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Table S1. Complexity analysis. The number in brackets indicates the parameters in the
high-level feature extraction module. We compute BOPs by generating a 1920×1080
image (upscaling factor ×4).

Model Bit Params Gate Params(ratio) BOPs Gate BOPs(ratio)

EDSR 32 1.52M 0 532T 0
EDSR DDTB 2 0.41M(0.08M) 0.6% 219T 0.0000013%
EDSR DDTB 3 0.45M(0.11M) 0.6% 220T 0.0000013%
EDSR DDTB 4 0.49M(0.15M) 0.5% 222T 0.0000013%

RDN 32 22.3M 0 6038T 0
RDN DDTB 2 1.76M(1.42M) 2.8% 239T 0.0000066%
RDN DDTB 3 2.44M(2.10M) 2% 267T 0.0000059%
RDN DDTB 4 3.13M(2.79M) 1.6% 307T 0.0000051%
SRResNet 32 1.543M 0 591T 0

SRResNet DDTB 2 0.44M(0.07M) 0.1% 278T 0.0000002%
SRResNet DDTB 3 0.47M(0.11M) 0.1% 280T 0.0000002%
SRResNet DDTB 4 0.51M(0.15M) 0.1% 282T 0.0000002%

1 Model Complexity

Table S1 provides the complexity analyses of 4, 3, 2-bit SR models. The extra
overhead of the dynamic gate controller is negligible.

2 Visualization

Fig. 1(a), Fig. 1(b), and Fig. 1(c) exhibit the reconstructed results of the 2-bit
EDSR×4, 2-bit RDN×4, and 2-bit SRResNet×4, respectively. The reported
PSNR/SSIM are measured by the displayed image. It can be seen that our
method obtains the best visualization results compared with other methods.
This demonstrates the superiority of our DDTB.
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(a) 2-bit EDSR×4.
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(b) 2-bit RDN×4.
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(c) 2-bit SRResNet×4.

Fig. S1. Reconstructed results of 2-bit EDSR×4, 2-bit RDN×4, and 2-bit
SRResNet×4.

3 Results of Fully Quantized Models

In this section, we provide the comparisons between the existing fully quantized
method FQSR [3] and our DDTB. Following FQSR [3], all layers and skip-
connections of SR models are quantized. As shown in Table S2, DDTB outper-
forms FQSR by a large margin when performing 4-bit quantization. For instance,
DDTB obtains performance gains by 0.98dB, 0.58dB, 0.37dB, and 0.77dB on
Set5, Set14, BSD100, and Urban100, respectively.
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Table S2. PSNR/SSIM comparisons between the existing fully quantized method and
our DDTB. “SC” indicates the bit-width of skip-connections.

Model Bit SC Methods Set5 Set14 BSD100 Urban100

EDSR
×4

4 8
FQSR 30.93/0.870 27.82/0.761 27.07/0.715 24.93/0.744

DDTB(Ours) 31.91/0.889 28.40/0.777 27.44/0.732 25.70/0.775
EDSR
×2

4 8
FQSR 37.04/0.951 32.84/0.908 31.67/0.889 30.65/0.911

DDTB(Ours) 37.83/0.960 33.44/0.916 32.07/0.898 31.60/0.924
SRGAN

×4
4 8

FQSR 30.96/0.872 27.85/0.759 27.08/0.713 24.93/0.742
DDTB(Ours) 31.46/0.879 28.10/0.766 27.26/0.721 25.33/0.757

SRGAN
×2

4 8
FQSR 36.69/0.950 32.64/0.906 31.57/0.888 30.37/0.908

DDTB(Ours) 36.84/0.950 32.79/0.907 31.69/0.889 30.70/0.910
SRResNet

×4
4 8

FQSR 31.04/0.874 27.86/0.761 27.09/0.714 24.95/0.744
DDTB(Ours) 31.51/0.881 28.17/0.767 27.31/0.722 25.39/0.760

SRResNet
×2

4 8
FQSR 36.34/0.945 32.40/0.901 31.37/0.882 29.98/0.899

DDTB(Ours) 36.85/0.951 32.73/0.907 31.63/0.890 30.63/0.910

4 Differences with LSQ and ReActNet

Though both LSQ [1] and DDTB adopt a linear quantizer, they differ in: 1) LSQ
focuses on the classification task while DDTB focuses on the SR task; 2) LSQ
uses the symmetric quantizer for signed data which is not suitable for highly
asymmetric activations in the SR task. In contrast, DDTB uses an asymmetric
quantizer; 3) LSQ trains the scaling factor while DDTB trains the upper bound
and the lower bound; 4) To stabilize training, LSQ adjusts the gradient of the
scaling factor by multiplying a delicate selected constant. However, DDTB only
uses an initializer without the need to manipulate the gradient.

Both ReActNet [2] and DDTB discover the importance of activation distribu-
tion, but they fundamentally differ in: 1) ReActNet performs binary quantization
for high-level vision while DDTB focuses on low-bit quantization for low-level
vision; 2) ReactNet modifies the activation function and network architecture
which were retained in DDTB.

5 Discussion about DDTB Initializer

The accumulation of quantization error and random initial weight of the dynamic
gate result in improper initial αu, αl, βu, βl, further causing inferior performance.
These two problems exist regardless of the target dataset, thus DDTB Initializer
is always essential. It provides performance improvement (see Tab. 5) as well as
stabilizes the training in particular in the case of 3-bit RDN.
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