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1 Related Work

1.1 Multi-class vs. Dichotomous Segmentation

Multi-class (e.g., semantic [39], panoptic [32]) segmentation aims at simulta-
neously labeling all the pixels in an image of complex scenario [10, 77], which
contains many different objects, with the pre-defined multiple categories encoded
in one-hot vectors. However, the one-hot representation of the categories is mem-
ory exhaustive when the number of categories is huge (e.g., 10,000 categories),
especially on high-resolution images. Besides, some input images only contain
objects from several categories (e.g., one or two). Outputting the full-length
one-hot dense predictions (10,000 categories) is not a resource-saving option. A
possible alternative could be a two-step solution: “detection + segmentation”,
in which a bounding box and category of the certain object can be predicted
first. The segmentation process can then be conducted in a dichotomous way
within the bounding box region by producing a single-channel probability map
(e.g., similar to Mask R-CNN [24]. However, Mask R-CNN still uses the one-hot
representation in the segmentation step).

Moreover, many practical applications, such as image editing, art design,
shape from silhouette, robot manipulation, are usually category-agnostic, where
the applications require highly accurate segmentation results of certain objects
regardless of their categories. Different from the images of complex scenarios
in semantic [36] or panoptic [77] segmentation, the images in these applications
usually contain one or a few objects with very high resolutions, less occlusions. To
this end, many related tasks have been proposed, such as salient object detection
(SOD) [9,38,44,58,61,64,66], salient object in clutter (SOC) [14], high-resolution
salient object detection (HRS) [68], camouflaged object detection (COD) [17,29,
54], thin object segmentation (TOS) [34], meticulous object segmentation (MOS)
[65], video object segmentation (VOS) [48], class-agnostic very high-resolution
segmentation (VHRS) [8], etc. Most of these tasks try to solve dichotomous
segmentation problems on images which are sharing specific characteristics. The
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(b) Artistic figure based on the background removed image

(a) High-resolution image with cluttered background

Fig. 1: Demo application: artistic figure generated based on a sample of our
DIS5K dataset.
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exclusive mechanisms for certain tasks are barely used so that their problem
formulations are almost the same, which means most of these tasks are data-
dependent. Simply combining these tasks by merging their datasets is not a
decent option because these tasks’ image resolutions and labeling qualities are
diversified.

Considering these facts, we re-formulate a new category-agnostic dichoto-
mous segmentation task, highly accurate Dichotomous Image Segmentation (DIS),
where achieving highly accurate segmentation results of objects with diversified
shapes and structures is the key concern.

1.2 Datasets

Datasets are the basis of most computer vision tasks. In the past decades, many
segmentation datasets for related tasks have been created. For example, se-
mantic (PASCAL-VOC [13], MS-COCO [36]) and panoptic (Cityscapes [10],
ADE20K [77]) segmentation (SMS) datasets usually contain large number of
images with multiple objects from different categories in each of them. But they
either have low geometrical labeling accuracy or relatively small resolutions,
where details of objects are hard to be included and segmented. The entity
segmentation (ES) [49] datasets proposed for class-agnostic segmentation has
similar issues. Images in the salient object detection (SOD) [9,33,44,58,66] and
camouflaged object detection (COD) [17] datasets are usually low-resolution
ones, which contains objects with simple structures. The high-resolution salient
object detection (HRS) [48,68] datasets have higher resolution, but they are built
upon images with objects of simple structures similar to that in SOD and COD
datasets. The meticulous object segmentation (MOS) [65] and thin object seg-
mentation (TOS) [34] datasets show competitive resolution and object structure
complexity characteristics. However, MOS is too small to enable thorough train-
ing and comprehensive evaluation, while the TOS dataset is built with synthetic
images. Therefore, there is a need for a new extendable large-scale dataset built
upon the high-resolution images with diversified object structure complexities
and highly accurate labeling.

1.3 Existing Models

Models are the cores of vision tasks. Currently, deep models are the most popular
solutions for most of the segmentation tasks. Many different deep architectures
have been proposed to achieve better performance, such as FCN-based [39] fea-
ture aggregation models [5,25,41,57,62,69,70,75], Encoder-Decoder architectures
[2, 6, 50, 53], Coarse-to-Fine (or Predict-Refine) models [8, 11, 35, 51, 56, 59, 60],
Vision Transformers [37, 76], etc. Besides, many real-time models [18, 27, 31, 45,
46, 67, 72] are developed to balance the performance and time costs. To achieve
highly accurate results in our DIS, the models are expected to capture fine de-
tails (and complicated structures) and large components of the diversified objects
from large-size (e.g., 2K, 4K or even larger) images with affordable memory, com-
putation and time costs. These requirements are very challenging to the existing
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segmentation models. Therefore, more effective, more efficient, and more stable
models are needed.

1.4 Over-fitting vs. Regularization

Most deep segmentation models can fit the training sets very well (training ac-
curacy close to 100%) while having different performances on the testing sets.
To the best of our knowledge, there could be two main reasons. On one hand,
the “distributions” between the training, validation, and testing sets are not
guaranteed to be the same, which leads to performance degradation of almost
all the models on testing sets. On the other hand, different model architectures
have diversified capabilities of feature representations, which means they are
more likely to fit the training sets in very different ways, namely, transform-
ing the input images into other high-dimensional spaces. Most of the works are
following this direction to develop more representative architectures. However,
there lacks an effective way to measure the representation capabilities of these
architectures before testing, so the model design is usually conducted by trial
and error. Hence, some researchers turn to search for different ways for reducing
over-fitting. Different supervision strategies, such as weights regularization [22],
dropout [55], dense (deep) supervision [30, 50, 63], hybrid loss [40, 51, 74] and so
on, have been proposed. The dense (deep) supervision [30,50,63], which imposes
ground truth supervisions on the side outputs from several of the deep interme-
diate layers, is one of the most popular ways. However, transforming the deep
intermediate features (multi-channel) into the side outputs (single-channel) in
dichotomous image segmentation (DIS) is essentially a dimension reduction op-
eration, which leads to information losses, so that weaken the supervisions. In
this paper, instead of developing more complicated deep architectures, we follow
the dense supervision idea but develop a simple yet more effective supervision
strategy, intermediate supervision, to directly enforce the supervisions on
high-dimensional intermediate deep features in addition to the side outputs.

1.5 Evaluation Metrics

The evaluation strategies and metrics are expected to provide comprehensive and
practically meaningful evaluations to analyze the prediction qualities. Currently,
many evaluation metrics, such as IoU, boundary IoU [7], F-measure [1], boundary
F-measure [12, 51], boundary displacement error (BDE) [20], boundary IoU [7],
structural measure (Sm) [15], Mean Absolute Error (M) [47], and so on, are
usually defined based on consistencies (or inconsistencies) between the model
predictions and the ground truth. Most of them are usually biased to certain
types of structures. For example, IoU and F-measure mainly rely on the object
components with large areas while neglecting the fine details with relatively small
areas. To alleviate this issue, boundary F-measure, BDE, and boundary IoU are
developed to focus on the boundary quality. However, these boundary-based
metrics are often highly dependent on those long smooth boundary segments’
qualities while failing to describe the qualities of those short jagged boundary
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Fig. 2: GT masks of our DIS5K with diversified inter-categorical complexities. The
complexity relationships are only valid within each row or column.

segments. Besides, the above metrics are mostly defined from the mathematical
or cognitive perspective; none of them are able to reflect the barriers (or costs)
of applying the predictions in real-world applications, where certain accuracy
requirements have to be satisfied. To address these issues, we propose a novel
metric, named as human correction efforts (HCE), to measure the barriers by
approximating the human efforts for correcting the faulty regions of the model
predictions.

2 More Details of DIS5K Dataset

2.1 Overall Complexity Analysis

The metrics used for evaluation the dataset complexities are all computed on
the labeled GT masks and illustrated in Tab. 1 (in main manuscript) and Fig.
2-left (in main manuscript). It shows that DIS5K is around 20 (up to 50) times
more complicated than the SOD datasets in terms of average IPQ. Although
other datasets such as CHAMELEON, COD10K, BIG, COIFT, and ThinOb-
ject5K have higher average IPQ against the SOD datasets, they are still much
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Fig. 3: Number of images per-category and per-group.

less complex than ours. The HR-SOD and HR-DAVIS-S datasets contain large-
size images with accurately labeled boundaries. However, there are no significant
differences between their IPQ and that of SOD datasets. Because IPQ is in-
sensitive to the complexities of fine details as mentioned above. The average
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contour-level complexities Cnum of different datasets are almost consistent with
their IPQ. The average Cnum and its standard deviation of DIS5K are over 100
and 400, which are much higher than other datasets. This indicates the objects in
DIS5K contain more detailed structures that are comprised of multiple contours.
The average Pnum of DIS5K is over 1400, which is almost five and three times
greater than those of HR-SOD and the synthetic ThinObject5K, respectively.
There is an interesting observation that the Pnum of HR-SOD, HR-DAVIS-S,
BIG, and ThinObject5K are not proportional to their IPQ and Cnum, but it
shows positive correlations with their image dimensions. One of the reasons is
that most of the objects in these datasets are close to convex and comprised of
single or a few contours, which leads to low IPQ and Cnum. Nevertheless, their
boundaries (e.g., small jagged segments) are accurately labeled in high-resolution
images that significantly increase the Pnum. On the other hand, larger sizes of
GT masks often directly lead to greater Pnum because the dominant points are
searched by [52], which filters out redundant boundary points based on their de-
viation distances (epsilon) against the straight lines constructed by their neigh-
boring dominant points. For example, given two objects with the same shape
comprised of smooth boundaries but different sizes, more dominant points are
generated from the larger one with the same threshold of epsilon. That means
Pnum is determined by both the boundary complexity and the GT mask di-
mension. Therefore, these three complexity measurements are complementary
to provide a comprehensive analysis of the object complexities.The large stan-
dard deviations in Tab. 1 (main manuscript) demonstrate the great diversities
of DIS5K from different perspectives.

In Fig.2, we provide the sample masks with their complexity scores in DIS5K.
The bottom-left samples with large regional components have relatively low
IPQ, and the top-right samples with more thin and complicated fine structures
have much higher IPQ and Pnum.

2.2 Per-category and per-group statistics

Fig. 3 illustrates the number of images per-category and per-group. Our DIS5K
contains 5,470 images from 225 categories divided into 22 groups. The average
numbers of images per category and per group are around 24 and 249, respec-
tively.

2.3 Typical Samples from DIS5K

Fig. 4 shows some samples from our DIS5K, which have certain characteristics
similar to that of the existing dichotomous segmentation tasks, such as salient
object detection (SOD) [58], salient object in clutter (SOC) [14], camouflaged
object detection (COD) [17], thin object segmentation (TOS) [34], meticulous
object segmentation (MOS) [65]. It is worth mentioning that “salient object”,
“salient object in clutter” and “camouflaged object” are mainly defined based
on the contrast between foreground targets and background environments. In
comparison, “thin object” and “meticulous object” are based on the geometric
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(b) Salient Object in Clutter (c) Camouflaged Object

(d) Thin Object

Basket 3648x2736 Stand 3648x2736 Shrimp 3000x4000

Bridge 1224x1632 Bench 2292x4076

(a) Salient Object

(e) Meticulous Object

Fig. 4: Sample images and ground truth masks with objects of certain characteristics.

structure complexities of the foreground targets. Therefore, the first three types
of objects and the last two types of targets are not exclusive. For example, the
basket in Fig. 4 (a) and the shrimp in Fig. 4 (c) can also be taken as meticulous
because the basket has many holes and the shrimp has jagged boundaries. Be-
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sides, the boundaries among SOD, SOC, and COD and the boundaries between
TOS and MOS are blurring. There are some overlaps between them in terms
of data samples. Our DIS5K contains all the above types of images paired with
highly-accurate ground truth masks.

2.4 Object Structure Analysis

In addition to the above mentioned image characteristics, there are also some
interesting observations on object structures from our DIS5K, as shown in Fig. 5.

Intra-category structure similarity. As shown in Fig. 5 (a) and (b), the
objects in the same categories are usually showing the same or similar struc-
tures and shapes. We call this intra-category structure similarity, which is one
of the main cues for categorizing. However, the intra-category structure simi-
larity is not always guaranteed. Fig. 5 (c) and (d) show two typical examples
against that in different magnitudes. Fig. 5 (c) illustrates some bicycles with
variant structures. Their differences are mainly caused by components absence
(out-of-view imaging, incomplete architecture), variations on the design, view
angle changes, co-existence of multiple targets, etc. Although the structures of
these bicycles are different, they are still sharing some common features, such
as wheels, frames, etc. However, objects in some other categories may share no
structure similarities. For example, the sculptures in Fig. 5 (d) show very differ-
ent structures and shapes, which indicates low intra-category similarity. Because
artists or designers usually prefer to design unique architectures, which leads to
very diversified object appearances and structures. Besides, compared against
the relatively stable shapes and structures of the natural targets (e.g., animals,
plants), the structures of these human-created objects, which play vital roles
in the human-environment interaction of our daily lives, are updated very fast,
which further magnifies the challenges in the DIS task. These intra-category dis-
similarities significantly increase the difficulty of accurate segmentation and lead
to robustness risks.

Inter-category structure similarity. In contrary to the low intra-category
similarity, there also exist some categories that have high inter-category struc-
ture similarity. Fig. 5 (e) shows some targets from different categories, such as
crack, lightning, cable, rope, pipe and so on. These targets are mainly comprised
of thin and elongated components. For example, the shapes of the crack and the
lightning are very close to each other so that they are hard to be differentiated
without showing the RGB images. The cable, rope, and pipe are also comprised
of thin and elongated components with relatively smoother boundaries. Besides
other targets like roads and rivers in satellite images, vessels in medical images
also have similar structural characteristics to those mentioned above. The inter-
category structure similarities haven’t been thoroughly studied, which could be
promising directions for exploring the models’ explain-abilities and data aug-
mentation strategies.

Our DIS5K dataset provides relatively richer samples for studying the intra-
category and inter-category similarities and dissimilarities. More qualitative and
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(a) Objects with stable and less variant structures (b) Objects sharing common structures 

Seadragon 2736x3648 Seadragon 2000x3008 Seadragon 2736x3648 Bicycle 1928x2952 Bicycle 3024x4032 Bicycle 1536x2048

(e) Targets with similar structure characteristics across DIFFERENT categories 

Crack 1920x2560 Lightning 1076x1434 Cable 1712x2560 Rope 1561x2340 Pipe 3072x2304

(d) Objects with very different structures from the SAME category 

Sculpture 1944x2592 Sculpture 2448x3264 Sculpture 2736x3648 Sculpture 1200x1600 Sculpture 960x1280 Sculpture 2736x3648

(c) Objects with different structures from the SAME category 

Bicycle 2858x3811Bicycle 3024x4032Bicycle 4000x6000Bicycle 2304x3072Bicycle 2448x3264Bicycle 1200x1600

Fig. 5: Structure analysis of inter- and intra-category targets.

quantitative studies will be helpful to diversified vision tasks, such as image
(shape) classification, segmentation, etc.

2.5 Attributes of Subsets in DIS5K

Tab. 1 illustrates the essential attributes of the subsets of our DIS5K dataset. As
seen, the image dimensions of these subsets are close to each other. At the same
time, the complexities of the four testing subsets are in ascending order. Fig. 6
shows the qualitative comparisons of the structural complexities of our four
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Table 1: Image dimension and object complexity of the subsets of DIS5K. σ(·) is the
standard deviation of the corresponding index.

Task Dataset
Number Image Dimension Object Complexity

Inum H ± σH W ± σW D ± σD IPQ± σIPQ Cnum ± σC Pnum ± σP

DIS

DIS5K 5470 2513.37 ± 1053.40 3111.44 ± 1359.51 4041.93 ± 1618.26 107.60 ± 320.69 106.84 ± 436.88 1427.82 ± 3326.72

DIS-TR 3000 2514.15 ± 1052.45 3091.23 ± 1356.92 4028.09 ± 1612.45 69.32 ± 261.98 73.99 ± 367.81 1153.05 ± 2893.36

DIS-VD 470 2472.59 ± 963.43 3102.85 ± 1308.72 4006.49 ± 1526.56 156.85 ± 349.75 163.91 ± 650.42 1954.73 ± 5119.89

DIS-TE1 500 2240.35 ± 1092.92 2678.50 ± 1291.11 3535.32 ± 1598.89 27.13 ± 29.07 6.94 ± 6.37 237.48 ± 96.27

DIS-TE2 500 2402.09 ± 1047.89 3032.25 ± 1298.45 3904.03 ± 1583.39 50.79 ± 69.85 21.20 ± 16.30 583.04 ± 120.90

DIS-TE3 500 2597.15 ± 988.88 3336.51 ± 1339.10 4263.78 ± 1571.21 92.68 ± 118.99 60.96 ± 40.32 1190.93 ± 255.00

DIS-TE4 500 2847.55 ± 1069.37 3527.81 ± 1412.89 4580.93 ± 1645.86 443.32 ± 667.01 482.98 ± 843.50 4858.80 ± 5618.87

testing subsets, DIS-T1∼DIS-TE4. Their structure complexities in ascending
order can be visually perceived.

3 More Details of Experiments

3.1 Implementation details

Our models and other baseline models are trained with our DIS-TR (3,000 im-
ages) and validated on DIS-VD (470 images). The input size of our model is set
to 1024× 1024. It is worth noting that there are many large-size images in our
dataset so that the image loading operations in the training and validation are
very time-consuming. To address this issue and boost the speed of training and
validation, we resize all the input images and their corresponding ground truth
to 1024 × 1024 off-line and store them as Pytorch tensor files on the hard disk
drive. Although this strategy requires relatively more storage space, it dramat-
ically reduces the time costs for the data loading process in the training and
validation stages. Our training process consists of two training stages: (i) the
training stage of the ground truth encoder and (ii) the training stage of the im-
age segmentation component. In both training stages, these three-channel inputs
(GT masks are repeated to have three channels) are normalized to [-0.5, 0.5] and
only augmented with horizontal flipping. The models weights are initialized by
Xavier [21] and optimized with Adam [28] optimizer with the default settings
(initial learning rate lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight decay=0) for
both the ground truth encoder and the segmentation component. The batch size
of each training step is set to eight, and the validation on DIS-VD is conducted
every 1,000 iterations. If the validation results (in terms of maxF and M) are
improved, the hard disk drive saves the model weights. It is worth mentioning
that the loss weights of the dense supervision in the ground truth encoder train-
ing and intermediate supervision of the segmentation component training are all
set to 1.0.

According to our experiments, the training process of our ground truth en-
coder is easy to converge, and it usually takes only 1,000 iterations (stop training
when the valid maxF is greater than 0.99). While the segmentation component
of our model usually converges after around 100k iterations, and the whole train-
ing process takes less than 48 hours. Besides, all the models are implemented
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(a) DIS-TE1 (b) DIS-TE2

(c) DIS-TE3

(d) DIS-TE4

Shower
3456x2592

Kite
1968x3300

Street Lamp
2433x3637

Tripod
3456x2304

Table Lamp
2848x4288

Eyeglasses
1514x2271

Gym Equipment
4032x3024

Boat
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Bench
2433x3637

Ladder
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Bicycle Stand
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Gym Equipment
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Earphone
3959x5938

Ant
1905x3000

Drum
1200x1600

Fan
653x800

UAV
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Headset
600x800

Jewelry
1362x1600

Chair
1944x2592

Parachute
1157x1741

Bicycle
2588x3888

Bridge
13000x4000

Cart
960x1280

Tractor
1500x2000

Parachute
1318x1980

Bridge
2592x3872

Fence
3264x3264

Sculpture
3024x4032

Antenna
3296x2472

Gate
3264x3264

Transmission Tower
4032x3024

Scaffold
3872x2592

Boat
1276x1890

Fig. 6: Sample ground truth (GT) masks from DIS-TE1, DIS-TE2, DIS-TE3, and DIS-
TE4.
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Fig. 7: Qualitative comparisons of our model and four cutting-edge baselines.

using Pytorch 1.8.0. Some experiments are conducted on a desktop that has a
2.9 GHz CPU (128 cores AMD Ryzen Threadripper 3990X), 256 GB RAM and a
NVIDIA RTX A6000 GPU. Some other models are trained on NVIDIA TESLA
V100 GPU (32 GB).

3.2 More Analysis of the Experimental Results

Performance comparisons among different models. As shown in Tab. 2
in the main manuscript, our model achieves the most competitive performance
against other existing models in terms of almost all the evaluation metrics on
different datasets. Among the dichotomous segmentation models, U-Net [53],
BASNet [51], U2-Net [50] and PFNet [43] performs relatively better against other
SOD and COD models. Among the semantic segmentation and real-time seman-
tic segmentation models, the results of HRNet [57] and HyperSeg-M [45] show
more competitive performance. Among all the existing models, the performance
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Table 2: PART-I: Quantitative evaluation on our validation, DIS-VD, and test
sets, DIS-TE (1-4), based on groups. ResNet18=R-18. ResNet34=R-34. ResNet50=R-
50. Res2Net50=R2-50. DeepLab-V3+=DLV3+. BiseNetV1=BSV1. STDC813=S-813.
EffiNetB1=E-B1. MobileNetV3-Large=MBV3. HyperSeg-M=HySM.

Dataset Metric
UNet
[53]

BASNet
[51]

GateNet
[75]

F3Net
[62]

GCPANet
[6]

U2Net
[50]

SINetV2
[16]

PFNet
[43]

PSPNet
[73]

DLV3+
[4]

HRNet
[57]

BSV1
[67]

ICNet
[72]

MBV3
[26]

STDC
[18]

HySM
[45]

Ours

1
A
c
c
e
s
s
o
r
ie
s maxFβ ↑ 0.680 0.735 0.677 0.700 0.664 0.749 0.684 0.703 0.701 0.659 0.733 0.655 0.681 0.723 0.714 0.749 0.788

Fw
β ↑ 0.576 0.641 0.572 0.608 0.560 0.658 0.606 0.619 0.614 0.565 0.652 0.535 0.590 0.651 0.631 0.657 0.716

M ↓ 0.133 0.109 0.130 0.121 0.135 0.110 0.124 0.117 0.116 0.131 0.106 0.144 0.123 0.108 0.115 0.106 0.093
Sα ↑ 0.714 0.746 0.700 0.721 0.706 0.757 0.720 0.730 0.725 0.694 0.755 0.698 0.711 0.742 0.734 0.767 0.788
Em

ϕ ↑ 0.761 0.806 0.770 0.800 0.759 0.804 0.794 0.810 0.800 0.777 0.818 0.738 0.786 0.829 0.814 0.809 0.837

HCEγ ↓ 547 549 571 612 682 562 679 634 662 580 581 688 585 684 630 547 432

2
A
ir
c
r
a
ft

maxFβ ↑ 0.823 0.846 0.788 0.800 0.781 0.847 0.804 0.811 0.816 0.788 0.831 0.798 0.814 0.825 0.791 0.835 0.886
Fw

β ↑ 0.732 0.756 0.683 0.715 0.667 0.757 0.717 0.729 0.722 0.691 0.746 0.686 0.727 0.757 0.712 0.750 0.821

M ↓ 0.068 0.063 0.079 0.069 0.075 0.064 0.064 0.067 0.065 0.076 0.062 0.075 0.068 0.056 0.070 0.062 0.047
Sα ↑ 0.829 0.828 0.779 0.803 0.791 0.830 0.807 0.810 0.814 0.791 0.830 0.810 0.817 0.827 0.800 0.835 0.872
Em

ϕ ↑ 0.875 0.875 0.828 0.865 0.840 0.871 0.884 0.879 0.869 0.851 0.890 0.851 0.873 0.906 0.874 0.875 0.911

HCEγ ↓ 1185 1248 1153 1258 1222 1242 1241 1243 1229 1190 1448 1296 1159 1315 1314 1123 1066

3
A
q
u
a
t
ic

maxFβ ↑ 0.612 0.681 0.613 0.613 0.581 0.691 0.571 0.649 0.615 0.601 0.700 0.563 0.617 0.672 0.604 0.654 0.715
Fw

β ↑ 0.489 0.576 0.481 0.510 0.464 0.581 0.481 0.550 0.511 0.492 0.603 0.424 0.519 0.591 0.505 0.542 0.624

M ↓ 0.119 0.093 0.109 0.107 0.124 0.090 0.124 0.099 0.103 0.113 0.085 0.119 0.103 0.085 0.104 0.106 0.080
Sα ↑ 0.692 0.728 0.665 0.687 0.670 0.738 0.676 0.716 0.692 0.673 0.748 0.658 0.695 0.729 0.681 0.713 0.759
Em

ϕ ↑ 0.732 0.779 0.732 0.743 0.704 0.786 0.735 0.796 0.755 0.758 0.832 0.678 0.781 0.822 0.735 0.747 0.799

HCEγ ↓ 879 867 867 905 916 872 945 937 988 906 926 984 899 1009 938 839 710

4
A
r
c
h
it
e
c
t
u
r
e maxFβ ↑ 0.720 0.742 0.678 0.685 0.638 0.751 0.671 0.702 0.694 0.674 0.739 0.681 0.710 0.706 0.704 0.756 0.792

Fw
β ↑ 0.610 0.649 0.570 0.595 0.528 0.657 0.587 0.612 0.601 0.576 0.649 0.563 0.621 0.633 0.622 0.661 0.713

M ↓ 0.099 0.087 0.106 0.101 0.115 0.084 0.105 0.100 0.097 0.106 0.087 0.103 0.095 0.091 0.093 0.084 0.070
Sα ↑ 0.769 0.779 0.725 0.741 0.716 0.790 0.739 0.752 0.751 0.729 0.780 0.747 0.761 0.759 0.756 0.794 0.814
Em

ϕ ↑ 0.803 0.828 0.779 0.806 0.759 0.828 0.813 0.824 0.808 0.803 0.841 0.781 0.821 0.842 0.829 0.835 0.849

HCEγ ↓ 1949 2180 2263 2368 2322 2217 2362 2418 2409 2331 2342 2525 2329 2413 2424 2053 1746

5
A
r
t
if
a
c
t

maxFβ ↑ 0.721 0.736 0.687 0.678 0.640 0.767 0.648 0.696 0.702 0.664 0.741 0.658 0.713 0.717 0.693 0.750 0.805
Fw

β ↑ 0.622 0.657 0.594 0.598 0.543 0.683 0.575 0.621 0.619 0.578 0.666 0.543 0.630 0.647 0.618 0.670 0.733

M ↓ 0.125 0.107 0.125 0.128 0.147 0.100 0.141 0.125 0.117 0.134 0.107 0.144 0.118 0.114 0.122 0.107 0.080
Sα ↑ 0.758 0.770 0.725 0.727 0.708 0.794 0.712 0.744 0.747 0.713 0.777 0.718 0.751 0.757 0.735 0.784 0.822
Em

ϕ ↑ 0.795 0.833 0.797 0.795 0.755 0.834 0.781 0.812 0.806 0.792 0.834 0.748 0.815 0.831 0.809 0.824 0.854

HCEγ ↓ 2126 2248 2572 2607 2508 2326 2454 2601 2647 2534 2494 2789 2517 2554 2613 2223 1821

6
A
u
t
o
m

o
b
il
e maxFβ ↑ 0.773 0.816 0.781 0.787 0.765 0.825 0.789 0.794 0.790 0.761 0.801 0.756 0.796 0.809 0.789 0.824 0.844

Fw
β ↑ 0.683 0.741 0.687 0.708 0.676 0.752 0.715 0.719 0.718 0.680 0.734 0.659 0.717 0.748 0.715 0.745 0.785

M ↓ 0.113 0.088 0.109 0.100 0.109 0.084 0.097 0.098 0.096 0.111 0.092 0.118 0.096 0.083 0.098 0.084 0.076
Sα ↑ 0.780 0.813 0.770 0.786 0.776 0.822 0.794 0.792 0.792 0.765 0.808 0.776 0.795 0.806 0.786 0.823 0.836
Em

ϕ ↑ 0.824 0.865 0.832 0.850 0.829 0.868 0.858 0.862 0.857 0.842 0.861 0.820 0.860 0.879 0.859 0.868 0.881

HCEγ ↓ 860 896 955 994 1026 911 1037 1016 1043 959 967 1102 974 1056 1006 860 703

7
E
le
c
t
r
ic
a
l maxFβ ↑ 0.625 0.716 0.656 0.653 0.584 0.731 0.625 0.638 0.638 0.610 0.691 0.593 0.662 0.658 0.653 0.700 0.778

Fw
β ↑ 0.512 0.614 0.551 0.554 0.469 0.626 0.529 0.538 0.543 0.512 0.592 0.472 0.562 0.578 0.561 0.598 0.700

M ↓ 0.091 0.065 0.074 0.073 0.089 0.064 0.081 0.082 0.076 0.083 0.069 0.090 0.074 0.072 0.074 0.070 0.053
Sα ↑ 0.730 0.771 0.728 0.732 0.701 0.782 0.715 0.722 0.728 0.709 0.760 0.706 0.742 0.737 0.731 0.769 0.808
Em

ϕ ↑ 0.766 0.830 0.804 0.819 0.750 0.826 0.804 0.808 0.800 0.804 0.826 0.758 0.822 0.838 0.826 0.816 0.853

HCEγ ↓ 1104 1368 1333 1398 1335 1380 1358 1428 1409 1376 1501 1501 1336 1435 1421 1149 911

8
E
le
c
t
r
o
n
ic
s maxFβ ↑ 0.721 0.740 0.688 0.718 0.658 0.769 0.712 0.714 0.715 0.665 0.733 0.682 0.723 0.723 0.712 0.760 0.801

Fw
β ↑ 0.629 0.660 0.592 0.637 0.563 0.692 0.638 0.637 0.634 0.577 0.658 0.572 0.642 0.665 0.636 0.678 0.744

M ↓ 0.094 0.089 0.106 0.098 0.112 0.080 0.091 0.096 0.092 0.108 0.087 0.108 0.089 0.086 0.092 0.084 0.063
Sα ↑ 0.780 0.780 0.737 0.766 0.739 0.808 0.769 0.766 0.769 0.730 0.784 0.752 0.771 0.783 0.764 0.805 0.834
Em

ϕ ↑ 0.808 0.819 0.782 0.816 0.774 0.841 0.826 0.820 0.812 0.793 0.826 0.781 0.816 0.834 0.823 0.832 0.872

HCEγ ↓ 804 857 842 924 953 861 965 947 985 902 956 1019 868 995 958 781 622

9
E
n
t
e
r
t
a
in

m
e
n
t maxFβ ↑ 0.747 0.784 0.718 0.716 0.654 0.774 0.704 0.738 0.722 0.699 0.768 0.727 0.746 0.746 0.730 0.791 0.831

Fw
β ↑ 0.628 0.681 0.603 0.615 0.532 0.671 0.605 0.639 0.615 0.592 0.671 0.600 0.648 0.663 0.640 0.688 0.748

M ↓ 0.110 0.093 0.111 0.111 0.126 0.095 0.110 0.105 0.106 0.117 0.094 0.112 0.100 0.097 0.103 0.093 0.071
Sα ↑ 0.768 0.786 0.737 0.743 0.713 0.783 0.742 0.761 0.745 0.729 0.781 0.759 0.769 0.767 0.754 0.799 0.827
Em

ϕ ↑ 0.802 0.839 0.798 0.821 0.760 0.834 0.830 0.837 0.816 0.814 0.850 0.801 0.836 0.852 0.840 0.838 0.872

HCEγ ↓ 1644 1793 1837 1862 1834 1872 1849 1904 1907 1838 1969 2029 1819 1920 1870 1643 1369

1
0

F
r
a
m

e

maxFβ ↑ 0.681 0.718 0.678 0.651 0.596 0.742 0.629 0.671 0.680 0.638 0.687 0.643 0.675 0.696 0.695 0.724 0.783
Fw

β ↑ 0.564 0.625 0.573 0.561 0.482 0.639 0.543 0.576 0.586 0.547 0.597 0.513 0.581 0.621 0.610 0.619 0.702

M ↓ 0.097 0.080 0.086 0.093 0.113 0.075 0.104 0.093 0.088 0.097 0.087 0.104 0.087 0.082 0.083 0.082 0.064
Sα ↑ 0.757 0.787 0.750 0.745 0.717 0.800 0.732 0.754 0.758 0.735 0.767 0.735 0.758 0.761 0.759 0.786 0.826
Em

ϕ ↑ 0.791 0.832 0.818 0.810 0.752 0.843 0.796 0.819 0.821 0.812 0.819 0.777 0.827 0.845 0.842 0.824 0.863

HCEγ ↓ 1066 1169 1248 1317 1311 1187 1318 1354 1380 1266 1294 1425 1258 1371 1318 1122 850

1
1

F
u
r
n
it
u
r
e

maxFβ ↑ 0.655 0.721 0.662 0.670 0.629 0.725 0.664 0.680 0.675 0.644 0.706 0.623 0.670 0.702 0.680 0.718 0.773
Fw

β ↑ 0.549 0.636 0.558 0.580 0.525 0.636 0.583 0.593 0.586 0.553 0.622 0.506 0.583 0.629 0.597 0.626 0.695

M ↓ 0.119 0.090 0.109 0.106 0.121 0.089 0.109 0.103 0.103 0.111 0.095 0.126 0.103 0.090 0.102 0.095 0.076
Sα ↑ 0.725 0.768 0.715 0.730 0.711 0.773 0.733 0.741 0.736 0.710 0.761 0.705 0.734 0.754 0.736 0.768 0.804
Em

ϕ ↑ 0.764 0.822 0.787 0.796 0.761 0.819 0.803 0.805 0.799 0.794 0.813 0.750 0.803 0.834 0.811 0.811 0.842

HCEγ ↓ 871 904 951 1001 1012 914 1012 1035 1044 959 1018 1120 978 1048 1020 862 671

of HyperSeg-M and U2-Net are close and perform better than other models in
both validation and testing sets. Although HRNet and BASNet show slightly
inferior performance against HyperSeg-M and U2-Net, they are still more com-
petitive than others. Fig. 7 provides the qualitative comparisons of our model
and other four competitive baseline models. As can be seen, our model achieves
the best overall performance on different objects. Surprisingly, other models like
U2-Net, HyperSeg-M, and HRNet also obtain encouraging results on certain
targets, such as the tree, the gate and the shopping cart, after training on our
DIS-TR dataset, which further proves the value of DIS5K.
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Table 3: PART-II: Quantitative evaluation on our validation, DIS-VD, and test
sets, DIS-TE (1-4), based on groups. ResNet18=R-18. ResNet34=R-34. ResNet50=R-
50. Res2Net50=R2-50. DeepLab-V3+=DLV3+. BiseNetV1=BSV1. STDC813=S-813.
EffiNetB1=E-B1. MobileNetV3-Large=MBV3. HyperSeg-M=HySM.

Dataset Metric
UNet
[53]

BASNet
[51]

GateNet
[75]

F3Net
[62]

GCPANet
[6]

U2Net
[50]

SINetV2
[16]

PFNet
[43]

PSPNet
[73]

DLV3+
[4]

HRNet
[57]

BSV1
[67]

ICNet
[72]

MBV3
[26]

STDC
[18]

HySM
[45]

Ours

1
2

G
r
a
p
h
ic
s maxFβ ↑ 0.750 0.719 0.685 0.663 0.524 0.746 0.568 0.645 0.646 0.621 0.671 0.575 0.681 0.616 0.647 0.732 0.780

Fw
β ↑ 0.654 0.628 0.598 0.584 0.431 0.653 0.496 0.569 0.566 0.540 0.585 0.473 0.606 0.566 0.578 0.647 0.706

M ↓ 0.061 0.064 0.066 0.069 0.094 0.057 0.088 0.078 0.067 0.073 0.074 0.096 0.064 0.065 0.068 0.059 0.049
Sα ↑ 0.825 0.800 0.784 0.772 0.703 0.823 0.717 0.754 0.772 0.752 0.772 0.719 0.790 0.750 0.763 0.814 0.839
Em

ϕ ↑ 0.835 0.831 0.835 0.843 0.726 0.834 0.795 0.827 0.798 0.817 0.819 0.740 0.828 0.847 0.865 0.836 0.873
HCEγ ↓ 670 976 1009 1268 1403 938 1423 1294 1447 1201 990 1425 1122 1457 1331 824 621

1
3

In
s
e
c
t

maxFβ ↑ 0.673 0.681 0.641 0.627 0.554 0.718 0.608 0.634 0.637 0.617 0.706 0.620 0.650 0.700 0.643 0.692 0.762
Fw

β ↑ 0.552 0.586 0.530 0.537 0.442 0.617 0.523 0.541 0.541 0.522 0.617 0.482 0.552 0.629 0.557 0.592 0.683
M ↓ 0.073 0.065 0.071 0.070 0.089 0.058 0.076 0.075 0.069 0.074 0.061 0.075 0.068 0.058 0.069 0.062 0.049
Sα ↑ 0.766 0.766 0.733 0.738 0.694 0.786 0.724 0.737 0.740 0.728 0.785 0.725 0.747 0.776 0.743 0.783 0.820
Em

ϕ ↑ 0.804 0.821 0.781 0.804 0.753 0.827 0.810 0.803 0.817 0.817 0.844 0.748 0.825 0.863 0.820 0.809 0.860
HCEγ ↓ 570 595 604 656 683 592 701 663 714 636 622 700 609 713 667 574 488

1
4

K
it
c
h
e
n
w
a
r
e maxFβ ↑ 0.704 0.754 0.678 0.697 0.688 0.734 0.713 0.708 0.692 0.661 0.739 0.667 0.689 0.730 0.702 0.749 0.771

Fw
β ↑ 0.588 0.654 0.555 0.596 0.578 0.633 0.620 0.608 0.587 0.550 0.649 0.545 0.587 0.647 0.606 0.657 0.685

M ↓ 0.167 0.144 0.174 0.163 0.170 0.151 0.152 0.160 0.167 0.178 0.143 0.178 0.166 0.144 0.159 0.140 0.128
Sα ↑ 0.704 0.733 0.662 0.690 0.691 0.723 0.712 0.698 0.680 0.653 0.729 0.679 0.688 0.729 0.697 0.743 0.763
Em

ϕ ↑ 0.737 0.777 0.721 0.754 0.742 0.761 0.777 0.764 0.736 0.731 0.798 0.725 0.753 0.795 0.764 0.786 0.798
HCEγ ↓ 541 536 554 574 579 536 602 583 588 543 608 637 540 608 571 484 367

1
5

M
a
c
h
in

e

maxFβ ↑ 0.798 0.807 0.744 0.777 0.746 0.845 0.778 0.767 0.800 0.766 0.842 0.755 0.812 0.812 0.782 0.818 0.869
Fw

β ↑ 0.692 0.713 0.629 0.676 0.638 0.755 0.695 0.676 0.710 0.666 0.760 0.639 0.722 0.738 0.694 0.727 0.801
M ↓ 0.126 0.119 0.147 0.131 0.145 0.100 0.124 0.131 0.118 0.138 0.100 0.147 0.116 0.111 0.123 0.116 0.089
Sα ↑ 0.764 0.771 0.701 0.739 0.728 0.809 0.761 0.736 0.770 0.729 0.802 0.739 0.773 0.780 0.747 0.783 0.842
Em

ϕ ↑ 0.812 0.833 0.781 0.816 0.786 0.851 0.844 0.824 0.843 0.821 0.870 0.779 0.848 0.857 0.835 0.835 0.881
HCEγ ↓ 1544 1687 1728 1846 1849 1693 1910 1860 1925 1787 1937 1987 1799 1957 1899 1589 1322

1
6

M
u
s
ic

In
s
t
r
u
m

e
n
t maxFβ ↑ 0.748 0.809 0.740 0.777 0.756 0.817 0.775 0.777 0.777 0.752 0.808 0.748 0.774 0.811 0.777 0.829 0.852

Fw
β ↑ 0.643 0.726 0.636 0.691 0.660 0.734 0.699 0.698 0.690 0.656 0.730 0.640 0.689 0.739 0.698 0.745 0.783

M ↓ 0.159 0.123 0.163 0.137 0.145 0.115 0.127 0.133 0.139 0.154 0.117 0.156 0.140 0.113 0.135 0.114 0.101
Sα ↑ 0.732 0.781 0.706 0.753 0.749 0.790 0.767 0.761 0.749 0.722 0.787 0.736 0.750 0.782 0.755 0.799 0.820
Em

ϕ ↑ 0.775 0.825 0.764 0.811 0.792 0.834 0.826 0.818 0.809 0.796 0.842 0.771 0.809 0.848 0.814 0.828 0.853
HCEγ ↓ 671 683 653 693 708 705 735 713 732 678 791 796 687 771 748 598 492

1
7

N
o
n
-m

o
t
o
r

V
e
h
ic
le

maxFβ ↑ 0.762 0.800 0.755 0.761 0.718 0.803 0.740 0.755 0.774 0.748 0.791 0.731 0.764 0.779 0.768 0.794 0.840
Fw

β ↑ 0.662 0.719 0.658 0.674 0.612 0.722 0.654 0.673 0.687 0.660 0.713 0.620 0.683 0.709 0.691 0.710 0.774
M ↓ 0.100 0.086 0.103 0.100 0.118 0.086 0.107 0.101 0.095 0.101 0.086 0.113 0.095 0.087 0.093 0.088 0.068
Sα ↑ 0.788 0.816 0.767 0.784 0.759 0.817 0.770 0.781 0.791 0.769 0.812 0.768 0.790 0.800 0.787 0.815 0.846
Em

ϕ ↑ 0.839 0.870 0.836 0.853 0.807 0.866 0.845 0.852 0.857 0.852 0.870 0.811 0.857 0.874 0.863 0.859 0.891
HCEγ ↓ 1956 2098 2134 2219 2217 2121 2269 2293 2274 2169 2314 2319 2161 2334 2245 1971 1623

1
8

P
la
n
t

maxFβ ↑ 0.685 0.745 0.690 0.685 0.680 0.771 0.696 0.701 0.723 0.703 0.755 0.642 0.718 0.743 0.706 0.785 0.766
Fw

β ↑ 0.566 0.637 0.569 0.576 0.564 0.665 0.589 0.602 0.623 0.595 0.658 0.500 0.621 0.654 0.597 0.689 0.665
M ↓ 0.144 0.119 0.138 0.138 0.145 0.111 0.141 0.134 0.126 0.131 0.111 0.153 0.125 0.112 0.136 0.104 0.109
Sα ↑ 0.697 0.730 0.689 0.695 0.685 0.761 0.703 0.696 0.727 0.700 0.752 0.662 0.720 0.737 0.693 0.779 0.764
Em

ϕ ↑ 0.749 0.778 0.749 0.755 0.748 0.787 0.758 0.774 0.790 0.783 0.810 0.707 0.801 0.804 0.762 0.804 0.779
HCEγ ↓ 9194 9174 10036 10164 10488 9062 10268 10137 10231 9910 9615 10444 9798 10309 10230 8334 8563

1
9

S
h
ip

maxFβ ↑ 0.773 0.793 0.739 0.747 0.726 0.792 0.730 0.760 0.769 0.756 0.779 0.761 0.772 0.785 0.744 0.791 0.834
Fw

β ↑ 0.686 0.705 0.632 0.660 0.614 0.713 0.648 0.672 0.676 0.657 0.698 0.653 0.690 0.711 0.659 0.711 0.766
M ↓ 0.095 0.095 0.114 0.107 0.116 0.089 0.108 0.103 0.103 0.107 0.098 0.104 0.098 0.085 0.108 0.091 0.069
Sα ↑ 0.796 0.796 0.742 0.760 0.741 0.804 0.753 0.770 0.775 0.758 0.784 0.772 0.787 0.790 0.757 0.806 0.840
Em

ϕ ↑ 0.840 0.842 0.793 0.823 0.785 0.849 0.838 0.837 0.828 0.826 0.846 0.811 0.846 0.870 0.831 0.848 0.880
HCEγ ↓ 3193 3341 3233 3242 3225 3355 3183 3265 3189 3178 3443 3454 3134 3381 3334 3046 2951

2
0

S
p
o
r
t
s

maxFβ ↑ 0.699 0.721 0.674 0.675 0.637 0.745 0.661 0.687 0.685 0.639 0.724 0.679 0.676 0.727 0.684 0.744 0.788
Fw

β ↑ 0.596 0.629 0.572 0.583 0.526 0.651 0.573 0.590 0.594 0.547 0.637 0.554 0.583 0.654 0.597 0.647 0.714
M ↓ 0.076 0.065 0.074 0.074 0.081 0.059 0.077 0.075 0.072 0.081 0.064 0.078 0.072 0.059 0.072 0.062 0.051
Sα ↑ 0.766 0.778 0.743 0.747 0.728 0.797 0.740 0.748 0.748 0.724 0.784 0.751 0.752 0.780 0.750 0.795 0.827
Em

ϕ ↑ 0.807 0.822 0.805 0.825 0.777 0.832 0.821 0.825 0.820 0.803 0.831 0.801 0.816 0.868 0.836 0.838 0.860
HCEγ ↓ 1137 1283 1274 1329 1247 1315 1274 1355 1323 1297 1450 1401 1306 1352 1343 1180 934

2
1

T
o
o
l

maxFβ ↑ 0.656 0.714 0.649 0.678 0.643 0.719 0.670 0.683 0.679 0.628 0.700 0.628 0.670 0.697 0.680 0.717 0.757
Fw

β ↑ 0.538 0.622 0.543 0.582 0.533 0.624 0.581 0.589 0.588 0.532 0.612 0.505 0.573 0.623 0.592 0.611 0.676
M ↓ 0.100 0.082 0.095 0.089 0.100 0.080 0.094 0.090 0.086 0.101 0.086 0.104 0.091 0.081 0.087 0.082 0.071
Sα ↑ 0.733 0.771 0.721 0.743 0.727 0.773 0.739 0.746 0.752 0.708 0.759 0.719 0.740 0.758 0.739 0.771 0.797
Em

ϕ ↑ 0.784 0.829 0.797 0.822 0.785 0.831 0.815 0.822 0.820 0.802 0.827 0.769 0.815 0.842 0.836 0.823 0.844
HCEγ ↓ 568 589 620 659 673 602 689 673 689 632 662 724 625 707 660 554 433

2
2

W
e
a
p
o
n

maxFβ ↑ 0.763 0.805 0.728 0.787 0.765 0.816 0.780 0.799 0.798 0.747 0.812 0.757 0.773 0.794 0.785 0.806 0.848
Fw

β ↑ 0.672 0.726 0.616 0.706 0.668 0.737 0.706 0.717 0.718 0.654 0.743 0.657 0.689 0.728 0.707 0.730 0.794
M ↓ 0.108 0.090 0.124 0.097 0.106 0.087 0.096 0.093 0.091 0.113 0.084 0.108 0.099 0.088 0.096 0.085 0.071
Sα ↑ 0.784 0.802 0.718 0.788 0.775 0.814 0.790 0.797 0.794 0.750 0.816 0.778 0.776 0.802 0.784 0.820 0.850
Em

ϕ ↑ 0.822 0.861 0.790 0.843 0.833 0.855 0.857 0.861 0.856 0.828 0.870 0.826 0.838 0.864 0.854 0.867 0.899
HCEγ ↓ 793 826 849 888 899 845 923 902 928 864 914 969 861 937 899 779 649

A
ll

V
D
+

T
E
(
1
-4

) maxFβ ↑ 0.705 0.748 0.691 0.700 0.658 0.758 0.687 0.708 0.706 0.675 0.739 0.671 0.709 0.726 0.708 0.752 0.798
Fw

β ↑ 0.600 0.659 0.587 0.611 0.551 0.668 0.604 0.620 0.617 0.581 0.654 0.556 0.620 0.655 0.625 0.660 0.724
M ↓ 0.105 0.087 0.104 0.099 0.113 0.085 0.102 0.099 0.096 0.107 0.088 0.112 0.096 0.087 0.095 0.087 0.071
Sα ↑ 0.756 0.780 0.730 0.747 0.726 0.789 0.743 0.753 0.753 0.727 0.778 0.735 0.756 0.768 0.751 0.788 0.818
Em

ϕ ↑ 0.796 0.832 0.794 0.815 0.774 0.833 0.817 0.824 0.816 0.807 0.837 0.776 0.822 0.849 0.829 0.830 0.857
HCEγ ↓ 1228 1330 1368 1433 1425 1348 1441 1461 1470 1394 1457 1541 1387 1489 1459 1239 1035

Performance comparisons among different test sets. performance analy-
sis based on the targets’ complexities for demonstrating the importance of our
newly proposed HCEγ ↓ metric. As shown in Tab. 2 in the main manuscript,
our model achieves different performances on the four testing sets, obtained by
ordering (ascending) and splitting the whole test set according to the structural
complexities of the to-be-segmented objects. However, except for our newly pro-
posed HCEγ ↓, other metrics, such as maxFβ ↑, Fw

β ↑, M ↓, Sα ↑ and Em
ϕ ↑,

of DIS-TE1, DIS-TE2, DIS-TE3, and DIS-TE4 show no strong (negative or pos-
itive) correlations with respect to the shape complexities. For example, M of
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Fig. 8: Curves of the training loss computed on the last prediction probability map
and the Mean Absolute Error (M) on our validation set (DIS-VD).

our model on these DIS-TE1 (0.074) and DIS-TE4 (0.072) are very close. The
maxFβ ↑, Fw

β ↑, Sα ↑ and Em
ϕ ↑ of DIS-TE4 are even greater than those of DIS-

TE1, which probably provides misleading information that DIS-TE4 is less chal-
lenging than DIS-TE1. On the contrary, the HCEγ ↓ of our model on DIS-TE1
and DIS-TE4 are 149 and 2,888, respectively. That indicates the cost for correct-
ing the predictions of DIS-TE4 is around 20 times more than that of correcting
predictions on DIS-TE1, which is consistent with the complexities illustrated in
Tab. 1. It means our HCEγ ↓ can correctly describe the correlations between
prediction quality and the shape complexities. Thus, it can assess the human
interventions needed when applying the models to real-world applications. We
can get similar observations from the evaluation scores of other models on differ-
ent test sets, which further proves the importance of our HCEγ ↓ in evaluating
highly accurate dichotomous image segmentation results. It is worth noting that
the weak correlations between the conventional metrics and the shape complexi-
ties of different test sets are partial because image context complexity also plays
a vital role in determining the segmentation difficulties. But this factor is hard to
be quantified and has relatively less impact on the labeling workloads. Therefore,
it is not considered in this work and will be studied in the future. In addition,
performance comparisons of different models based on different groups are illus-
trated in Tab. 2 and 3, from which the per-group segmentation difficulties and
performance can be found.
Effectiveness of Our Intermediate Supervision To further demonstrate
the effectiveness of our intermediate supervision, we show the training loss and
validation mean absolute error M ↓ curves of our adapted U2-Net with and
without our intermediate supervisions in Fig.8. The top part of Fig.8 shows
the training loss of the last side output, which is taken as the final result in
the inference stage. As can be seen, the models with intermediate supervisions
converge faster before around 10,000 iterations. Later, the model without inter-
mediate supervisions gradually produces a lower loss. These curves demonstrate
that our intermediate supervision plays a typical role of regularizer for reducing
the probability of over-fitting. The bottom plot of Fig.8 shows that our interme-
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Fig. 9: 3D models built upon the ground truth masks sampled from DIS5K by the
“Extrude” operation in Blender.

diate supervision significantly decreases the M ↓ on the validation set, which
validates its effectiveness in performance improvement.

4 Applications

Our DIS task will benefit both academia and industrious. In addition to the DIS
task, we believe that our highly accurate large-scale DIS5K dataset can also be
used in various related research fields, such as:

– providing pre-trained segmentation models for other specific object segmen-
tation tasks as well as facilitating the downstream tasks, such as image mat-
ting, editing, and so on;

– the subsets of DIS5K can be used for fast prototyping of different segmen-
tation tasks;

– providing materials and examples for shape and structure analysis in graph-
ics and topology;

– high resolution fine-grained image classification;
– segmentation guided super-resolution and image processing;
– synthesizing more composite images with diversified backgrounds for more

robust image segmentation;
– edge, boundary or contour detection, etc.

Thanks to the high resolution and accurate labeling, many samples in our
DIS5K show high artistic and aesthetic values. Fig. 1 shows the comparison
between the original ship image with cluttered background and the background-
removed image with perspective transforms (See more samples in Fig. 10). As
can be seen, compared with the original image, the background-removed image
shows higher aesthetic values and good usability, which can even be directly used
as:
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Fig. 10: Comparisons between the original images and their backgrounds-removed cor-
respondences generated from our DIS5K.
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Fig. 11: Typical failure cases.

– materials of art design, image and video editing;
– backgrounds of posters or slides, wall papers of cellphones, tablets, desktops;
– materials for 3D modeling, as shown in Fig. 9 (A demo video is also attached).

5 Limitations and Future Works

Failure Cases of Our Model. Fig.11 shows some typical failure cases of our
model. The first row shows the result of a sail ship image. Our model fails in
segment two of the masts and the ropes because this region has a cluttered back-
ground (a building). The second row shows the segmentation result of a baby
carriage. Our model fails in segmenting the mesh-like structure of the carriage
since it is too meticulous (just one-pixel width), so that it is hard to be seg-
mented by our model from the input images with the size of 1024 × 1024. The
third row illustrates the segmentation result of a key chain with a cluttered back-
ground. As can be seen, the color differences between the critical chain and the
background are small, which significantly increases the difficulty of the segmen-
tation. In summary, the highly accurate DIS is a highly challenging task. There
is still a large room for improvement. Therefore, more powerful deep segmenta-
tion models are needed to handle larger size input for obtaining very detailed
object structures. In contrast, the model size, memory occupation, training, and
inference time costs are expected to be affordable on the mainstream GPUs.
Limitations of Our DIS5K dataset. Although our DIS5K is currently the
most complex dichotomous segmentation dataset, there is still a large room for
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improvement. For example, compared with the vast number of categories and the
diversified general object classes in the real-world, 225 categories in our DIS5K
dataset are far from enough. Therefore, more categories, more samples of specific
categories, and more diversified image qualities are needed to further improve the
diversity of this dataset. Besides, semi-automatic and highly accurate annotation
tools are expected to simplify and boost the ground truth labeling processes. We
will explore semi-supervised and weakly supervised methods for further reducing
the labeling workloads. In addition, it also requires a set of standard criteria to
control the labeling accuracy.
Limitations of Our HCE metric. Our HCE metric provides direct mea-
sures of the human correction efforts needed for fixing faulty predictions under
certain accuracy requirements. To leverage different accuracy requirements, the
erosion [23] and dilation [23] operations are used to remove small false positive
and false negative regions, while the skeleton extraction algorithm [71] is used
to preserve the structural information of the thin components in the ground
truth masks. However, the skeleton extraction algorithm is slow when process-
ing the large-size masks. Therefore, the evaluation of large-scale datasets takes a
long time. This issue also happens when computing the weighted F-measure [42],
which uses a distance transform algorithm [3,19] to calculate the weights. There-
fore, more works need to be conducted on these conventional algorithms, such
as skeleton extraction, distance transform, etc., to handle larger and more com-
plicated inputs.
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