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In this supplementary, we provide the following materials:

– More visual comparisons of ELAN-light with other state-of-the-art light-
weight methods on ×4 upscaling tasks.

– More visual comparisons of ELAN with other state-of-the-art methods on
×4 upscaling tasks.

1 Qualitative results of ELAN-light

More visual comparison examples between our ELAN-light and CARN [1], IDN
[4], IMDN[3], EDSR-baseline [8], LAPAR-A [5] and SwinIR-light [7] are shown in
Figure 1. We can see that most of the compared methods fail to restore the shape
of lattice in the first image, producing undesired artifacts. For the second and
third images, the compared methods are prone to generating blurry results or
artifacts around the long sharp edges. As for the last image, the competitors fail
to preserve the structure of character ”M”, while our ELAN-light can restore the
character very well. These results demonstrate the effectiveness of our modeling
of long-range self-attention on the SR task.

2 Qualitative results of ELAN

More visual comparison examples between our ELAN and EDSR [8], RDN [10],
SAN [2], RCAN [9], IGNN [6] and SwinIR [7] are shown in Figure 2. Similar
to the main paper, several interesting observations can be made from them.
CNN-based methods, even with very deep architectures like RCAN [9], often fail
to recovering the repeated textures (e.g., first image) and long edges (e.g., third
image). The transformer based methods such as SwinIR [7] cannot reproduce the
long and sharp edges well (e.g., the last two images) since they can only calculate
the self-attention in a small window. Our proposed group-wise multi-scale self-
attention (GMSA) enables ELAN to exploit the self-similarity information on
different scales with larger windows, thus making ELAN more robust and stable
on recovering image structures and details from the low-resolution inputs.
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Fig. 1. Qualitative comparison of state-of-the-art light-weight SR models for the ×4
upscaling task.
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Fig. 2. Qualitative comparison of state-of-the-art classic SR models for the ×4 upscal-
ing task.
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