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Abstract. Natural images can suffer from non-uniform haze distribu-
tions in different regions. However, this important fact is hardly con-
sidered in existing supervised dehazing methods, in which all training
patches are accounted for equally in the loss design. These supervised
methods may fail in making promising recoveries on some regions con-
taminated by heavy hazes. Therefore, for a more reasonable dehazing
losses design, the varying importance of different training patches should
be taken into account. Such rationale is exactly in line with the process
of human learning that difficult concepts always require more practice in
learning. To this end, we propose a bi-level dehazing (BILD) framework
by designing an internal loop for weighted supervised dehazing and an
external loop for training patch reweighting. With simple derivations,
we show the gradients of BILD exhibit natural connections with pol-
icy gradient and can thus explain the BILD objective by the rewarding
mechanism in reinforcement learning. The BILD is not a new dehazing
method per se, it is better recognized as a flexible framework that can
seamlessly work with general supervised dehazing approaches for their
performance boosting.

Keywords: Single Image Dehazing, Bi-level Optimization, Visual Im-
portance, Deep Learning

1 Introduction

Image dehazing has been widely discussed in the computer vision community
and is vital for subsequent high-level tasks including image classification [23] and
object detection [9]. Conventional dehazing algorithms can be categorized into
prior-based approaches [20, 47] and data-driven approaches (a.k.a. supervised
approaches)[34, 35, 45]. Prior-based dehazing models are mainly built upon the
basic atmospheric scattering model [30, 31] with various physical assumptions
imposed on image statistics. These prior-based models are more interpretable but
can easily fail in real-world images where the assumed prior does not hold. Data-
driven methods[12, 26, 43] tackle the dehazing problem from the view of super-
vised learning. Early supervised dehazing approaches [8, 23] mainly contribute
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to designing learnable parametrized functions (e.g. a neural network) to replace
some important modules (e.g. transmission maps) in the traditional atmospheric
scattering model. Recent works [26, 32] show the potential to conduct supervised
dehazing in an end-to-end manner by directly learning the hazy-to-clear map-
ping. Compared with the prior-based dehazing models, these data-driven ap-
proaches can better approximate the complex structure of the high-dimensional
image manifold and hence achieve better performances on real-world images.

Fig. 1: The left shows non-uniform haze distributions in different regions. The
degradation degree of red, blue and yellow patches varies from severe to mild.
Compared with equally additive loss design (e.g. L1 loss in FFANet[32]), BILD
framework performs much better in restoring dense-haze regions from both vi-
sualization and quantitative evaluations via PSNR/SSIM.

In the benchmark supervised dehazing protocol, large hazy images are always
cropped into patches for subsequent dehazing learning[11, 12, 26, 32]. Such patch-
level dehazing implementation can enhance the diversity of training samples,
reduce the demands of hardware memory and improve the flexibility for par-
allelized training [7, 46]. Then, these patch-level losses are equally accumulated
to define the image-level loss. While this equally accumulated loss is extensively
used in existing works, we still suspect its reasonableness in the context of image
dehazing. The haze distributions of real-world scenes are highly non-uniform [1,
3], making the cropped image patches vary greatly in degradation degrees (see
the left column of Fig.1). When dehazing all patches with the same efforts,
even the SOTA method (FFANet[32]) cannot effectively restore the seriously
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contaminated patch from heavy haze (see the (b) row of Fig.1). Accordingly,
the heterogeneity of these training patches should not be overlooked and their
unique importances should be properly discriminated in the loss design.

To address the aforementioned challenges, we introduce a simple patch rewei-
ghting strategy by assigning different importance weights to different patches. In
this way, the image-level loss is becoming a weighted summation of the individual
losses from its containing patches. Such patch-level reweighting is intuitive and
exactly mimic the behaviour of human learning, that people always invest more
learning efforts on valuable matters[37, 39, 42]. As a whole, we design a bi-level
dehazing(BILD) framework to enable automatically patch reweighting by moni-
toring the learned dehazing performances on some out-of-sample data. In details,
the internal loop of BILD is trained for weighted supervised dehazing with in-
sample training patches; and the external loop utilizes out-of-sample patches
from validation set for training patch reweighting. The in-sample training and
out-of-sample validating strategy can ultimately enhance the generalization abil-
ity of the trained dehazing machines.

With simple derivatives, we further bridge our BILD model with the policy
gradient and interpret its objective function from max-entropy reinforcement
learning[18]. The dehazing performances of the same algorithm can be non-
trivially improved by BILD (as observed from the (c) row in Fig.1), especially
for those hard patches. While only the FFANet[32] was used as a showcase here,
we emphasized that the BILD is general enough to improve other supervised
dehazing methods, by simply integrating their respective objectives into BILD’s
internal loop.

We summarize the main contributions as three-fold:

• We propose bi-level dehazing (BILD) — a general framework that is compat-
ible with various supervised dehazing approaches for performance boosting,
especially in restoring seriously degraded regions.

• We introduce the reweighting and validating concepts into dehazing tasks
for improving their generalizations in dehazing new images with non-uniform
haze distributions.

• We uncover the natural connections of our BILD model with max-entropy
reinforcement learning, enhancing the interpretability of the whole learning
process from the novel view of agent-environment interactions.

2 Related work

Single Image Dehazing. All along, single image dehazing is viewed as a
highly ill-posed problem, which requires extra prior information or constraints.
To tackle this problem, existing single image dehazing methods can be divided
into two categories: the prior-based methods[6, 20, 28, 47] and the data-driven
methods [11, 33–36].
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Most prior-based approaches employ novel physical assumptions (e.g. DCP
[20], CAP[47], NLD[6]) to estimate the transmission map and ambient light[5] in
atmospheric scattering model[30, 31], which can explicitly recover a clear image
from haze. For instance, He et al. [20] notice pixels (at least one channel) tend to
zero on non-sky regions. Berman et al. [6] observe pixel colors of the whole scene
can be well clustered to hundreds of distinct colors. These prior-based methods
show nice statistical properties in specific scenes, but can easily fail in real-world
images where the physical assumptions do not hold.

Recently, data-driven supervised dehazing methods have been proposed to
overcome shortcomings of traditional prior-based methods, with advances in deep
learning and the establishment of large-scale datasets[24, 2, 1]. Early supervised
dehazing approaches [8, 23, 45] design learnable neural networks to estimate the
transmission map and ambient light. In [8], DehazeNet designs a three-layer
CNN with BReLU activation function to estimate transmission map. Recent
works trigger a great impact on supervised dehazing by learning the hazy-to-clear
mapping in an end-to-end manner. The GridDehazeNet[26] designs an attention-
based multi-scale network to directly recover haze-free images and introduces
perception loss in objective. In [43], AECRNet develops an autoencoder-like de-
hazing network with a novel contrastive regularization. Although great advances
have been made in network architecture and loss design, samples of different
importances are equally accounted in loss computation. In this work, by intro-
ducing the idea of visual importance, we design a weighted loss function based
on traditional L1/L2 loss and employ bi-level optimization strategy to optimize
it.

Bi-level optimization. Bi-level optimization is committed to optimizing
another set of parameters other than target network parameters, which describes
higher-level elements related to training neural networks[37]. Wu et al.[44] trains
a task scheduler for sequential learning to better assist the main task. Wang et
al.[42] uses bi-level optimization to help with data selection. Sun et al.[39] de-
signs an efficient data sampling schedule for learning a robust sampling strategy.
In addition, the bi-level optimization can also be used to optimize the graph
structure and embedding[14], ensemble model[25, 27], data auto-augment [10,
29, 41] and search network structure[4, 15]. In this work, inspired by the idea of
maximum entropy in reinforcement learning[19, 17], we design the entropy reg-
ular term in external loop to alleviate the phenomenon of weight concentration
in one batch, which can enhance the stability of training process. To our best
knowledge, we are the first paper to combine bi-level optimization with visual
importance in the field of image restoration and our BILD framework can boost
the performance of supervised dehazing methods well beyond SOTA.

3 Bi-level Dehazing Framework

3.1 Patch reweighting

In supervised dehazing training, small patches x are cropped from the large
hazy image and are fed into an arbitrary dehazing neural network fd(·; θ) param-
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etrized by θ. The dehazing performance on this single patch can be quantified
by counting the differences between the dehazed image with its corresponding
ground truth clean image y under some proper loss L, e.g. the L1 norm:

ℓ(x, y; θ) = L(fd(x; θ), y) (1)

Then, these single-patch-losses are equally accumulated forming the global
loss function Je on the training set Dt:

Je (Dt; θ) = E
(x,y)∼Dt

ℓ(x, y; θ) (2)

The additive loss Je implies that different patches are treated equally in
training, although they can suffer from very different degrees of degradation or
with very diverse pixel distributions. While Je has already been a benchmark loss
function used in most existing supervised dehazing methods, we still consider
it is not ideal for the discussed dehazing tasks because the haze distribution on
the same scene can be highly heterogeneous (see Fig.1). Therefore, the values
of different training samples should be properly weighted and exploited in the
loss design. To this end, we introduce a more reasonable dehazing loss by the
intuitive reweighting mechanism:

Jw (Dt;ϕ, θ) = E
(x,y)∼Dt

w(x, y;ϕ)ℓ(x, y; θ) (3)

where w(x, y;ϕ) = fw(x, y;ϕ) is the output of the weighting neural network
fw(·;ϕ) with (x,y) as input. We remark here that although we have fully empha-
sized the importance of patch reweighting, the underlying weighting mechanism
is still unknown. For instance, for two patches that vary in backgrounds and illu-
minations, there is no concrete prior to inform us which patch should be weighed
heavier than the other in the loss function. Accordingly, rather than heuristic
weighting, we opt to adopt the parametrized weighting mechanism that can au-
tomatically assess the importance of each training patch through a learnable
neural network fw(·;ψ).

3.2 Bi-level dehazing framework

While the aforementioned parametrized weighting concept is simple, it yields
a highly under-determined and non-convex objective function coupled with two
unknown neural networks. Without extra constraints, the direct minimization of
Jw (Dt;ϕ, θ) on the training set can easily lead to a trivial solution. In this case,
the reweighting neural network fw(·;ψ) may intend to assign (near) zero weights
to all patches and hence totally mute the functions of the dehazing network (see
the multiplications between the weight term and dehazing loss term in Jw in
Eq.3). To avoid such trivial solution, extra constraints or guiding information
should be imposed to restrict the feasibility of the learned results. In this work,
inspired by recent works [16, 37, 39, 41, 42], we consider enforcing the feasibility
of the learned results by monitoring the dehazing networks’ performances on a
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Fig. 2: The optimization process of the BILD framework, which consists of two
loops. (a) The computational flow of internal weighted supervised dehazing loop.
Patches from training set are fed into reweighting and dehazing network, respec-
tively, to generate patch-wise weights and reconstruction loss of restored images
and ground-truth. Then, the dot-product of the two outputs yields the objec-
tive function of internal loop. (b) The computational flow of external patch
reweighting loop. Patches from training and validation set are respectively fed
into dehazing networks of two consecutive iterations to obtain the gradient of
reconstruction loss(e.g. L1 loss). Then, the combination of the saved gradient
and penalty function constitutes the key reward for external loop updating(see
eq.6 and 7)

new validation set Dv,Dt

⋂
Dv = ∅ (see related ablation study in section4.3).

With this objective, the whole learning process is subject to the following bi-level
dehazing (BILD) optimization:

min
ϕ

Je (Dv; θ
∗(ϕ)) + αΩ(w)

s.t. θ∗(ϕ) = argmin
θ

Jw (Dt;ϕ, θ)
(4)

The above bi-level optimization is composed of the internal loop in the con-
straint and the external loop in the objective function. The internal loop mini-
mizes the empirical error of the training set under guidances of the patch-wise
weight provided by the external loop. The external loop trades off the gener-
alization error and penalty term with a hyper-parameter α. The generalization
error is obtained by evaluating the current suboptimal dehazing network on the
keep-out validation data and the penalty term quantify the structure of w with
a function Ω(w), where w = [w(x0, y0;ϕ), w(x1, y1;ϕ), · · · , w(xn, yn;ϕ)]⊤ and n
is the number of training patches in a batch. The most intuitive penalty func-
tion can be used here is the entropy term that encourages the learned patch-wise
weight not only to concentrate on a small number of training patches.

The primary advantage of building up the external loop is to enhance our
dehazing models’ generalization ability outside the training samples. Loosely
speaking, the external loop learns to generate a set of reasonable weights w(·;ϕ)
that can guide the internal optimization converging to better solutions with
enhanced generalization ability. The enhanced generalization ability covers two
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angles including better generalization to out-of-sample new images (granted by
the validating mechanism in the external loop) and better generalization to
various training patches (granted by the weighting mechanism in the internal
loop).

The parameter (θ) is only involved in the internal loop and can be easily
updated with typical gradient descending approaches on a sampled batch with
n patches,

θt ← θt−1 − η1∇θ

n∑
i=0

w(xi, yi;ϕ)ℓ(xi, yi; θ) (5)

The major difficulty of the BILD optimization stems from the external loop to
learn parameter ϕ for the reweighting neural network. As witnessed in Eq.4, ϕ is
coupled into θ and its gradient can be derived by applying the chain rule(detailed
derivation is available in supplement):

∇ϕ (Je (Dv; θt) + αΩ(w))

= −
∑
i

∇ϕ logw (xi, yi;ϕ)

·w (xi, yi;ϕ)

[
∇θJe (Dv; θt)

⊤∇θℓ (xi, yi; θt−1)− α
∂Ω(w)

∂w(xi, yi;ϕ)

]
︸ ︷︷ ︸

Ri

(6)

The above equation is an approximate solution for external loop updating.
The Ri can be regarded as the feedback of internal dehazing loop to patch
reweighting neural network(As is shown in Fig.2b). Here, we use entropy H(w)
as the regular term Ω(w), preventing over concentration of sample weight. Thus,
we get the update rule of ϕ,

ϕt ← ϕt−1 + η2

n∑
i=0

1

n
Ri · ∇ϕ logw (xi, yi;ϕ) (7)

According to the updating rules based on Eq.5 and 7, we alternately optimize
two sets of parameters as in Algorithm.1. It is worth noting that BILD can be
used to improve various supervised dehazing network or be integrated with other
alternative losses, which will be extended in the experimental part.

3.3 Relationship with RL

The updating rule for ϕ in Eq.7 resembles the general form of policy gradient
approaches used in REINFORCE algorithm[38, 40]. Then, we can interpret the
coupled bi-level optimization from the view of reinforcement learning. In this
context, the iterative interactions between the external and internal loops are
well illustrated as agent-environment interactions. In detail, the external patch
reweighting network is an agent, learning to perform actions (generating weights)
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Algorithm 1: Bi-level dehazing framework

Input: Parameters of dehazing network θ; parameters of reweighting network
ϕ; trainset Dt; validset Dv

Output: θ∗

1 for epoch = 1 to max epoch nums do
2 for B in Dt do
3 Crop B randomly into {xi, yi}i=1,2,··· ,n
4 Fix ϕ and update θ via eq.5
5 Evaluation on Dv and calculate Ri

6 Fix θ and update ϕ via eq.7

7 end

8 end

to the environment. After getting the action from the agent, three sequential
implementations will be activated in the environment including 1) updating the
dehazing neural network with the guidance of the current action (weight), 2)
evaluate the updated dehazing net on the validation set and 3) generate the
reward R by synchronizing the training performance, validating performance and
the quality of the current action by the formulation defined in Eq.6. As observed
from the first term in reward Ri, the environment intends to feedback a positive
reward when the inner product between ∇θJe (Dv; θt) (from validation set) and
∇θℓ (xi, yi; θt−1) (defined on training set) is close enough and vice versa(see
eq.6). Moreover, when using the entropy H(·) to realize the penalty Ω(·) in
Ri, we retain the same reward penalty mechanism as defined in the maximum
entropy reinforcement learning[19, 17] that can encourage the actor to explore
more adequately in the action space.

4 Experimental Results

4.1 Training, Validation and Testing Dataset

We evaluate the proposed framework on both synthetic datasets and real-
world datasets against the state-of-the-art methods. The RESIDE [24] is a widely
used synthetic dataset, which contains both indoor and outdoor synthetic im-
ages. To evaluate the effectiveness of our framework on synthetic hazy scenes,
the RESIDE dataset is divided into three parts: training, validation and testing,
respectively in indoor and outdoor datasets. For training, we randomly select
5000 indoor hazy/clear pairs from Indoor Training Set (ITS) and 5000 outdoor
pairs from Outdoor Training Set (OTS). For validation, we hold out 10% of the
training part. For testing, Synthetic Objective Testing Set (SOTS) is adopted,
which contains 500 indoor and 500 outdoor hazy images. As for real-world hazy
scenes, O-HAZE [2] and NH-HAZE [1, 3] datasets are adopted and each dataset
provides training sets, validation sets and testing sets. More details can be found
in the supplement.
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Table 1: Quantitative evaluations on the synthetic datasets and real-
world datasets in terms of PSNR and SSIM.

Method
SOTS [24]

O-HAZE [2] NH-HAZE [1]
indoor outdoor

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
(TPAMI’10) DCP [20] 16.62 0.8179 19.13 0.8148 15.87 0.6310 12.36 0.4448
(ICCV’13) BCCR [28] 17.04 0.7853 15.51 0.7914 14.43 0.5825 13.12 0.4831
(TIP’15) CAP [47] 18.97 0.8148 18.14 0.7585 15.36 0.5785 12.39 0.3753

(TPAMI’18) NLD [6] 17.29 0.7767 17.97 0.8194 15.34 0.5891 12.23 0.4823
(TIP’16) DehazeNet [8] 20.56 0.7954 – – – – – –
(ICCV’17) AODNet [23] 19.04 0.8215 22.43 0.9022 18.07 0.6517 16.93 0.5717

(ICCV’19) GridDehazeNet [26] 28.22 0.9691 27.53 0.9583 22.11 0.7097 17.22 0.5921
(CVPR’20) MSBDN [12] 28.66 0.9515 26.94 0.9107 22.99 0.6927 17.97 0.6072
(AAAI’20) FFANet [32] 31.44 0.9728 30.50 0.9718 24.13 0.7438 18.04 0.6236

DehazeNet + BILD 21.15 0.8509 – – – – – –
AODNet + BILD 19.53 0.8303 24.44 0.9216 20.81 0.6706 17.36 0.5779

GridDehazeNet + BILD 28.87 0.9765 27.93 0.9649 22.43 0.7242 17.97 0.6075
MSBDN + BILD 29.69 0.9596 27.03 0.9113 23.54 0.6954 18.14 0.6201
FFANet + BILD 32.14 0.9747 31.22 0.9760 24.91 0.7552 19.13 0.6439

4.2 Implementation Details

Our BILD framework consists of internal and external networks and is opti-
mized by alternative training. Adam optimizer with β1 and β2 equal to 0.9 and
0.999 is used to train the two networks with a batch size of 10, respectively. The
initial learning rate of the interal network is set as 10−4 with the external net-
work set as 10−1. The training epoch is set to 150 in total. All training models
are trained on training set and verified on validation set. We choose the best
model on the validation as the final model to evaluate its performance on the
test set. All experiments are implemented by PyTorch 1.7.1 with one NVIDIA
3090 GPU.

Considering image sizes of different datasets and GPU memory, following [32,
12] work: for RESIDE dataset, which image size is 640×480, we randomly crop
size 240×240 patches as networks’ input; for O-HAZE and NH-HAZE, where
image size is 1600×1200 or even 4599×3632, we randomly crop size 800×800
as input. Following [46] work, due to GridDehazeNet, FFA, MSBDN cannot
process 4K images in O-HAZE, we adopt the downsample-dehazing-upsample
(DDU) [46] strategy to solve this problem. Also for DCP[20], the window size
is set to 15×15 for less time cost [46]. See supplementary materials for network
architecture and more details.

4.3 Performance Results and Ablation Analysis

We evaluate the proposed BILD framework against SOTA methods based
on the physics prior and supervised data-driven learning. The metrics PSNR
and SSIM are adopted and all dehazing methods are retrained on the selected
training, validation and testing datasets.
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Fig. 3: Visual comparisons on the SOTS dataset. More examples can be found
in supplement. Zoom in for best view.

Results on Synthetic Dataset. The first four columns of Tab.1 show the
quantitative results on SOTS[24]. Our BILD framework improves the perfor-
mances of SOTA methods to varying degrees. As shown, FFANet + BILD ob-
tains the highest PSNR and GridDehazeNet + BILD obtains the highest SSIM
on the indoor part. Meanwhile, FFANet + BILD obtains the highest PSNR and
SSIM on the outdoor part. We also compare the qualitative results(see Fig.3). We
can observe that physics-prior dehazing methods (DCP[20], BCCR[28], CAP[47]
and NLD[6]) tend to over-darken or over-enhance the hazy image and are unable
to remove dense haze. Compared to physics-prior methods, the supervised de-
hazing methods achieve better visual quality. However, the quality of DehazeNet
is greatly affected by the estimation of ambient light and others (e.g. GridDe-
hazeNet, MSBDN and FFANet) cannot remove haze uniformly: some regions
close to the ground-truth but some regions still remain hazy. Our method re-
stores the hazy images more uniformly and removes haze more thoroughly at
patch-level(see red box in Fig.3).
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Fig. 4: Visual comparisons on the O-HAZE dataset. Zoom in for best view.

Fig. 5: Visual comparisons on the NH-HAZE dataset. Zoom in for best view.
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Results on Real-world Dataset. The last four columns of Tab.1 demon-
strate the quantitative results on the O-HAZE[2] and NH-HAZE dataset[1]. As
shown, on O-HAZE dataset[2], our FFANet + BILD framework obtains the high-
est PSNR and SSIM and achieves the gain with 0.78 dB and 0.0114 in terms of
PSNR and SSIM compared to FFANet[32] method. On NH-HAZE dataset[1], our
FFANet + BILD framework obtains the highest PSNR and SSIM and achieves
the gain with 1.09 dB and 0.0203 in terms of PSNR and SSIM compared to
FFANet[32] method. The qualitative results are presented in Figs.4 and 5. As
shown, our BILD + SOTA methods perform better color restoration (partic-
ularly with AODNet[23]) and better patch-level haze removal (see Figs.4 and
5). The physics-prior methods (DCP[20], BCCR[28], CAP[47] and NLD[6]) and
AODNet[23] suffer from serious color distortion. Besides, GridDehazeNet [26],
MSBDN[12] and FFANet[32] still have some residual haze in dense-haze re-
gions(see red box in Figs.4 and 5).

Table 2: Results of applying our framework into SOTA methods.

Method
SOTS-indoor[24] O-HAZE[2]
PSNR SSIM PSNR SSIM

DehazeNet + BILD ↑0.59 ↑0.0555 – –
AODNet + BILD ↑0.49 ↑0.0088 ↑2.74 ↑0.0189

GridDehazeNet + BILD ↑0.65 ↑0.0079 ↑0.32 ↑0.0145
MSBDN + BILD ↑1.03 ↑0.0081 ↑0.55 ↑0.0027
FFANet + BILD ↑0.70 ↑0.0019 ↑0.78 ↑0.0114

Ablation Analysis of BILD. We apply the BILD framework to vari-
ous SOTA methods to evaluate its effectiveness[8, 23, 26, 32]. As presented in
Tab.2, our BILD framework can improve the performance of SOTA methods to
varying degrees. Furthermore, the BILD framework cannot increase the addi-
tional parameters for the internal supervised dehazing network, since the exter-
nal patch reweighing network is just used for training and can be removed for
testing.Experiment results also show that the BILD framework can further in-
crease supervised dehazing network training efficiency for performance boosting,
as shown in Fig.6.

Fig. 6: Graph of PSNR with/without BILD framework during training process.
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Table 3: Comparison of the effectiveness with training set and validation set in
external loop.

Method
SOTS: indoor
PSNR SSIM

AODNet[23] 19.04 0.8215
GridDehazeNet[26] 28.22 0.9691

MSBDN[12] 28.66 0.9515
FFANet[32] 31.44 0.9728

AODNet + training set 19.33 0.8239
GridDehazeNet + training set 28.68 0.9704

MSBDN + training set 28.92 0.9518
FFANet + training set 31.53 0.9739

AODNet + validation set 19.53 0.8303
GridDehazeNet + validation set 28.87 0.9765

MSBDN + validation set 29.69 0.9596
FFANet + validation set 32.14 0.9747

We meanwhile consider the effect of validation set in external patch reweight-
ing loop. For better comparisons, we design the corresponding ablation exper-
iments: 1) without external reweighting loop(see the first four rows in Tab.3),
2) with external reweighting loop but objective function is defined on training
set(see the middle four rows in Tab.3) and 3) with external reweighting loop and
objective function is defined on validation set(see the last four rows in Tab.3).
We conduct the same training setting for all experiments and considering the
volume of data, we integrate the validation set into the training set for the ex-
periments of ”BILD + training set”. The results are summarized in Tab.3. Our
”BILD + validation set” outperforms ”BILD + training set” and baseline, which
shows the effectiveness with validation set in external loop.

Fig. 7: The experimental results of patch reweighting. More examples can be
found in supplement.
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4.4 Patch Reweighting and Additional Experiment

Fig.7 illustrates the learned importance of each patch generated by the exter-
nal patch reweighing loop. In general, the dense-haze patches have more learning
weights and the light-haze patches have less learning weights, which is in line
with our intention. Meanwhile, experimental results show that the complex back-
ground and illumination will also encourage more learning weight (see Fig.7).

Table 4: Results of applying our framework on full ITS dataset.

Method
full-indoor[24]
PSNR SSIM

(ICCV’19) GridDehazeNet[26] 32.16 0.9836
(ECCV’20) FDU[13] 32.68 0.9760

(CVPR’20) MSBDN[12] 33.79 0.9840
(CVPR’20) KDDN[21] 34.72 0.9845
(AAAI’20) FFANet[32] 36.39 0.9886
(CVPR’21)AECRNet[43] 37.17 0.9901

FFANet + BILD 38.58 0.9921

Considering the training time cost and empirical partition ratio of training,
validation and testing sets [22, 42], we select a subset from RESIDE dataset [24]
for supervised dehazing, which may suffer from overfitting of the training set.
As a complement, we conduct additional experiments on full ITS dataset[24] to
evaluate the effectiveness of our BILD framework, in which FFANet is adopted
as the supervised dehazing network. Experimental results show our BILD frame-
work achieves the best performance compared with SOTA methods(see Tab.4).

5 Conclusion

In this paper, we propose a bi-level supervised dehazing framework(e.g.
BILD), which is composed of two mutually coupled loops. The internal loop
solves the weighted supervised dehazing optimization with the known patch-
wise weights provided by the external loop. The external loop evaluates the
current dehazing network (obtained from internal loop) on validated samples
and, accordingly, generates a new set of structured weights to guide the super-
vised dehazing in the internal loop. The combination of the two alternative loops
strengthens the robustness of supervised dehazing process. The BILD framework
is compatible with general supervised dehazing methods and extensive exper-
iments demonstrate our BILD framework boosts the performances of SOTA
methods to varying degrees on synthetic and real-world datasets.
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