traditional non-local attention is excellent in feature
alignment and integration between different modalities, the model cannot learn
robust representation due to the gradient conflict in attention’s optimization.
Thus, our work proposes the stop-gradient operation for attention to eliminate
the gradient conflict problem in line-art colorization.

Attention Mechanism. The attention mechanism [49,41] is proposed to cap-
ture long-range dependencies and align signals from different sources. It is widely
applied in vision [46,52], language [41,10], and graph [42] areas. Due to the
quadratic memory complexity of standard dot-product attention, many researchers
from the vision [6,7,29,57,13] and language [24,44,37] communities endeavor to
reduce the memory consumption to linear complexity. Recently, vision trans-
former [11] starts a new era for modeling visual data through the attention
mechanism. The booming researches using transformer substantially change the
trend in image [39,30,45,48], point cloud [16,58], gauge [19], and video [34,1]
processing.
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Unlike existing works concerning the architectures of attention mechanism,
we focus on the training of attention modules regarding its gradient flow. Al-
though some strategies have been developed to improve the training efficiency
[39,3] for vision transformer, they mainly modify the objective function to im-
pose additional supervision. From another perspective, our work investigates the
gradient issue in the attention mechanism.

Stop-Gradient Operation. Backpropagation is the foundation for training
deep neural networks. Recently some researchers have paid attention to the gra-
dient flow in the deep models. Hamburger [13] proposes the one-step gradient to
tackle the gradient conditioning and gradient norm issues in the implicit global
context module, which helps obtain stable learning and performance. SimSiam [4]
adopts the one-side stop-gradient operation to implicitly introduce an extra set of
variables to implement Expectation-Maximization (EM) like algorithm in con-
trastive learning. VQ-VAE [35] also encourages discrete codebook learning by
the stop-gradient supervision. All of these works indicate the indispensability of
the gradient manipulation, which demonstrates that the neural network perfor-
mance is related to both the advanced architecture and the appropriate training
strategy.

Inspired by prior arts, our work investigates the gradient conflict issue for
training non-local attention. The stop-gradient operation clips the conflict gra-
dient branches while preserving correction direction for model updates.

3 Proposed Method

3.1 Overall Workflow

As illustrated in Fig. 2, we adopt a self-supervised training process similar to
[28]. Given a color image I, we first use XDoG [47] to convert it into a line-art
image Is. Then, the expected coloring result Igt is obtained by adding a random
color jittering on I . Additionally, we generate a style reference image Ir through
applying the thin plate splines transformation on Igt.

In the training process, utilizing Ir as the reference to color the sketch Is, our
model first uses encoder Es and Er to extract sketch feature fs ∈ Rc×h×w and
reference feature fr ∈ Rc×h×w. In order to leverage multi-level representation
simultaneously for feature alignment and integration, we concatenate the feature
maps of all convolution layers outputs after using 2D adaptive average pooling
function to down-sample them into the same spatial size.

To integrate the content in sketch and the style in reference, we employ
our SGA blocks. There are two types of SGA blocks in our module: cross-SGA
integrates the features from different domains and self-SGA models the global
context of input features. Then several residual blocks and a U-net decoder Dec
with skip connections to sketch encoder Es are adopted to generate the image
Igen by the mixed feature map fgen. In the end, we add an adversarial loss [15] by
using a discriminator D to distinguish the output Igen and the ground truth Igt.
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Fig. 2: The overview of our reference-based line-art colorization framework with
a discriminator D: Given the sketch Is, the target image Igt and the reference Ir
obtained through original image I, we input Is and Ir into encoder Es and Er

to extract feature maps fs and fr. The SGA blocks, which contain cross-SGA
and self-SGA, integrate fs and fr into the mixed feature map fgen. Then fgen
is passed through several residual blocks and a U-net decoder Dec with skip
connection to generate the image Igen. The Igen is supposed to be similar to Igt.

3.2 Loss Function

Image Reconstruction Loss. According to the Section 3.1, both generated
images Igen and ground truth images Igt should keep style consistency with
reference Ir and outline preservation with sketch Is. Thus, we adopt L1 regular-
ization to measure the difference between Igen and Igt, which ensures that the
model colors correctly and distinctly:

Lrec = EIs,Ir,Igt

[
∥G (Is, Ir)− Igt∥1

]
(1)

where G (Is, Ir) means coloring the sketch Is with the reference Ir.

Adversarial Loss. In order to generate a realistic image with the same outline
as the prior sketch Is, we leverage a conditional discriminator D to distinguish
the generated images from real ones [21]. The least square adversarial loss [33]
for optimizing our GAN-based model is formulated as:

Ladv = EIgt,Is

[
∥D (Igt, Is)∥22

]
+ EIs,Ir

[
∥(1−D (G (Is, Ir) , Is))∥22

]
(2)

Style and Perceptual Loss. As shown in previous works [28,22], percep-
tual loss and style loss encourage a network to produce a perceptually plausible
output. Leveraging the ImageNet pretrained network, we reduce the gaps in
multi-layer activation outputs between the target image Igt and generated im-
age Igen by minimizing the following losses:

Lperc = EIgt,Igen

[∑
l

∥ϕl(Igt)− ϕl (Igen)∥1

]
(3)

Lstyle = EIgt,Igen

[
∥G (ϕl(Igt))− G (ϕl (Igen))∥1

]
(4)
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where ϕl represents the activation map of the lth layer extracted at the relu from
VGG19 network, and G is the gram matrix.

Overall Loss In summary, the overall loss function for the generator G and
discriminator D is defined as:

min
G

max
D

Ltotal = Ladv + λ1Lrec + λ2Lperc + λ3Lstyle (5)

3.3 Gradient Issue in Attention

In this section, we use SCFT [28], a classic attention-based method in coloriza-
tion, as an example to study the gradient issue in attention. Q ∈ Rn×d is the
feature projection transformed by Wq from the input X ∈ Rn×d. The feature
projections K,V ∈ Rn×d from input Y ∈ Rn×d are transformed by Wk and
Wv . Given the attention map A ∈ Rn×n, the classic dot-product attention
mechanism can be formulated as follows:

Z = softmax(
QK⊤
√
d

)V +X = AV +X (6)

(a) SCFT (b) SCFT w/ stop-grad

Fig. 3: Stop-gradient in attention module. The gskip, gQ, gK and gV separately
represent the gradient along their branches. The stop-gradient operation (stop-
grad) truncates the backpropagation of conflict gradients existing in attention
map calculation.

Previous works [5,13,3,39] present the training difficulty of vision attention:
instability, worse generalization, etc . For line-art colorization, it is even more
challenging to train the attention models, as the training involves GAN-style
loss and reconstruction loss, which are understood to lead to mode collapse [15]
or trivial solutions. Given a training schedule, the loss of colorization network
can shake during training and finally deteriorate.
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(a) cos (gskip, gskip + gQ) in branch X (b) cos (gV , gK + gV ) in branch Y

(c) cos (gQ, gskip + gQ) in branch X (d) cos (gK , gK + gV ) in branch Y

Fig. 4: The histograms of the gradient cosine value distribution in 40 epochs. A
large cosine value means that the network mainly uses this branch of gradient
to optimize the loss function.

To better understand reasons behind the training difficulty of attention in
colorization, we analyze the gradient issue through the classic SCFT model [28].
We visualize the gradient flow back through the attention module in terms of
each gradient branch and the summed gradient.

Fig. 4 offers the cosine value between different gradient branches and the
total gradient. We separately calculate cos (gskip, gskip + gQ) and cos(gQ, gskip
+gQ) for each pixel in branch X (means gradient in sketch feature maps fs),
cos (gV , gK + gV ) and cos (gK , gK + gV ) in branch Y (means gradient in refer-
ence feature maps fr) to explore the gradient flow of the network during learning.

Note that first order optimization methods usually require the surrogate
gradient g̃ for update to be ascent, i.e., cos (g̃, g) > 0, where g is the exact
gradient. Then the update direction based on the surrogate gradient can be
descent direction. The visualization in Fig. 4 implies that the gradient gskip
from the skip connection for the branch X and the gradient gV from V for
the branch Y has already become an ascent direction for optimization, denoting
that gQ and gK from the attention map construct the “conflict gradient” ̸ g in
respect of the total gradient g, i.e., cos (̸ g, g) < 0.

Figs. 4a and 4b show that gskip and gV are usually highly correlated with the
total gradient, where over 78.09% and 52.39% of the cosine values are greater
than 0.935 in the 40th epoch, respectively. Moreover, these percentages increase
during training, indicating the significance of the representative gradient. On the
other hand, nearly 30.57% of gq in Fig. 4c and 10.77% of gK in Fig. 4d have
negative cosine values in the 40th epoch. These proportions are 22.81% and
5.32% in the 20th epoch, respectively, gradually increasing during training.
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The visualization regarding the gradient flows demonstrates that the two gra-
dient branches compete with each other for a dominant position during training
process, while gskip and gV construct an ascent direction and gQ and gK re-
main as the conflict gradient in respect of the total gradient in each branch.
According to existing works in multi-task learning [50], large gradient conflict
ratios may result in significant performance drop. It motivates us to detach the
conflict gradient while preserving the dominant gradient as inexact gradient to
approximate the original gradient, illustrated in Fig. 3.

Verified by Figs. 4a and 4b, the gradient after the stop-gradient operation
forms an ascent direction of the loss landscape, i.e., cos (g̃, g) > 0, and thus be
valid for optimization [14].

Table 1: Test the Fréchet Inception Distance (FID)
and SSIM with different settings of SCFT on anime
dataset. ↑ means the higher the better, while ↓ indi-
cates the lower the better.

SCFT Setting
FID↓ SSIM↑

stop-grad Wq&Wk

✗ ✓ 44.65 0.788

✗ ✗ 48.04 0.799

✓ ✓ 38.20 0.835

✓ ✗ 36.78 0.841

Table 1 shows that the
gradient clipping through
the stop-gradient opera-
tion can effectively im-
prove the model perfor-
mance. We can also re-
move Wk and Wq since
there is no gradient prop-
agating in them and they
will not be updated in
the training process. The
lower FID and higher
SSIM mean that model
can generate more real-
istic images with higher
outline preservation dur-
ing colorization after the
stop-gradient clipping.

Fig. 5: Visualizations of the gradient cosine distribution when using a single loss
on the pretrained SCFT model.

In order to investigate the reliability of gradient conflicts, we test the gradient
cosine distributions when using a certain loss to confirm the trigger to gradient
issue is the dot-product attention. We use the SCFT model to compute the
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gradients cosine distribution of each loss to investigate whether loss functions
or architectures cause the conflict. Fig. 5 shows that all loss terms cause similar
conflicts, implying that the attention architecture leads to gradient conflicts.

3.4 Stop-Gradient Attention

Combining with the training strategy, we propose the Stop-Gradient Attention
(SGA). As Fig. 6a illustrates, in addition to the stop-gradient operation, we also
design a new feature integration and normalization strategy for SGA. Treating
stop-gradient attention map A as a prior deep graph structure input, inspired
by [27,43], features can be effectively aggregated from adjacency nodes and the
node itself:

Z = σ(XWx) + Âσ(Y Wy) (7)

where σ is the leaky relu activate function and Â is the attention map normalized

(a) SGA (b) SGA Blocks

Fig. 6: SGA computes the attention map with stop-gradient, which truncates
the gradient propagation of gatt and adopts a double normalization technique
in addition. In our colorization network, we stack two types of SGA to integrate
features: cross-SGA (yellow box) and self-SGA (green box).

by double normalization method analogous to Sinkhorn algorithm [9]. Different
from softmax employed in classic non-local attention, the double normalization
makes the attention map insensitive to the scale of input features [17]. The
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normalized attention map Â can be formulated as follows:

A = XY ⊤ (8)

Ãij = exp (Aij)/
∑
k

exp (Aik) (9)

Âij = Ãij/
∑
k

Ãkj (10)

where Âij means correlation between ith feature vector in X and jth feature
vector in Y . The pseudo-code of SGA is summarized in Algorithm 1.

Algorithm 1 SGA Pseudocode
pytorch

# input:
# X: feature maps -> tensor(b, wh, c)
# Y: feature maps -> tensor(b, wh, c)

# output:
# Z: feature maps -> tensor(b, wh, c)

# other objects:
# Wx, Wy: embedding matrix -> nn.Linear(c,c)
# A: attention map -> tensor(b, wh, wh)
# leaky_relu: leaky relu activation function

with torch.no_grad():
A = X.bmm(Y.permute(0, 2, 1))
A = softmax(A, dim=-1)
A = normalize(A, p=1, dim=-2)

X = leaky_relu(Wx(X))
Y = leaky_relu(Wy(Y))

Z = torch.bmm(A,Y) + X

Furthermore, we design two
types of SGA, called cross-SGA
and self-SGA. Both of their calcu-
lation are based on Algorithm 1.
As shown in Fig. 6b, the only dif-
ference between them is whether
the inputs are the same or not.
Cross-SGA calculates pixel cor-
relation between features from
different image domains and in-
tegrates features under a stop-
gradient attention map. Self-SGA
models the global context and
fine-tunes the integration. For sta-
ble training, we also adopt batch
normalization layer and short-
cut connections [18]. Combining
above techniques, our SGA blocks
integrate the sketch feature fs
and reference feature fr into gen-
erated feature fgen effectively.

4 Experiments

4.1 Experiment Setup

Dataset. We test our method on popular anime portraits [40] and Animal
FacesHQ (AFHQ) [8] dataset. The anime portraits dataset contains 33323 anime
faces for training and 1000 for evaluation. AFHQ is a dataset of animal faces
consisting of 15,000 high-quality images at 512 × 512 resolution, which contains
three categories of pictures, i.e., cat, dog, and wildlife. Each class in AFHQ
provides 5000 images for training and 500 for evaluation. To simulate the line-
art drawn by artists, we use XDoG [47] to extract sketch inputs and set the
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parameters of XDoG algorithm with ϕ = 1 × 109 to keep a step transition at
the border of sketch lines. We randomly set σ to be 0.3/0.4/0.5 to get different
levels of line thickness, which generalizes the network on various line widths to
avoid overfitting. And we set p = 19, k = 4.5, ϵ = 0.01 by default in XDoG.

Implementation Details. We implement our model with the size of input
image fixed at 256×256 for each dataset. For training, we set the coefficients
for each loss terms as follows: λ1 = 30, λ2 = 0.01, and λ3 = 50. We use Adam
solver [26] for optimization with β1 = 0.5, β2 = 0.999. The learning rate of
generator and discriminator are initially set to 0.0001 and 0.0002, respectively.
The training lasts 40 epochs on each dataset.

Evaluation Metrics. In evaluation process, we randomly select reference
images and sketch images for colorization as Fig. 7 shows. The popular Fréchet
Inception Distance (FID) [20] is used to assess the perceptual quality of gener-
ated images by comparing the distance between distributions of generated and
real images in a deep feature embedding. Besides measuring the perceptual cred-
ibility, we also adopt the structural similarity index measure (SSIM) to quantify
the outline preservation during colorization, by calculating the SSIM between
reference image and original color image of sketch.

(a) Ref (b) Skt (c) [36] (d) [54] (e) [28] (f) [51] (g) [55] (h) Ours

Fig. 7: Visualization of colorization results. “Ref” stands for “reference”.“Skt”
indicates “sketch”. Compared with other methods, SGA shows correct corre-
spondence between the sketch and reference images.

4.2 Comparison Results

We compare our method with existing state-of-the-art modules include not only
reference-based line-art colorization [28] but also image-to-image translation,
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i.e., SPADE [36], CoCosNet [54], UNITE [51] and CMFT [55]. For fairness, in
our experiments, all networks use the same encoders, decoder, residual blocks
and discriminator implemented in SCFT [28] with aforementioned train losses.
Table 2 shows that SGA outperforms other techniques by a large margin. With
respect to our main competitor SCFT, SGA improves by 27.21% and 25.67% on
average for FID and SSIM, respectively. This clear-cut improvement means that
SGA produces a more realistic image with high outline preservation compared
with previous methods. According to Fig. 7, the images generated by SGA have
less color-bleeding and higher color consistency in perceptual.

Table 2: Quantitative comparison with different methods. Boldface represents
the best value. Underline stands for the second score.

Method
anime cat dog wild

FID↓ SSIM↑ FID↓ SSIM↑ FID↓ SSIM↑ FID↓ SSIM↑
SPADE [36] 57.55 0.681 36.11 0.526 76.57 0.631 24.56 0.573

CoCosNet [54] 52.06 0.672 35.02 0.511 68.69 0.603 23.10 0.554

SCFT [28] 44.65 0.788 36.33 0.636 79.08 0.683 24.93 0.633

UNITE [51] 52.19 0.676 33.26 0.636 72.38 0.677 23.97 0.592

CMFT [55] 38.94 0.873 37.78 0.813 73.18 0.809 23.90 0.822

SGA 29.65 0.912 34.35 0.843 54.76 0.841 15.19 0.831

Fig. 8: Accumulative ratio of the squared
top r singular values over total squared
singular values in feature maps. The ra-
tios of feature maps before and after the
attention module in SCFT and SGA are
displayed.

Furthermore, we explore the supe-
riority of SGA over SCFT in terms
of rescaling spectrum concentration of
the representations. We compare the
accumulative ratios of squared top r
singular values over total squared sin-
gular values of the unfolded feature
maps (i.e., RC×HW ) before and after
passing through the attention module,
illustrated in Fig. 8. The sum of singu-
lar values is the nuclear norm, i.e., the
convex relaxation for matrix rank that
measures how compact the represen-
tations are, which is widely applied in
machine learning [23]. The accumula-
tive ratios are obviously lifted after
going through SCFT and SGA, which
facilitates the model to focus more on
critical global information [13]. How-
ever, our effective SGA can not only
further denoise feature maps but also
enforce the encoder before attention module to learn energy-concentrated rep-
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resentations, i.e., under the effect of SGA, the CNN encoder can also learn to
focus on the global information.

4.3 Ablation Study

We perform several ablation experiments to verify the effectiveness of SGA blocks
in our framework, i.e., stop-gradient operation, attention map normalization,
and self-SGA. The quantitative results are reported in Table 3, showing the
superiority of our SGA blocks.

Specifically, to evaluate the necessity of stop-gradient in non-local attention,
we design a variant SGA without stop-gradient. In Table 3, it obtains inferior
performance, which verifies the benefit of eliminating gradient conflict through
stop-gradient.

Table 3: Ablation study result with different settings. Boldface represents the
best value. Underline stands for the second best.

Setting
anime cat dog wilds

FID↓ SSIM↑ FID↓ SSIM↑ FID↓ SSIM↑ FID↓ SSIM↑
SGA 29.65 0.912 34.35 0.843 54.76 0.841 15.19 0.831

SGA w/o stop-gradient 36.34 0.876 40.73 0.796 72.34 0.808 19.90 0.791

SGA w/o double-norm 33.42 0.861 34.42 0.811 55.08 0.828 15.95 0.809

SGA w/o self-SGA 31.56 0.917 34.26 0.842 55.69 0.839 16.36 0.821

Furthermore, we conduct an ablation study on the attention map normaliza-
tion to validate the advantage of double normalization in our framework. Table 3
demonstrates that SGA with double normalization outperforms that with clas-
sic softmax function. Although classic softmax can generate realistic images, it
suffers a low outline preservation, i.e., the SSIM measure.

Fig. 9: Cat’s FID during 200
epochs training.

Based on the framework with stop-
gradient and double normalization, we make
an ablation study on the improvement of self-
SGA additionally. Although our model has
achieved excellent performance without self-
SGA, there is still a clear-cut enhancement
on most datasets after employing the self-SGA
according to Table 3. The stacks of SGA can
help model not only integrate feature effec-
tively, but also fine-tune a better representa-
tion with global awareness for coloring.

Extending the training schedule to 200
epochs, Fig. 9 shows that SGA can still per-
form better with more epochs (29.71 in the 78th epoch) and collapse later than
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SCFT [28], demonstrating the training stability for attention models in line-art
colorization.

Additionally, to be more rigorous, we visualize the gradient distributions in
the ”SGA w/o stop-gradient”. Fig. 10 implies the existing of gradient conflicts
is a general phenomena in dot-product attention mechanism.

(a) cos (gX , gX) in branch X (b) cos (gY , gY ) in branch Y

(c) cos (gX , gX − gX) in branch X (d) cos (gY , gY − gY ) in branch Y

Fig. 10: The gradient distribution of ”SGA w/o stop-gradient”. The gX and gY
are illustrated in Fig. 6a. The gX and gY represent the total gradient, similar
to the gskip + gQ and gK + gV in Fig. 4.

5 Conclusion

In this paper, we investigate the gradient conflict phenomenon in classic atten-
tion networks for line-art colorization. To eliminate the gradient conflict issue,
we present a novel cross-modal attention mechanism, Stop-Gradient Attention
(SGA) by clipping the conflict gradient through the stop-gradient operation.
The stop-gradient operation can unleash the potential of attention mechanism
for reference-based line-art colorization. Extensive experiments on several im-
age domains demonstrate that our simple technique significantly improves the
reference-based colorization performance with better the training stability.
Acknowledgments: This research was funded in part by the Sichuan Science
and Technology Program (Nos. 2021YFG0018, 2022YFG0038).
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